Supporting Information for ## Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness Yu Rong[†], Changfeng Wu^{\S} , Jiangbo Yu[†], Xuanjun Zhang[‡], Fangmao Ye[†], Maxwell Zeigler[†], Maria Elena Gallina [†], I-Che Wu^{\dagger} , Yong Zhang[†], Yang-Hsiang Chan[†], Wei Sun[†], Kajsa Uvdal[‡], Daniel T. Chiu[†]* †Department of Chemistry, University of Washington, Seattle, Washington 98195, United States §State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China ‡ Division of Molecular Surface Physics & Nanosciecne, Department of Physics, Chemistry, and Biology, Linköping University, Linköping 58183, Sweden. KEYWORDS Polymer dots • fluorescence • semiconducting polymer • bioimaging • narrow emission. BODIPY fluorene copolymer series **Scheme S1**. Synthesis of BODIPY monomer a, 2a, and BODIPY fluorene copolymer series Scheme S2. Synthesis of monomer 1a and BODIPY fluorene copolymer 1b polymer 2b ## Scheme S3. Synthesis of monomer 2a and BODIPY fluorene copolymer 2b Scheme S4. Synthesis of monomer 3a and BODIPY fluorene copolymer 3b **Scheme S5.** Synthesis of BODIPY fluorene copolymer 3c **Figure S1.** Absorption (A) and fluorescence (B) spectra of BODIPY monomer in THF solution. **Figure S2.** Absorption (A) and fluorescence (B) spectra of aqueous solutions of BODIPY Pdots of Polymer 1b (green), 2b (orange), and 3b (deep red). The excitation wavelength for Green, Orange, and Deep-Red Pdots was 405nm, 488nm, and 488nm, respectively. **Figure S3.** A-C: Histograms of the particle sizes measured by DLS for the BODIPY Pdots prepared from: Polymer **1b** (A); Polymer **2b** (B); Polymer **3b** (C). **Figure S4.** Confocal fluorescence microscopy images of MCF-7 breast-cancer cells. A-B: Negative control, where labeling was carried out under the same condition as positive labeling with BODIPY520 Pdot-SA (Figure 5a), but in the absence of EDC catalyst in the bioconjugation step (A) and in the absence of biotinylated primary antibody (B). C-D: Negative control, where labeling was carried out under the same condition as positive labeling with BODIPY600 Pdot-SA (Figure 5b), but in the absence of EDC catalyst in the bioconjugation step (C) and in the absence of biotinylated primary antibody (D). E-F: Negative control, where labeling was carried out under the same condition as positive labeling with BODIPY690 Pdot-SA (Figure 5c), but in the absence of EDC catalyst in the bioconjugation step (E) and in the absence of biotinylated primary antibody (F). Images from left to right: Fluorescence images from Pdot-SA; Nomarski (DIC) images; combined DIC and fluorescence images. All the scale bars represent 20 μm. **Figure S5.** Photo-stability (normalized fluorescence intensity vs. time) of (a) PFBT/PS-PEG Pdots (green curve, $\lambda ex = 405 \text{ nm}$), Qdots 525 (blue curve, $\lambda ex = 405 \text{ nm}$), BODIPY520 Pdots (cyan curve, $\lambda ex = 405 \text{ nm}$) in bulk aqueous solution, respectively; (b) PFBT/PS-PEG Pdots (green curve, $\lambda ex = 488 \text{ nm}$), BODIPY 600 Pdots (orange curve, $\lambda ex = 488 \text{ nm}$), BODIPY 690 Pdots (red curve, $\lambda ex = 488 \text{ nm}$) in bulk aqueous solution, respectively. Table S1. Spectroscopic Properties of BODIPY monomers in THF. | BODIPY monomer | $\lambda_{abs\ max}$ (nm) | λ _{em max} (nm) | FWHM ^a (nm) | Φ_F^{b} | |----------------|---------------------------|--------------------------|------------------------|--------------| | a | 502 | 515 | 36 | 0.98 | | 1a | 504.5 | 522 | 35 | 0.56 | | 2a | 534.5 | 556 | 28 | 0.026 | | 3a | 646.5 | 664 | 36 | 0.215 | ^a Fluorescence full width at half-maximum peak height. ^b Absolute photoluminescence quantum yield Table S2. Spectroscopic Properties of BODIPY Pdots in water. | Polymer Pdots | $\lambda_{abs\ max}(nm)$ | λ_{em} $_{max}(nm)$ | Life time (ns) | FWHM ^a
(nm) | $\Phi_F^{\ b}$ | |-------------------------|--------------------------|-----------------------------|----------------|---------------------------|----------------| | Polymer 1b Pdots | 378, 504.5 | 516 | 3.11 | 41 | 0.35 | | Polymer 2b Pdots | 317, 455, 546, | 596 | 1.08 | 55 | 0.13 | | Polymer 3c Pdots | 317, 450, 538,
653 | 688 | 1.60 | 53 | 0.19 | ^a Fluorescence full width at half-maximum peak height. ^b Absolute photoluminescence quantum yield **Table S3.** Size, zeta potential, and photophysical properties of BODIPY520, 600, and 690 Pdots | Pdots | Size ^[a] | ξ ^[b] | $Abs(10^{-13}cm^2)^{[c]}$ | $\Phi^{[d]}$ | B (CCD _[e] | |-----------|---------------------|------------------|------------------------------|-----------------|----------------------------------| | BODIPY520 | 16 | -48.9 | 2.50 (405nm) | 35 | 33,000 (405nm) | | BODIPY600 | 18 | -36.3 | 1.50 (488nm) | 13 | 7,000 (488nm) | | BODIPY690 | 18 | -36.9 | 1.68 (488nm) | 19 | / | | PFBT | 18 | -45.1 | 1.72 (405nm)
2.09 (488nm) | - 30 | 23,000 (405nm)
21,000 (488nm) | [[]a] Size was measured by DLS. [b] Zeta potential. [c] Absorption cross-section per single Pdot. [d] Absolute photoluminescence quantum yield. [e] Single particle brightness, for PFBT, the data at 405 nm and 488 nm were not measured at the same time, therefore, the conditions may be different; BODIPY520 and PFBT were measured under the same conditions; BODIPY600 and PFBT were measured under the same conditions ¹H-NMR of 10% BODIPY fluorine copolymer ¹³C-NMR of 10% BODIPY fluorine copolymer ¹H-NMR of polymer 1b ¹³C-NMR of polymer 1b ¹H-NMR of polymer 2b ¹³C-NMR of polymer 2b ¹H-NMR of polymer 3b ¹³C-NMR of polymer 3b ¹H-NMR of polymer 3c ¹³C-NMR of polymer 3c