Highly efficient, solar active and reusable photocatalyst, Zr loaded Ag-ZnO for Reactive Red 120 dye degradation with synergistic effect and dye sensitized mechanism

B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi*

Photocatalysis Laboratory, Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.

Supplementary Materials

Figure S1. Chemical structure of RR 120

Figure S2 Schematic diagram of photoreactor.

Figure S3. Chemical structure of RO 4

Figure S4. Photodegradability of RO 4: [RO 4] = 5×10^{-4} M, catalyst suspended = 3 g L⁻¹, pH = 7, airflow rate = 8.1 mL s⁻¹; I_{solar} = $1250 \times 100 \pm 100$ lux

.

Figure S5. Chemical structure of RY 84

Figure S6. Photodegradability of RY 84: [RY 84] = 5×10^{-4} M, catalyst suspended = 3 g pH = 7, airflow rate = 8.1 mL s⁻¹; I_{solar} = $1250 \times 100 \pm 100$ lux

Figure S7. Effect of solution pH, [RR 120] = 2×10^{-4} M, 4 wt% Zr-Ag -ZnO suspended = 3 g L⁻¹, airflow rate = 8.1 mL s⁻¹, irradiation time = 20 min; I_{solar} = $1250 \times 100 \pm 100$ lux

Figure S8. Plot of pH versus oxide/water mass percentage

Figure S9. Effect of catalyst loading, [RR 120] = 2×10^{-4} M, Catalyst suspended = 4 wt% Zr-Ag-ZnO, airflow rate = 8.1 mLs⁻¹, pH = 7, irradiation time = 20 min; I_{solar}= $1250 \times 100 \pm 100$ lux

Figure S10. Effect of initial dye concentration, pH = 7, 4 wt% Zr-Ag -ZnO suspended = 3 g L⁻¹, airflow rate = 8.1 mL s⁻¹, irradiation time = 20 min; I_{solar} = 1250×100±100 lux