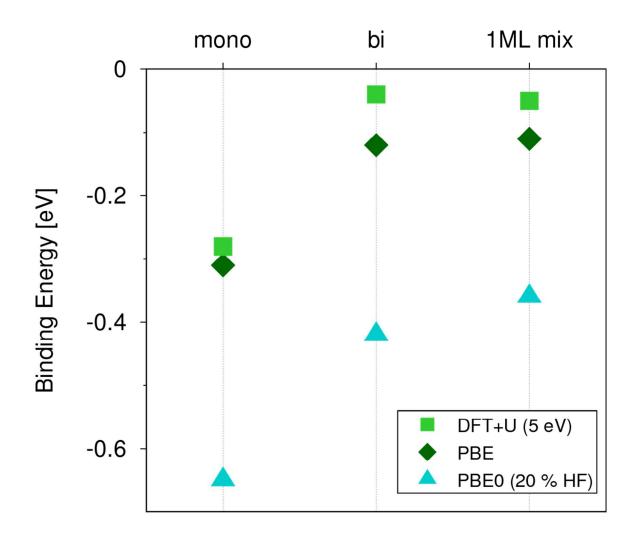
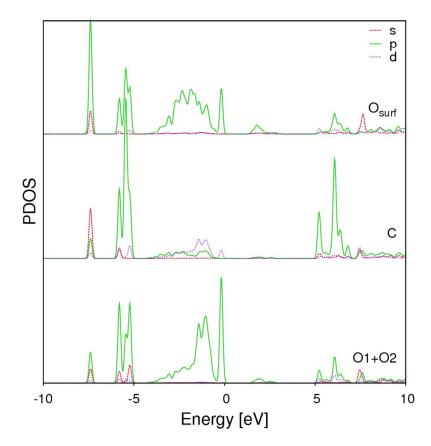

## Coverage effect of the $CO_2$ adsorption mechanisms on $CeO_2(111)$ by first principles analysis

Konstanze R. Hahn, Marcella Iannuzzi, Ari P. Seitsonen, Jürg Hutter\*

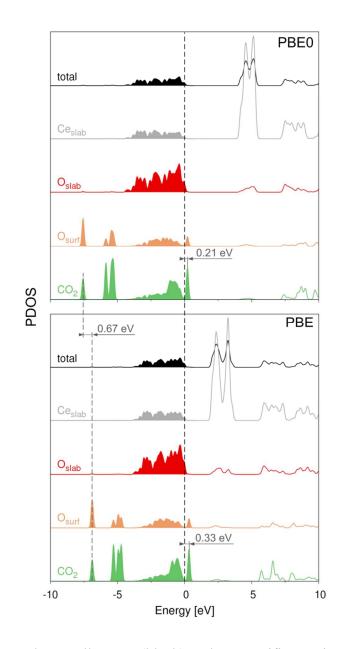
**Supporting Information** 



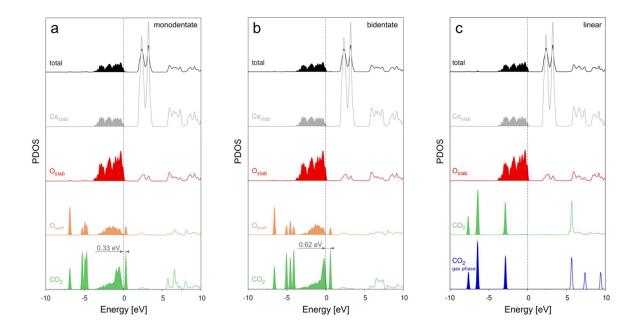

**Figure S1**. Initial and final configurations for stable configurations of  $CO_2$  on  $CeO_2(111)$ . When the linear  $CO_2$  molecule was initially placed close to the surface (1.7 Å), the molecule spontaneously bent to form a monodentate species (a).




**Reaction Coordinate** 


**Figure S2**. Potential energy surface for the transition of the linear CO2 molecule at 3.5 Å above the surface to the monodentate configuration of  $CO_2$  obtained from nudged elastic band calculations. For the adsorption of  $CO_2$  in the bent monodentate configuration, an activation energy of 0.2 eV is determined. In the transition state the O-C-O angle decreases to 152.1° and the C-O bond length elongates to 1.20 Å.




**Figure S3**. Binding energy of selected configurations (mono- and bidentate at 1/9 ML and mixed configuration of monodentate and linear species at 1 ML) of  $CO_2$  adsorbed on  $CeO_2(111)$  calculated with DFT+U (U=5 eV), standard DFT using the PBE functional and PBE0. PBE0 calculations were performed using 20% exact exchange. All methods show the same trends for the stability of different adsorption mechanisms.



**Figure S4**. PDOS on s- (red lines), p- (green lines) and d-type (violet lines) orbitals of the  $O_{surf}$  atom and the C and O (O1 and O2) atoms of the CO<sub>2</sub> molecule adsorbed on CeO<sub>2</sub>(111) in a monodenate configuration at 1/9 ML coverage. Binding of the CO<sub>2</sub> molecule at the valence band to the  $O_{surf}$  atom takes place through p-orbitals of the O atoms and hybridized orbitals of the C atom with d-character.



**Figure S5**. PDOS summed over all atoms (black) and on specific species ( $Ce_{slab}$ ,  $O_{slab}$  and  $CO_2$ ) of isolated (1/9 ML)  $CO_2$  adsorbed on  $CeO_2(111)$  in a monodentate configuration calculated with PBE0 (top) and standard DFT (PBE, bottom).  $CO_2$  orbitals ca. 6 eV below the valence band are found at lower energies (by 0.67 eV) for PBE0 than for PBE. Additional  $CO_2$  states formed upon adsorption are found at 0.21 and 0.33 eV above the valence band of  $CeO_2$  for PBE0 and PBE calculations, respectively.



**Figure S6**. PDOS summed over all atoms and on the orbitals of substrate Ce (Ce<sub>slab</sub>, grey lines) and O (O<sub>slab</sub>, red lines) atoms upon adsorption of CO<sub>2</sub> (green lines) as (a) monodentate, (b) bidentate and (c) linear species. In the case of linear adsorption, additionally the DOS of linear CO<sub>2</sub> in the gas phase (blue line) is shown, where the energy levels have been shifted to match the energy levels of linear CO<sub>2</sub> physisorbed on CeO<sub>2</sub>(111). The reference 0 eV has been set to the valence band of the CeO<sub>2</sub> substrate. One additional state evolves above the valence band of CeO<sub>2</sub> in the case of mono- and bidentate CO<sub>2</sub> adsorption. This can be attributed to the hybridized HOMO of gas phase CO<sub>2</sub> and lies 0.33 and 0.62 eV above the CeO<sub>2</sub> valence band in the mono- and bidentate configuration, respectively.

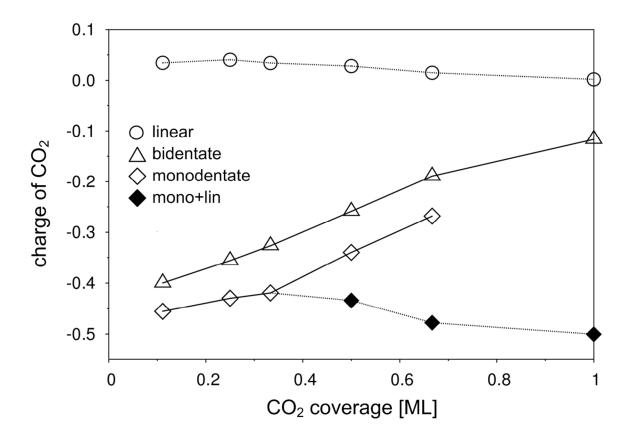



Figure S7. Average charge per CO<sub>2</sub> molecule adsorbed linearly (circles), as bidentate (triangles) and monodentate (diamonds) species as a function of the CO<sub>2</sub> coverage. Filled diamonds show the charge of monodentate species (1/3 ML) when additional CO<sub>2</sub> is adsorbed as linear species. In this case, the charge of the monodentate species even decreased slightly with increasing amount of linear CO<sub>2</sub> indicating an additional charge transfer from linear to monodentate CO<sub>2</sub> species.