Supporting Information (SI)

Impact of surfactant on the electroactivity of proteins at an aqueousorganogel microinterface array

Shane O’Sullivan and Damien W. M. Arrigan*

Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

* Corresponding author. Phone +61-8-92669735, fax +61-8-92662300, email d.arrigan@curtin.edu.au

Abstract

:

The repeated cyclic voltammetry of myoglobin, haemoglobin and cyctochrome c (aqueous phase) in the presence of 10 mM NaAOT (organic phase) is shown. Myoglobin, Figure S-1, shows very high reproducibility in peak currents as compared to cytochrome c (Figure S-3). Haemoglobin, Figure S-2, shows a small increase in peak current with increasing scan number, albeit to a far less extent than cytochrome c. This indicates that a complex relationship between the protein and surfactant may cause unique voltammetric responses for individual proteins.

Figure S-1. CVs of $6 \mu \mathrm{M} \mathrm{Mb}$ in the presence of 10 mM organic-phase surfactant, NaAOT. Scan rate $5 \mathrm{mV} \mathrm{s}^{-1}$. Other conditions as described in the Experimental section. Overlay of three consecutive CVs shown.

Figure S-2. CVs of $6 \mu \mathrm{M} \mathrm{Hb}$ in the presence of 10 mM organic-phase surfactant, NaAOT. Scan rate $5 \mathrm{mV} \mathrm{s}^{-1}$. Other conditions as described in the Experimental section. Overlay of three consecutive CVs shown.

Figure S-3: CVs of $6 \mu \mathrm{M}$ Cyt c, scan rate $5 \mathrm{mV} \mathrm{s}^{-1}$. Dashed line represents the blank scan. The organic phase contained 10 mM NaAOT. Other conditions as described in the Experimental section. Overlay of seven consecutive CVs shown.

