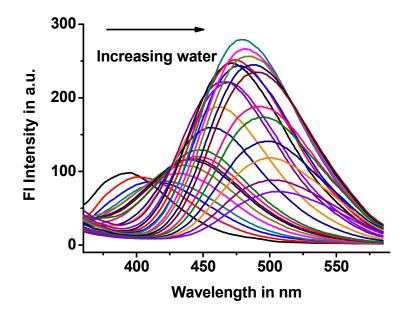
## **Supporting Information**

## A Hydrogen Bond Sensitive Probe 5-Methoxy-1-keto-1, 2, 3, 4 tetrahydro-carbazole in the Microheterogeneity of Binary Mixtures and Reverse Micelles

Manas Kumar Sarangi<sup>1</sup>, Amrit Krishna Mitra<sup>2</sup>, Chaitrali Sengupta<sup>1</sup>, Sujay Ghosh<sup>1</sup>, Suchandra Chakraborty<sup>2</sup>, Chandan Saha<sup>2</sup> and Samita Basu<sup>1</sup> \*

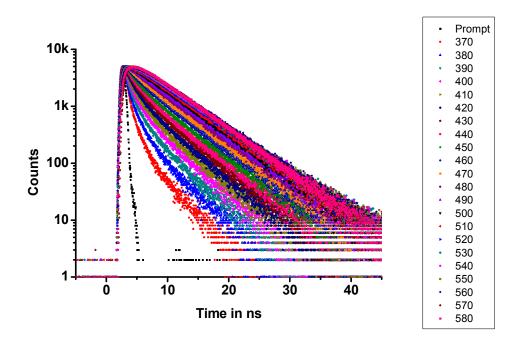
1 Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India

2 Departments of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073, India


\*Corresponding Author:

E-mail address: <a href="mailto:samita.basu@saha.ac.in">samita.basu@saha.ac.in</a>

Telephone: +91-33-2337-5345, Fax: +91-33-2337-4637


## Figure S1: Fluorescence Intensity in water-dioxane mixture

While the absorption spectra show a very small shift in its absorption maxima, the fluorescence spectra undergo a very large Stokes's shift as we moved from very low water proportion to higher. We observe a very small decrease in the fluorescence intensity of MTC with increase in water, followed by an increase in the intensity with formation of h-MTC as the H-bonding of water is reestablished with higher mole fraction of water.



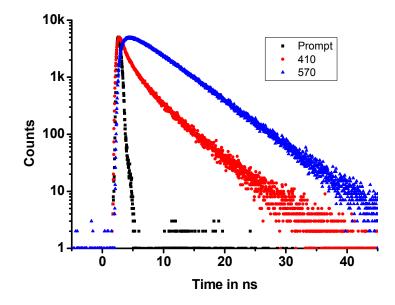

S1: Variation of fluorescence intensity of MTC (10  $\mu$ M,  $\lambda_{ex}$  = 340 nm) in different proportion of water-dioxane mixture. The arrow indicates the variation with increase in amount of water.

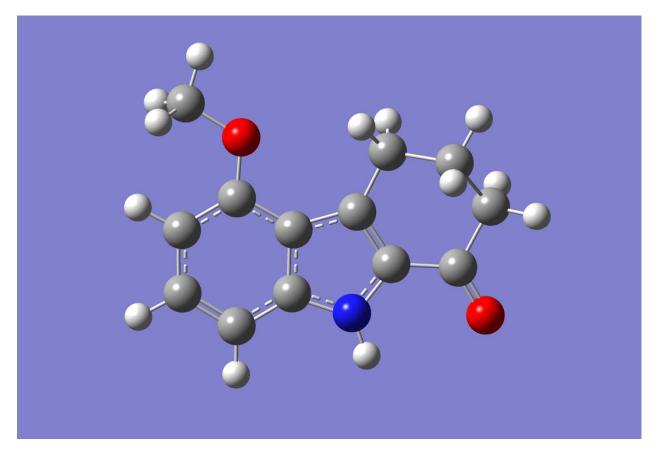
Figure S2:



<u>S2:</u> Time-resolved fluorescence decay profiles of MTC (10  $\mu$ M,  $\lambda_{ex}$  = 340 nm) in w<sub>0</sub> = 6 for the entire emission range of 370-580nm with an increment in 10nm each.

## Figure S3




S3: Time-resolved fluorescence decay profiles of MTC (10  $\mu$ M,  $\lambda_{ex} = 340$  nm) in  $w_0 = 6$  at emission wavelength of 410 and 570 nm respectively. The decay at the longer wavelength region is followed by a distinct growth of few orders of ns.

| Table | <b>S4</b> |  |
|-------|-----------|--|
|       |           |  |

| Mole fraction of<br>Water | $\lambda_{em}$ /nm | $\tau_1^{a}/ns$ |
|---------------------------|--------------------|-----------------|
| 0                         | 416                | 1.41            |
| 0.03                      | 422                | 0.595           |
| 0.07                      | 427                | 0.472           |
| 0.12                      | 432                | 0.466           |
| 0.15                      | 438                | 0.473           |
| 0.18                      | 443                | 0.596           |
| 0.2                       | 447                | 0.534           |
| 0.22                      | 452                | 0.780           |
| 0.25                      | 452                | 0.901           |
| 0.3                       | 456                | 0.964           |
| 0.35                      | 458                | 1.090           |
| 0.4                       | 465                | 1.960           |
| 0.45                      | 473                | 3.210           |
| 0.5                       | 479                | 3.900           |
| 0.6                       | 483                | 4.320           |
| 0.7                       | 486                | 4.320           |
| 0.8                       | 493                | 4.600           |
| 0.9                       | 500                | 4.700           |
| 1                         | 505                | 4.870           |

<u>S4:</u> Fluorescence maxima (in nm) and lifetimes (in ns) of MTC (10  $\mu$ M,  $\lambda_{ex}$  = 340 nm) in different ratio of water-acetonitrile binary mixtures. a ± 10%.

**Figure S5:** Ground state energy minimized structure of MTC, (Gaussian 09, B3LYP /6-311G(d,p))

