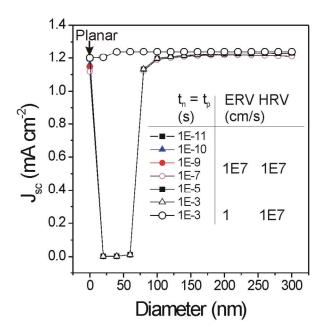
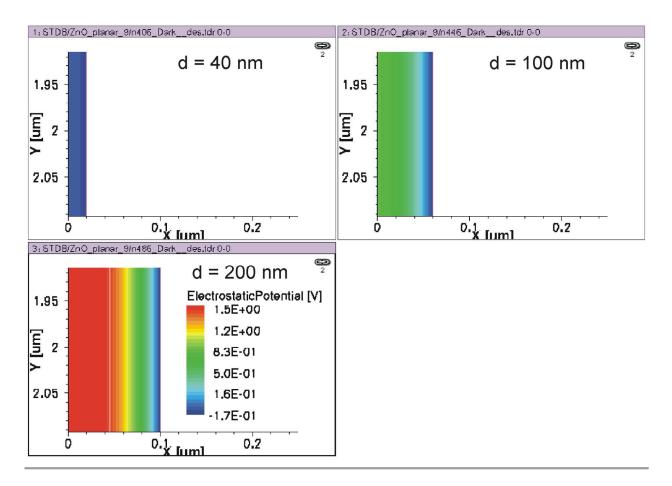
Supporting Information for:

A Comparison of the Behavior of Single Crystalline and Nanowire Array ZnO Photoanodes

Anthony Fitch, Nicholas C. Strandwitz, Bruce S. Brunschwig, and Nathan S. Lewis*


Beckman Institute and Kavli Nanoscience Institute

Division of Chemistry and Chemical Engineering


210 Noyes Laboratory, 127-72

California Institute of Technology

Pasadena, CA 91125

Figure S1. Simulated short circuit current densities under 1-sun illumination for ZnO nanowires with varying diameter, electron and hole lifetime, and interfacial electron and hole recombination velocities. Despite long carrier lifetimes of 1 ms large J_{sc} values are not observed in wires with d<75 nm. However, when the electron recombination velocity is reduced, simulating a 'hole-selective' contact characteristic of dye-sensitized solar cells, large J_{sc} values are obtained even at small wire diameters where very little electric field is present (See **Figure S2**).

Figure S2.Simulatedelectrostatic potential in the dark, plotted vs. spatial coordinates of cross-sections of one half of ZnO nanowires with diameters of 40 nm, 100 nm, and 200 nm.

Table S1.	Parameters for the	device	physics simulation
-----------	--------------------	--------	--------------------

Parameter	Value	
Band Gap	3.3 (eV)	
Electron Affinity	3.7 (eV)	
Electron DOS	4.0E18 (cm⁻³)	
Hole DOS	1.8E19 (cm ⁻³)	
Electron Mobility	50 (cm ² V ⁻¹ s ⁻¹)	
Hole Mobility	10 (cm ² V ⁻¹ s ⁻¹)	
Electron lifetime	1E-9 (s)	
Hole lifetime	1E-9 (s)	
Electron Recombination Velocity	1E7 (cm s ⁻¹)	
Hole Recombination Velocity	1E7 (cm s ⁻¹)	

Index of refraction data and absorption coefficient data were taken from Ref 1.

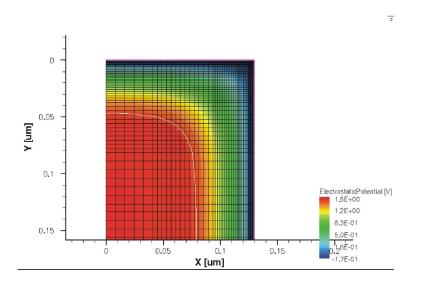


Figure S4. Example of the simulation mesh used in device physics simulations.

References:

(1) Yoshikawa, H.; Adachi, S. Japanese Journal of Applied Physics **1997**, *36*, 6237.

Complete Reference 2:

Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N.S., *J. Am. Chem. Soc.* 2011,133, 1216-1219.