Supplemental Information

Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties and crystal structure

^aJianhui Zhu, ^{a,§}Jiali Cai, ^aWenchun Xie, ^aPin-Hsuan Chen, ^bMassimo Gazzano, ^bMariastella Scandola, ^aRichard A. Gross^{*}

^aNSF I/UCRC for Biocatalysis & Bioprocessing of Macromolecules, Polytechnic Institute of NYU, Six Metrotech Center, Brooklyn, New York 11201.

^bChemistry Department "G. Ciamician" and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna, via Selmi 2, 40126.

[§] Contribute equally to the first author, *To whom the correspondence should be addressed.

Table S1. Bond lengths (Å) in PBF structure as shown in Fig. 8.

C2-O1	1.425	C1-C2	1.534
C3-O1	1.359	C1-C10	1.518
C3-O2	1.230	C4-C5	1.350
C4-O3	1.359	C5-C6	1.417
		C3-C4	1.495

Table S2. Comparison between cell parameters of PBF and α - and β -PBT.

	a	b	С	α	β	γ
	(Å)	(Å)	(Å)	(°)	(°)	(°)
α-PBT	4.83	5.94	11.59	99.7	115.2	110.8
β-РВТ	4.95	5.67	12.95	101.7	121.8	99.9
PBF	4.78	6.03	12.31	110.1	121.1	100.6

Table S3. Young's modulus, elongation to break and stress at break for PBF sample 6 differing in crystallinity.

Sample	Melting enthalpy	Crystallinity,	Young's	Elongation at	Stress at break
No.	contribution to initial	% from X-	Modulus	break,	(MPa)
	crystallinity, J/g	ray	(MPa)	%	
6-1*	6.3	8.1	959±58	1055±56	31.8±2.9
6-2	9.2	24.9	1054±60	445±32	27.5±0.4
6-3	39.5	37.7	1091±45	284±93	35.5±1.9
6-4	47.2	44.0	1112±53	7.4±2	43.2±8.5
PBT	48.0		950±70	272±71	37.6±2.5

^a The true stress at break calculated after correction for the cross-sectional area.

^{*}Different thermal processing on sample 6, the details were described in experimental section.

Figure S1a Relationship of %-crystallinity, determined by X-ray diffraction, and DSC determined values of enthalpy difference ($\Delta H = \text{difference}$ between the melting enthalpy and the cold crystallization enthalpy) for PBF sample 6 annealed under different conditions.

Figure S1b. Percent crystallinity of PBF sample bars for tensile testing as a function of molecular weight. Values of χ_c were determined from experimental ΔH values. That is, the plot shown in Figure S1a was used to correlate experimental ΔH and χ_c .

Figure S2. Stress-strain curves for the series of PBF Samples 1-6 with different $M_{\rm w}$.

Figure S3. Stress-strain curves for the series of PBF Sample 6 with different crystallinity.