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Shape optimization algorithm

The shape optimization algorithm that we use can be considered a type of gradient ascent method

where the optimization variable is the shape. Thus, at each step of the optimization, we seek a

perturbation field V that will deform the propeller to increase a specified objective functional. In

our case, we find a V that results in a greater value of Uz = U · ẑ for the boundary value flow

problem
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−∇∇∇p+η∇
2u = 0

∇∇∇ ·u = 0 (S1)

for fluid velocity field u and pressure p with

u = U+Ω0ẑ×x (S2)

on the swimmer’s surface. The surface of the swimmer’s propeller is given by

x(t,θ) = X(t)+ac(t) [sinθn1 + cosθn2] (S3)

with t ∈ [−1,1], θ ∈ [0,2π], and ac(t) = a
√

1− t2. The components of U and the scalar Ω0 are

unknowns which we determine by imposing the following conditions for the total force and torque,

F =
∫

fdS = 0 (S4)

τττ =
∫

x× fdS = τ0ẑ+T. (S5)

where τ0 is prescribed and T is unknown, but ẑ ·T = 0. As described in the text, this particular

set of boundary conditions is taken to model the rotation and alignment of the swimmer by an

applied magnetic field. The surface tractions are f = σσσ ·n where σσσ =−pI+η(∇∇∇u+(∇∇∇u)T ) is the

Newtonian stress tensor and n is the unit normal to the swimmer’s surface.

To determine this particular V, we must first calculate the variation, δUz, of Uz, with respect to

an arbitrary perturbation field ΦΦΦ. This is done using the machinery of shape differential calculus

and the detailed calculation is presented in Walker et al.S1 This calculation gives the expression

δUz(ΦΦΦ) =
∫
(ΦΦΦ ·n)f · (I−nn) ·gdS (S6)
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where g are the surface tractions for an adjoint Stokes flow problem with u = Ũ+ Ω̃0ẑ× x on

the swimmer’s surface, F̃ = τ0ẑ and τττ = T̃ with T̃ · ẑ = 0. As with the original Stokes flow, the

components of Ũ, the scalar Ω̃0, and two components of T̃ are unknowns. In our optimizations, we

consider perturbations φφφ of the centerline, but we need ΦΦΦ ·n on the swimmer’s surface to evaluate

the shape derivative. Using the equation for the surface, S3, this can be found using the following

formula

ΦΦΦ ·n = φφφ ·n+ac(t)(cosθδn1 + sinθδn2) ·n (S7)

where δn1 = n2×δ t and δn2 =−n1×δ t. The variation δ t of the centerline tangent is completely

determined by φφφ and given by

δ t = (I− tt) · dφφφ

ds
(S8)

where s is the arclength.

In the main text, we described the centerline X in terms of the arclength s ∈ [−L,L]. In the

optimizations, however, we utilize a more general parametization, X(t) with t ∈ [−1,1], see S3.

We then impose the local inextensibility condition, |dX/dt| = L using Lagrange multipliers, λ .

Specifically, we consider the integral form of this condition,

L =
∫ 1

−1
µ(|X(t)|− |X0(t)|)dt = 0 (S9)

for all choices of µ , where X0(t) is the reference centerline. The shape derivative of this functional

is

δL(µ,φ) =
∫ 1

−1
µ(t · dφ

ds
)dt. (S10)

Using these expressions and following Walker et al.,S2 we establish the variational formulation for

obtaining an ascent perturbation of the shape at each step of the optimization. Find the perturbation

V and Lagrange multiplier λ such that

〈V,φφφ〉+δL(φφφ ,λ ) = δUz(ΦΦΦ) (S11)
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δL(V,µ) =−L(µ) (S12)

for all φφφ and µ . Here, we use the inner product

〈q(t),r(t)〉=
∫

q · rdt +
∫ dq

dt
· dr

dt
dt +

∫ d2q
dt2 ·

d2r
dt2 dt (S13)

where the integrals are defined over the centerline. This inner product ensures the shape remains

smooth. In the numerical implementation, we consider V given by cubic splines defined over Nseg

segments of the centerline. We take λ to be piecewise constant over these segments, which implies

that the length of each segment is kept constant during the optimization. It can be provenS1 that

the resulting V is an ascent perturbation and, consequently, will morph the swimmer into a shape

with a higher speed.

Boundary integral equations

In order to determine the variations in the functionals with respect to changes in the swimmer

shape, we must compute the tractions on the body for the original and adjoint Stokes flow prob-

lems. To do this for the complex swimmer geometries, we use a second-kind boundary integral for-

mulation for the tractions on a rigid body. This formulation avoids the numerical ill-conditioning

associated with the standard first-kind boundary integral equation and allows us to compute the

functional variations with fidelity necessary to resolve the ascent direction in the shape space.

Using index notation, this integral equation for the tractions is

Ui +(ΩΩΩ×x)i =
1

2η
fi(x)

+nk(x)
∫

D
Ti jk(y−x) f j(y)dSy +V T

i [f](x). (S14)
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where the integrals are taken over the surface of the swimmer,

Ti jk(x−y) =
3

4πη

(xi− yi)(x j− y j)(xk− yk)

|x−y|5
, (S15)

and V T
i [f](x) is the adjoint completion flow. V T

i [f](x) is given by

V T
i [f](x) =

∫
D

G ji(y−X(x)) f j(y)dSy

+εi jk(xk−Xk(x))
∫

D
fl(y)Rl j(y−X(x))dSy (S16)

and is based on a linear combination of Stokeslets

Gi j(x) =
1

8πη

(
δi j

|x|
+

xix j

|x|3

)
(S17)

and rotlets

Ri j(x) =
1

8πη

εi jkxk

|x|3
(S18)

distributed at the set of points X along the centerline of the body.

Before discretizing, we first remove the 1/r divergence in the integrand on the right hand side

of S14 by rewriting the first two terms

Ii(x) =
1

2η
fi(x)+nk(x)

∫
D

Ti jk(y−x) f j(y)dSy (S19)

as

Ii(x) =
∫

D
Ti jk(y−x)

(
f j(y)nk(x)+ f j(x)nk(y)

)
dSy. (S20)

We then approximate the integrals to second-order using the trapezoidal rule where the contribution

from the source whose location coincides with the field point is removed from the sum. The details
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regarding the discretization scheme and a verification of the method can be found in Keaveny et

al.S3

Swimmer parametrization

For our examination of the propeller cross-section orientation, we utilize the following parametriza-

tion of the swimmer surface

x(s,θ) = X(s)+ rn(s)sinθn1 + rb(s)cosθn2. (S21)

For the centerline, we take

X(s) =
∫ s

−L
dX/ds′ds′ (S22)

where
dX
ds

= t̂hel(L)χ(L)+
∫ s

−L
χ(s′)

d2Xhel

ds′2
ds′. (S23)

The function χ(s) =
[
1− erf((s− s0)/(

√
2σ))

]
/2 governs the transition between the flat head and

tail regions. To match the head size in the Zhang et al. experiments, we set s0/L = 1− 9.0/54.2

and take σ/L = 0.02. The unit vectors, n1 and n2 are normal to the centerline tangent t and related

to the Serret-Frenet normal N and binormal B through

n1 = NcosΓ(s)+BsinΓ(s) (S24)

n2 = BcosΓ(s)−NsinΓ(s) (S25)

where Γ(s) = γ

[
1− erf((s− s1)/(

√
2σ))

]
/2 with γ being the rotation angle in the propeller. We

also set s1/L = 1− 11.0/54.2 and σ/L = 0.02. The vector n2 serves as the long axis of the

propeller cross-section and has radius rb(s) = ab(c1− c2χ(s))(1− s8)1/8 with ab/L = 1/27. The

constants c1 = 2.75 and c2 = 1.75 set the magnitude of the rb in the head and propeller sections.

Finally, for the short axis of the propeller cross-section, n1, we set its radius to be rn(s) = rb(s)/4.
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Mobility matrices of optimal shape

Here, we provide the mobility coefficients for the swimmer shapes shown in Figures 4 and 5.

Given the helical symmetry of the swimmers, we take the approximation Uz = MAFz +MBτz and

Ωz = MBFz +MDτz. We obtain the values of MA, MB, and MD by solving the Stokes equations

subject to the boundary conditions used in our shape optimization routine. The resistance, or drag

coefficients can be found by inverting the linear relations. For the swimmers shown in Figure 4,

the mobility coefficients are provided in Table S1 The entries for the swimmers in Figure 5 with

Table S1: Mobility coefficients for the swimmers shown in Figure 4 in the text.

L/R ηRMA ηR2MB ηR3MD
GF 2.53×10−2 4.74×10−4 1.07×10−2

OPT1 2.24×10−2 1.17×10−3 4.77×10−3

OPT2 3.37×10−2 2.21×10−3 1.33×10−2

a/R = 0.4 are given in Table S2. while those for a/R = 0.2 are in Table S3 It is interesting, and

Table S2: Mobility coefficients for the swimmers shown in Figure 5 in the text with a/R = 0.4

L/R ηRMA ηR2MB ηR3MD
2 4.10×10−2 1.22×10−3 1.95×10−2

4 3.37×10−2 1.74×10−3 1.18×10−2

6 2.78×10−2 1.62×10−3 7.60×10−3

8 2.41×10−2 1.42×10−3 5.85×10−3

Table S3: Mobility coefficients for the swimmers shown in Figure 5 in the text with a/R = 0.2

L/R ηRMA ηR2MB ηR3MD
2 4.37×10−2 1.48×10−3 2.27×10−2

4 3.61×10−2 2.18×10−3 1.58×10−2

6 3.08×10−2 2.12×10−3 1.19×10−2

8 2.73×10−2 1.93×10−3 8.27×10−3

perhaps useful, to note that the mobility coefficientsS4 MA and MD can be estimated using the
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expressions for prolate spheroids

MPS
A =

(1+ ε2)L −2ε

16πηζe f f Rε3 (S26)

MPS
D =

6ε−3(1− ε2)L

32πηζ 3
e f f R3ε3(1− ε2)

(S27)

where ζe f f = L/R, ε = (1− ζ
−2
e f f )

1/2, and L = log((1+ ε)/(1− ε)). These expressions yield

those values give in Table S4 which are comparable to the values for the swimmer shapes.

Table S4: Mobility coefficients for the prolate spheroids.

L/R ηRMA ηR3MD
2 4.41×10−2 2.47×10−2

4 3.32×10−2 1.38×10−2

6 2.70×10−2 9.52×10−3

8 2.29×10−2 7.25×10−3
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