Supporting Information

Electrochemical Assessment of the Band-Edge Positioning in Shape-Tailored TiO₂-Nanorod-Based Photoelectrodes for Dye Solar Cells

Rita Agosta^{*a*⊥}, *Roberto Giannuzzi*^{*a*⊥}, *Luisa De Marco*^{*a*}, *Michele Manca*^{*a*}*, *Maria R. Belviso*^{*b*}, *P. Davide Cozzoli*^{*bc*} and Giuseppe Gigli^{*abc*}

^a Center for Bio-Molecular Nanotechnology - IIT Fondazione Istituto Italiano di Tecnologia, Via Barsanti – Arnesano (LECCE) - 73010 - ITALY

^b National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, Distretto Tecnologico Via Arnesano 16, 73100 Lecce, ITALY

^c Dipartimento di Matematica e Fisica "E. De Giorgi", Universita' del Salento, Via Arnesano, 73100 Lecce, ITALY

CORRESPONDING AUTHOR E-MAIL: michele.manca@iit.it - tel. +39 0832 295738

Chemical capacitance C_{μ} provides quantitative information about the position of the CB as well as about the value of the band shift (ΔE_c) with respect to a reference electrode. In this work AR4-PE has been assumed as reference electrode.

By using the definition of the voltage at the equivalent CB position we thus calculated:

$$V_{ecb} = V_{corr} - \Delta E_c/q$$

It becomes thus possible to compare both $C\mu$ and R_{CT} of the five films at the same level of electron density as reported below.

Figure S1 Chemical capacitance represented at the equivalent CB position taking cell AR4-PEs as a reference.

Figure S2 Recombination resistance represented at the equivalent CB position taking cell AR4-PEs as a reference.