Pd-Catalyzed Thiocarbonylation with stoichiometric Carbon Monoxide: Scope and Applications

Mia N. Burhardt, Rolf H. Taaning and Troels Skrydstrup*

Supporting Information

I.	General Methods	2
II.	Optimization Tables	2
III.	Equipment Used for the Thiocarbonylation	3
IV.	General Procedures for the Thiocarbonylation of Electron rich Substrates	3
V.	General Procedure for the Thiocarbonylation of Electron poor Substrates	7
VI.	Thiocarbonylation-Arylation General Procedure	10
VII.	Acyl Substitutions	11
VIII.	One-pot Procedure	13
IX.	Synthesis of the Vortioxetine Analog	14
Χ.	Spectral Data	16

I. General Methods:

Dry solvents were prepared according to standard literature procedures. All other chemicals were used as received from the suppliers unless mentioned otherwise. Starting materials were made according to literature procedures. Flash column chromatography was performed on silica gel 60 (230-400 mesh). H and Tac NMR spectra were recorded at 400 MHz and 100 MHz, respectively, using a Varian Mercury 400 spectrometer. Chemical shifts are reported in ppm downfield to TMS ($\delta = 0$) and referenced to the solvent residual peak, using the following peak pattern abbreviations: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; pent, pentet; sext, sextet; sept, septet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets; ddd, doublet of doublets; ddt, doublet of doublets; ddt, doublet of doublets. HRMS was recorded on a LC TOF (ES).

II. Optimization Tables:

		MeO			
entry	ligand	base	Conv.	ratio A:B	yield
1	Josiphos	NaO ^t Bu	>95%	В	91%
2	Josiphos	Et_3N	13%	2:1	_
3	Josiphos	K_3PO_4	30%	В	_
4	Josiphos	K_2CO_3	57%	В	_
5	Josiphos	N-Methyl morpholine	19%	1:1	_
6	Josiphos	Pyridine	3%	1:2	_
7	Josiphos	NaOAc	25%	1:1	_
8	Josiphos	NaHCO ₃	16%	1:3	_
9	DPPF	NaOAc	81%	10:1	75%
10	D ⁱ -PrPF	NaOAc	12%	2:1	_
11	$\mathbf{D}^{t}\mathbf{B}\mathbf{u}\mathbf{P}\mathbf{F}$	NaOAc	68%	1:2	_
12	Xantphos	NaOAc	>95%	\mathbf{A}^b	86%
13 ^c	Xantphos	NaOAc	>95%	11:1	82%
14^d	Xantphos	NaOAc	>95%	4:1	74%
15	DPEphos	NaOAc	>95%	\mathbf{A}^b	93%
16 ^e	DPEphos	NaOAc	>95%	\textbf{A}^b	91%
17 ^f	DPEphos	NaOAc	>95%	\mathbf{A}^b	89%
18	dcpp-2HBF ₄	NaOAc	0%	_	_
19	dppe	NaOAc	0%	_	_
20	dppp	NaOAc	0%	_	_
21	dpppent	NaOAc	0%	_	_
22	P ^t Bu ₃ ·HBF ₄	NaOAc	3%	1:2	_
23	CataXCiumA	NaOAc	0%	_	_
24	PPh_3	NaOAc	0%	_	_

Chamber 1: Thiophenol (0.25 mmol), p-iodoanisole (0.25 mmol), Pd(OAc) $_2$ (13 μ mol), bidentate ligand (13 μ mol) or monodentate ligand (25 μ mol), base (0.28 mmol), DME (1.0 mL). a Chamber 2: Pd(dba) $_2$ (13 μ mol), P'Bu $_3$ (13 μ mol), 9-methylfluorene-9-carbonyl chloride (0.38 mmol, 1.5 equiv), Cy $_2$ NMe (0.56 mmol), DME (1.5 mL). b Traces of B was seen on the 1 H NMR. c The reaction was run at 75 °C. d The reaction was run at 65 °C. e Chamber 1: Pd(OAc) $_2$ (7.5 μ mol), DPEphos (7.5 μ mol).

² Gottlieb, H. E., Kotlyar V., Nudelman A. J. Org. Chem. 1997, 62, 7512-7515.

-

¹ Perrin, D.; Armarego, W. Purification of Laboratory Chemicals 3rd Ed, Pergamon Press, 1988

Solvent Screening

entry	solvent	Conv.	ratio A:B	yield
1	Toluene	>95%	2:3	
2	Propionitrile	>95%	1:5	_
3	Dioxane	89%	1:4	_
4	Anisole	>95%	5:1	79%
5	CPME	>95%	1:1	_
6	Tol-CF ₃	>95%	2:1	_

Chamber 1: Thiophenol (0.25 mmol), *p*-iodoanisole (0.25 mmol), Pd(OAc)₂ (2.5 µmol), DPEphos (2.5 µmol), NaOAc (0.28 mmol), solvent (1.0 mL). ^a Chamber 2: Pd(dba)₂ (13 µmol), P'Bu₃ (13 µmol), 9-methylfluorene-9-carbonyl chloride (0.38 mmol, 1.5 eq.), Cy₂NMe (0.56 mmol), solvent (1.5 mL).

III. Equipment Used for the Thiocarbonylation:

The thiocarbonylations were performed in a two-chamber reaction vessel with a total volume of 20 mL, using 9-methylfluorene-9-carbonyl chloride as the source of carbon monoxide. The two chambers were loaded in an argon filled glovebox. **Chamber 1** was loaded with the reactants for the thiocarbonylation, all thiols were injected into chamber 1 outside the glovebox prior to heating. **Chamber 2** was loaded with 1.5 equivalents of 9-methylfluorene-9-carbonyl chloride, Pd(dba)₂ (3.3 mol%), P('Bu)₃·HBF₄ (3.3 mol%), DME and Cy₂NMe. The chambers were sealed with a screw cap, 2 mm stabilizing PTFE disc and a 2 mm thick PTFE-lined silicone disc before taking the two chamber vessel out of the glovebox and heating at 85°C.

IV. General Procedures for the Thiocarbonylation of Electron rich Substrates

Liquid Thiols used in the Thiocarbonylation

Chamber 1: Aryl iodide (0.25 mmol), $Pd(OAc)_2$ (0.234 mL stock solution, 2.5 µmol), DPEphos (1.3 mg, 2.5 µmol) and NaOAc (22.6 mg, 0.275 mmol) was dissolved in DME (0.766 mL). Chamber 2: 1.5 equivalents of CO was generated in chamber 2. The glassware was then removed from the glovebox, and the thiol (0.25 mmol) was injected into chamber 1 before mixing at 85 °C. After 18 h, the solvent was removed from chamber 1 *in vacuo* and the desired compound was purified by flash chromatography on silica gel using a pentane/CH₂Cl₂ eluent system.

Solid Thiols used in the Thiocarbonyation.

Chamber 1: Aryl iodide (0.25 mmol), Pd(OAc)₂ (0.234 mL stock solution, 2.5 μmol), DPEphos (1.3 mg, 2.5 μmol) and NaOAc (22.6 mg, 0.275 mmol) was added to chamber 1. **Chamber 2:** 1.5 equivalents of CO were generated in chamber 2. The glassware was then removed from the glovebox, and the thiol (0.25 mmol) was dissolved in DME (0.766 mL) and injected into chamber 1 before mixing at 85 °C. After 18 h, the solvent was removed from chamber 1 *in vacuo* and the desired compound was purified by flash chromatography on silica gel using a pentane/CH₂Cl₂ eluent system.

Chamber 2: 1.5 equivalents of CO: 9-methylfluorene-9-carbonyl chloride (91 mg, 0.375 mmol), Pd(dba)₂ (7.5 mg, 0.013 mmol), P(t Bu)₃·HBF₄ (3.8 mg, 0.013 mmol) was dissolved in DME (1.5 mL). Cy₂NMe (121 μ L, 0.563 mmol) was added before sealing of the glassware.

Preparation of a Stock Solution: A Pd(OAc)₂ in DME stock solution was prepared before loading of the two chambers. Pd(OAc)₂ (2.4 mg) was dissolved in DME (1 mL).

S-Phenyl 4-methoxybenzothioate (1): The title compound was isolated as colorless crystals (54 mg, 0.22

mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.02 (d, J = 9.2 Hz, 2H), 7.54-7.44 (m, 5H), 6.97 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 188.5, 164.0, 135.2, 129.7, 129.4, 129.3, 129.1, 127.6, 113.9, 55.5. HRMS (ESI) m/z calcd for $C_{14}H_{12}O_2S$ [M+H⁺]: 245.0631, found: 245.0632.

S-Phenyl 3-methoxybenzothioate (3): The title compound was isolated as a colorless oil (39 mg, 0.16

mmol, 64%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.66 (d, J = 9.2 Hz, 1H), 7.54-7.45 (m, 6H), 7.40 (t, J = 8.4 Hz, 1H), 7.16 (dd, J = 8.4 Hz, J = 0.4 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 190.0, 159.8, 138.0, 135.0, 129.7, 129.5, 129.2, 127.4, 120.1, 120.0, 111.8, 55.5. HRMS (ESI) m/z calcd for C₁₄H₁₂O₂S [M+Na⁺]: 267.0450, found: 267.0450.

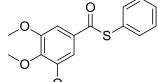
S-Phenyl 2-methoxybenzothioate (4):⁴ The title compound was isolated as a colorless oil (47 mg, 0.19

mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.55-7.42 (m, 6H), 7.03 (t, J = 7.2 Hz, 2H), 3.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 189.1, 158.2, 134.9, 134.1, 129.9, 129.3, 129.1, 128.8, 126.3, 120.5, 112.1, 56.0. HRMS (ESI) m/z calcd for $C_{14}H_{12}O_2S$ [M+Na⁺]: 267.0450, found: 267.0451.

S-Phenyl 3,4-dimethoxybenzothioate (5): The title compound was isolated as colorless crystals (52 mg,

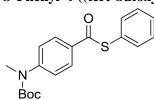
0.19 mmol, 75%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.75 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 7.53-7.44 (m, 6H), 6.92 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 188.7, 153.7, 149.0, 135.1, 129.5, 129.4, 129.2, 127.6, 122.0, 110.3, 109.7, 56.1, 56.0. HRMS (ESI) m/z calcd for $C_{15}H_{14}O_3S$ [M+Na⁺]: 297.0556, found: 297.0554.

S-Phenyl 2,4-dimethoxybenzothioate (6):⁵ The title compound was isolated as a colorless oil (59 mg, 0.21

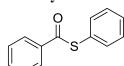

mmol, 86%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (d, J = 8.8 Hz, 1H), 7.53-7.42 (m, 5H), 6.55 (dd, J = 8.8 Hz, J = 2.0 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 3.96 (s, 3H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 187.4, 164.8, 160.5, 135.1, 132.2, 129.12, 129.07, 129.0, 119.2, 105.2, 98.7, 55.8, 55.6. HRMS (ESI) m/z calcd for C₁₅H₁₄O₃S [M+Na⁺]: 279.0556, found: 279.0553.

³ Cao, H.; McNamee, L.; Alper, H. J. Org. Chem. 2008, 73, 3530.

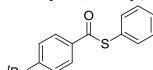
⁴ Katritzky, A. R.; Shestopalov, A. A.; Suzuki, K. Synthesis, 2004, 11, 1806.


⁵ Kuhakarn, C.; Surapanich, N.; Kamtonwong, S.; Pohmakotr, M.; Reutrakul, V. Eur. J. Org. Chem. **2011**, 29, 5911.

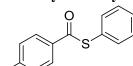
S-Phenyl 3,4,5-trimethoxybenzothioate (7): The title compound was isolated as an orange oil (62 mg, 0.20 mmol, 81%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.53-7.45 (m, 5H), 7.29 (s,


mmol, 81%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.53-7.45 (m, 5H), 7.29 (s, 2H), 3.93 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.2, 153.2, 142.2, 134.8, 131.7, 129.5, 129.2, 127.4, 104.8, 61.0, 56.3. HRMS (ESI) m/z calcd for $C_{16}H_{16}O_{4}S$ [M+H $^{+}$]: 305.0842, found: 305.0839.

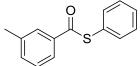
S-Phenyl 4-((tert-butoxycarbonyl)(methyl)amino)benzothioate (8): The title compound was isolated as


colorless crystals (66 mg, 0.19 mmol, 77%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.99 (d, J = 8.8 Hz, 2H), 7.53-7.51 (m, 2H), 7.47-7.44 (m, 3H), 7.39 (d, J = 8.8 Hz, 2H), 3.32 (s, 3H), 1.49 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.0, 154.0, 148.6, 135.1, 132.7, 129.5, 129.2, 127.9, 127.3, 124.4, 81.3, 36.8, 28.3. HRMS (ESI) m/z calcd for $C_{19}H_{21}NO_{3}S$ [M+H $^{+}$]: 344.1315, found: 344.1314.

S-Phenyl benzothioate (9):³ The title compound was isolated as colorless crystals (42 mg, 0.19 mmol,


78%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.06-8.03 (m, 2H), 7.64-7.45 (m, 8H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 190.1, 136.7, 135.1, 133.7, 129.5, 129.3, 128.8, 127.5, 127.4. HRMS (ESI) m/z calcd for $C_{13}H_{10}OS$ [M+H $^{+}$]: 215.0525, found: 215.0524.

S-Phenyl 4-(tert-butyl)benzothioate (10): The title compound was isolated as colorless crystals (56 mg, 0.21 mmol 82%). H NMR (400 MHz CDCl₂) δ (ppm) 7.98 (d. I = 8.4 Hz. 2H)


0.21 mmol, 82%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.98 (d, J = 8.4 Hz, 2H), 7.54-7.44 (m, 7H), 1.37 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.6, 157.5, 135.1, 134.0, 129.4, 129.2, 127.6, 127.4, 125.7, 35.2, 31.1. HRMS (ESI) m/z calcd for $C_{17}H_{18}OS$ [M+Na $^{+}$]: 293.0971, found: 293.0975.

S-Phenyl 4-methylbenzothioate (11):³ The title compound was isolated as colorless crystals (48 mg, 0.21

mmol, 84%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, J = 8.4 Hz, 2H), 7.54-7.45 (m, 5H), 7.29 (d, J = 8.4 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 189.7, 144.6, 135.1, 134.1, 129.4, 129.2, 127.6, 21.7. HRMS (ESI) m/z calcd for C₁₄H₁₂OS [M+H⁺]: 229.0682, found: 229.0679.

S-Phenyl 3-methylbenzothioate (12):⁷ The title compound was isolated as a colorless oil (47 mg, 0.21 mmol, 82%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86-7.84 (m, 2H), 7.54-7.36

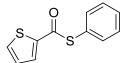
mmol, 82%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.86-7.84 (m, 2H), 7.54-7.36 (m, 7H), 2.44 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 190.2, 138.7, 136.7, 135.1, 134.4, 129.5, 129.2, 128.6, 127.7, 127.5, 124.7, 21.3. HRMS (ESI) m/z calcd for $C_{14}H_{12}OS$ [M+Na $^{+}$]: 251.0501, found: 251.0496.

S-Phenyl 2-methylbenzothioate (13):⁷ The title compound was isolated as colorless crystals (35 mg, 0.15

mmol, 61%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (dd, J = 7.6 Hz, J = 0.8 Hz, 1H), 7.55-7.41 (m, 6H), 7.32 (d, J = 7.6 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.1, 137.4, 136.8, 134.9, 132.0, 131.7,

⁶ Prangora, L.; Strelow, T.; Voss, J. J. Chem. Res. 1985, 4, 1401.

⁷ Dan, W.; Deng, H.; Chen, J.; Liu, M.; Ding, J.; Wu, H. Tetrahedron **2010**, 66, 7384.

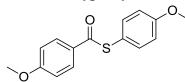

129.4, 129.2, 128.6, 128.2, 125.8, 20.8. HRMS (ESI) m/z calcd for $C_{14}H_{12}OS$ [M+H⁺]: 229.0682, found: 229.0680.

tert-Butyl 3-((phenylthio)carbonyl)-indole-1-carboxylate (15): Pd(OAc)₂ (0.468 mL stock solution, 0.005

O N R R= H, Boc 5.0 µmol), DPEphos (5.0 µmol, 2.6 mg) was used in this reaction. It yielded the carbonylation products with and without the Boc protection group. The title compound was isolated as colorless solid (37 mg, 0.10 mmol, 41%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.47 (s, 1H), 8.21 (d, J = 7.6 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.58-7.56 (m, 2H), 7.51-7.46 (m, 3H), 7.40 (dt, J = 8.4 Hz, J = 0.8 Hz, 1H), 7.34 (dt, J = 8.0 Hz, J = 1.2 Hz, 1H), 1.73 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ

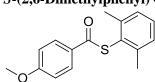
(ppm) 183.8, 148.8, 136.4, 135.2, 131.2, 129.5, 129.2, 127.1, 126.8, 125.7, 124.5, 122.0, 119.3, 115.1, 85.6, 28.1. HRMS (ESI) m/z calcd for $C_{20}H_{19}NO_3S$ [M+Na $^+$]: 376.0978, found: 376.0974. The compound without Boc protection (*S*-phenyl indole-3-carbothioate (14)) was isolated as colorless crystals (31 mg, 0.12 mmol, 49%). 1H NMR (400 MHz, CDCl₃) δ (ppm) 8.64 (br. s, 1H), 8.28-8.24 (m, 1H), 8.10 (d, J=3.2 Hz, 1H), 7.59-7.56 (m, 2H), 7.49-7.41 (m, 4H), 7.32-7.28 (m, 2H). ^{13}C NMR (100 MHz, CDCl₃) δ (ppm) 183.1, 136.1, 135.3, 130.4, 129.2, 129.1, 127.7, 124.9, 123.9, 122.9, 121.9, 116.8, 111.5. HRMS (ESI) m/z calcd for $C_{15}H_{11}NOS$ [M+H $^+$]: 254.0634, found: 254.0634.

S-Phenyl thiophene-2-carbothioate (16):³ The title compound was isolated as orange crystals (45 mg, 0.20



mmol, 81%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (dd, J = 4.0 Hz, J = 1.2 Hz, 1H), 7.67 (dd, J = 5.2 Hz, J = 1.2 Hz, 1H), 7.56-7.43 (m, 5H), 7.16 (dd, J = 4.8 Hz, J = 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 182.0, 141.4, 135.0, 133.2, 131.6, 129.6, 129.2, 128.0, 126.9. HRMS (ESI) m/z calcd for C₁₁H₈OS₂ [M+Na⁺]: 242.9909,

found: 242.9906.


297.0552.

S-(4-Methoxyphenyl) 4-methoxybenzothioate (17): The title compound was isolated as colorless crystals

(58 mg, 0.21 mmol, 84%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.01 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 3.84 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.5, 163.9, 160.7, 136.7, 129.7, 129.4, 118.2, 114.9, 113.9, 55.5, 55.4. HRMS (ESI) m/z calcd for $C_{15}H_{14}O_{3}S$ [M+Na $^{+}$]: 297.0556, found:

S-(2,6-Dimethylphenyl) 4-methoxybenzothioate (18): The title compound was isolated as an yellow oil (48)

mg, 0.18 mmol, 70%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.07 (d, J = 8.8 Hz, 2H), 7.27 (dd, J = 8.8 Hz, J = 6.4 Hz, 1H), 7.20 (d, J = 7.6 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 2.41 (s, 6H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 187.6, 163.8, 143.3, 129.83, 129.78, 128.3, 126.9, 113.8, 55.6, 22.6. HRMS (ESI) m/z calcd for $C_{16}H_{16}O_{2}S$ [M+H $^{+}$]: 273.0944, found: 273.0940.

S-(3-Methoxyphenyl) 4-methoxybenzothioate (19): The title compound was isolated as colorless crystals

(56 mg, 0.20 mmol, 82%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.01 (d, J = 9.2 Hz, 2H), 7.36 (t, J = 8.0 Hz, 1H), 7.11 (ddd, J = 7.6 Hz, J = 1.6 Hz, J = 0.8 Hz, 1H), 7.07 (dd, J = 2.4 Hz, J = 1.6 Hz, 1H), 6.99 (ddd, , J = 8.0 Hz, J = 2.4 Hz, J = 0.8 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H) 3.83

8 Cilento, G. J. Am. Chem. Soc. 1953, 75, 3748.

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 188.5, 164.0, 159.9, 129.9, 129.7, 129.4, 128.5, 127.4, 120.2, 115.6, 113.9, 55.5, 55.4. HRMS (ESI) m/z calcd for $C_{15}H_{14}O_3S$ [M+Na⁺]: 297.0556, found: 297.0558.

S-Octyl 4-methoxybenzothioate (20): The title compound was isolated as an yellow oil (50 mg, 0.18mmol,

71%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, J = 9.2 Hz, 2H), 6.91 (d, J = 9.2 Hz, 2H), 3.86 (s, 3H), 3.04 (t, J = 7.2 Hz, 2H), 1.66 (pent, J = 6.8 Hz 2H), 1.45-1.24 (m, 10H), 0.88 (t, J =6.8 Hz, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 190.6, 163.6, 130.2, 129.3, 113.7, 55.5, 31.8, 29.7, 29.16, 29.12, 28.95, 28.91,

22.6, 14.1. HRMS (ESI) m/z calcd for $C_{16}H_{24}O_2S$ [M+Na⁺]: 303.1389, found: 303.1389.

(R)-Methyl 2-((tert-butoxycarbonyl)amino)-3-((4-methoxybenzoyl)thio)propanoate (21): The title

compound was isolated as colorless crystals (63 mg, 0.17 mmol, 68%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (d, J = 9.2 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 5.33 (d, J = 7.6 Hz, 1H), 4.59 (dd, J = 12.0 Hz, J = 6.4 Hz, 1H), 3.85 (s, 3H), 7.75 (s, 3H), 3.53 (m, 2H), 1.41 (s, 9H). ^{13}C NMR (100 MHz, CDCl3) δ (ppm) 189.2, 171.1, 164.0, 155.0, 129.6, 129.3, 113.8, 80.1, 55.1, 53.4, 52.6, 30.9, 28.2. HRMS (ESI) m/z calcd for $C_{17}H_{23}NO_6S$ [M+Na⁺]: 392.1138, found: 392.1134.

(S)-Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-3-((4-methoxybenzoyl)thio)propanamido) propanoate (22): The title compound was isolated as a colorless solid (79 mg, 0.18 mmol, 71%). ¹H NMR

 $(400 \text{ MHz}, \text{CDCl}_3) \delta \text{ (ppm) } 7.93 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 6.90 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 7.05 \text{ (br s, } 1\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2 \text{ Hz, } 2\text{H), } 9.00 \text{ (d, } J = 9.2$ 9.2 Hz, 2H), 5.45 (br. d, J = 7.2 Hz, 1H), 4.55 (pent, J = 7.2 Hz, 1H), 4.38 (br. s, 1H), 3.85 (s, 3H), 3.70 (s, 3H), 3.52 (dd, J = 14.4 Hz, J = 4.4 Hz, 1H), 3.36 (dd, J = 14.4 Hz, J = 8.0 Hz, 1H, 1.42 (d, J = 11.6 Hz, 3H), 1.39 (s, 9H). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta \text{ (ppm)} 190.7, 172.9, 169.9, 169.6, 164.1, 129.7, 129.3,$ 113.8, 80.4, 55.5, 55.0, 52.4, 48.2, 30.9, 28.2, 18.3. HRMS (ESI) m/z calcd for $C_{20}H_{28}N_2O_7S$ [M+H⁺]: 441.1690, found: 441.1693.

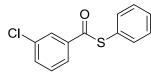
V. General Procedure for the Thiocarbonylation of Electron poor Substrates:

Chamber 1: Aryl iodide (0.25 mmol), Pd(OAc)₂ (0.234 mL stock solution, 2.5 μmol), DPEphos (1.3 mg, 2.5 µmol) and NaOAc (22.6 mg, 0.275 mmol) was dissolved in Anisole (0.766 mL). Chamber 2: 1.5 equivalents of CO was generated in chamber 2. The glassware was then removed from the glovebox, and the thiol (0.25 mmol) was injected into chamber 1 before mixing at 85 °C. After 18 h, the solvent was removed from chamber 1 in vacuo and the desired compound was purified by flash chromatography on silica gel using a pentane/CH₂Cl₂ eluent system.

Chamber 2: 1.5 equivalents of CO: 9-methylfluorene-9-carbonyl chloride (91 mg, 0.375 mmol), Pd(dba)₂ (7.5 mg, 0.013 mmol), P(^tBu)₃·HBF₄ (3.8 mg, 0.013 mmol) was dissolved in DME (1.5 mL). Cy₂NMe (121 μL, 0.563 mmol) was added before sealing of the glassware.

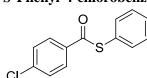
⁹ Takido, T.; Toriyama, M.; Itabashi, K. Synthesis 1988, 5, 404.

Preparation of a Stock Solution: A Pd(OAc)₂ in anisole stock solution was prepared before loading of the two chambers. Pd(OAc)₂ (2.4 mg) was dissolved in anisole (1 mL).


S-Phenyl 4-(trifluoromethyl)benzothioate (23):³ The title compound was isolated as colorless crystals (56

F₃C S

mg, 0.20 mmol, 79%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.13 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.54-7.47 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 189.3, 139.4, 135.0, 134.9 (q, J_{C-F} = 32.7 Hz), 129.9, 129.4, 127.8, 126.6, 125.9 (q, J_{C-F} = 3.7 Hz), 123.5 (q, J_{C-F} = 272.7 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ (ppm) -63.14. HRMS (ESI) m/z calcd for C₁₄H₉F₃OS [M+H⁺]:


283.0399, found: 283.0402.

S-Phenyl 3-chlorobenzothioate (24):¹⁰ The title compound was isolated as colorless crystals (47 mg, 0.19

mmol, 76%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.99 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.53-7.42 (m, 6H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.0, 138.2, 135.03, 135.00, 133.5, 130.0, 129.7, 129.3, 127.5, 126.8, 125.6. HRMS (ESI) m/z calcd for $C_{13}H_{9}$ ClOS [M+Na $^{+}$]: 270.9955, found: 270.9957.

S-Phenyl 4-chlorobenzothioate (25):³ The title compound was isolated as colorless crystals (54 mg, 0.22

mmol, 86%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.97 (d, J = 8.8 Hz, 2H), 7.53-7.46 (m, 7H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.0, 140.1, 135.04, 134.96, 129.7, 129.3, 129.1, 128.8, 126.9. HRMS (ESI) m/z calcd for $C_{13}H_{9}ClOS$ [M+H⁺]: 249.0135, found: 249.0141.

S-Phenyl 4-bromobenzothioate (26):³ The title compound was isolated as colorless crystals (62 mg, 0.21 mmol, 84%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J = 8.8 Hz, 2H), 7.63

mmol, 84%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.53-7.46 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 189.2, 135.4, 135.0, 132.0, 129.7, 129.3, 128.9, 128.7, 126.9. HRMS (ESI) m/z calcd for C₁₃H₉BrOS [M+H⁺]: 292.9630, found: 292.9629.

Methyl 2-methoxy-5-((phenylthio)carbonyl)benzoate (27): The title compound was isolated as colorless

crystals (75 mg, 0.25 mmol, 99%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.50 (d, J = 2.4 Hz, 1H), 8.14 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H), 7.52-7.44 (m, 5H), 7.05 (d, J = 8.8 Hz, 1H), 3.98 (s, 3H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 188.1, 165.5, 163.0, 135.1, 132.8, 131.6, 129.5, 129.2, 128.8, 127.1, 120.2, 111.9, 56.4, 52.3. HRMS (ESI) m/z calcd for C₁₆H₁₄O₄S

[M+Na⁺]: 325.0505, found: 325.0502.

Ethyl 4-((phenylthio)carbonyl)benzoate (28): The title compound was isolated as colorless crystals (49)

mg, 0.17 mmol, 68%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.16 (d, J = 8.8 Hz, 2H), 8.07 (d, J = 8.8 Hz, 2H), 7.54-7.46 (m, 5H), 4.42 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 189.7, 165.6, 139.8, 135.0, 134.8, 129.9, 129.8, 129.4, 127.4, 126.8, 61.5,

¹⁰ Alvarez-Ibarra, C.; Mendoza, M.; Orellana, G.; Quiroga, M. L. Synthesis, 1989, 7, 560.

S-phenyl 4-acetylbenzothioate (29): The title compound was isolated as colorless crystals (50 mg, 0.20

mmol, 79%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 8.7 Hz, 2H), 8.05 (d, J = 8.6 Hz, 2H), 7.53-7.46 (m, 5H), 2.65 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 197.2, 189.6, 140.6, 139.9, 135.0, 129.8 129.4, 128.6, 127.7, 126.8, 26.9. HRMS (ESI) m/z calcd for $C_{15}H_{12}O_{2}S$ [M+H $^{+}$]: 257.0631, found: 257.0633.

S-Phenyl naphthalene-2-carbothioate (30): The title compound was isolated as colorless crystals (45 mg, 0.17 mmol, 69%). H NMR (400 MHz, CDCl₃) δ (ppm) 8.55 (d, J = 8.4 Hz,

1H), 8.23 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.63-7.50 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.2, 134.9, 134.7, 133.8, 133.3, 129.6, 129.4, 129.3, 128.4, 128.3, 128.1, 128.0, 126.7, 125.3, 124.5. HRMS (ESI) m/z calcd for $C_{17}H_{12}OS$ [M+Na⁺]: 287.0501, found:

287.0501.

S-phenyl 4-nitrobenzothioate (31):¹¹ 3.0 equivalents of CO was generated in Chamber 2: 9-methylfluorene-

9-carbonyl chloride (0.750 mmol, 182 mg), $Pd(dba)_2$ (0.025 mmol, 14 mg), $P(^tBu)_3 \cdot HBF_4$ (0.025 mmol, 7.3 mg) was dissolved in DME (3.0 mL). Cy₂NMe (1.13 mmol, 240 μ L) was added prior before sealing the glassware. The title compound was isolated as pale yellow crystals (26 mg, 0.10 mmol, 40%). 1H NMR (400 MHz, CDCl₃) δ (ppm) 8.34 (d, J = 8.9 Hz, 2H), 8.18 (d, J = 8.9 Hz,

2H), 7.54-7.48 (m, 5H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 188.8, 150.7, 141.3, 134.9, 130.1, 129.5, 128.5, 126.1, 124.0. HRMS (ESI) m/z calcd for $C_{13}H_9NO_3S$ [M+H $^+$]: 260.0376, found: 260.0377.

S-(4-fluorophenyl) 4-methoxybenzothioate (32): The title compound was isolated as colorless crystals (40

mg, 0.15 mmol, 60%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.00 (d, J=8.8 Hz, 2H), 7.48 (dd, J=8.5 Hz, J=5.3 Hz, 2H), 7.15 (t, J=8.6 Hz, 2H), 6.96 (d, J=8.8 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 188.5, 164.1, 163.5 (d, $J_{\text{C-F}}=248$ Hz), 137.2 (d, $J_{\text{C-F}}=9.0$ Hz) 129.7, 129.1, 122.9 (d, $J_{\text{C-F}}=3.0$ Hz), 116.4 (d, $J_{\text{C-F}}=22$ Hz), 114.0, 55.6. ¹⁹F NMR (377

MHz, CDCl₃) δ (ppm) -111.36. HRMS (ESI) m/z calcd for $C_{14}H_{11}FO_2S$ [M+H⁺]: 263.0537, found: 263.0536.

S-Phenyl 3-methoxybenzothioate (3): The title compound was isolated as a colorless oil (48 mg, 0.20

mmol, 79%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.66 (d, J = 9.2 Hz, 1H), 7.54-7.45 (m, 6H), 7.40 (t, J = 8.4 Hz, 1H), 7.16 (dd, J = 8.4 Hz, J = 0.4 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 190.0, 159.8, 138.0, 135.0, 129.7, 129.5, 129.2, 127.4, 120.1, 120.0, 111.8, 55.5. HRMS (ESI) m/z calcd for C₁₄H₁₂O₂S [M+Na⁺]: 267.0450, found: 267.0450.

¹¹ Narayanaperumal, S.; Alberto, E.; Gul, K.; Kawasoko, C. Y.; Dornelles, L.; Rodrigues, O. E. D.; Braga, A. L. *Tetrahedron* **2011**, *67*, 4723.

VI. Thiocarbonylation-Arylation General Procedure:

General Procedure for the Thiocarbonylation-Arylation:

Chamber 1: Aryl diiodide (0.25 mmol), $Pd(OAc)_2$ (0.234 mL stock solution, 2.5 µmol,), DPEphos (1.3 mg, 2.5 µmol,) and NaOAc (45.1 mg, 0.55 mmol) was dissolved in DME (0.766 mL). **Chamber 2:** 3.0 equivalents of CO were generated in chamber 2. The glassware was then removed from the glovebox, and the thiol (0.50 mmol) was injected into chamber 1 before mixing at 85 °C. After 18 h, the solvent was removed from chamber 1 *in vacuo* and the desired compound was purified by flash chromatography on silica gel using a pentane/CH₂Cl₂ eluent system.

Chamber 2: 3.0 equivalents of CO: 9-methylfluorene-9-carbonyl chloride (182 mg, 0.750 mmol), $P(^tBu)_3 \cdot HBF_4$ (7.3 mg, 0.025 mmol) was dissolved in DME (3.0 mL). Cy_2NMe (240 μL , 1.13 mmol) was added prior before sealing the glassware.

S-Phenyl 4-(phenylthio)benzothioate (33):¹² The title compound was isolated as colorless crystals (57 mg,

0.18 mmol, 70%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J=8.4 Hz, 2H), 7.54-7.41 (m, 10H), 7.23 (d, J=8.4 Hz, 2H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.1, 145.9, 135.1, 134.5, 134.1, 133.8, 131.8, 129.7, 129.5, 129.2, 129.0, 128.0, 127.4, 127.3. HRMS (ESI) m/z calcd for $C_{19}H_{14}OS_{2}$ [M+H⁺]: 323.0564, found: 323.0557.

S-Phenyl 3-(phenylthio)benzothioate (34): The title compound was isolated as colorless crystals (34 mg,

0.11 mmol, 43%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (t, J = 2.0 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.51-7.30 (m, 12H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 189.7, 138.4, 137.4, 135.0, 134.6, 133.7, 132.4, 129.62, 129.55, 129.4, 129.3, 128.3, 128.1, 127.1, 125.5. HRMS (ESI) m/z calcd for $C_{19}H_{14}OS_{2}$ [M+H $^{+}$]: 323.0564, found: 323.0559.

S-Phenyl 2-(phenylthio)benzothioate (35): The title compound was isolated as pale yellow crystals (42 mg,

0.13 mmol, 52%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.58-7.40 (m, 10H), 7.31 (dt, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.23 (dt, J = 7.6 Hz, J = 1.2 Hz, 1H), 6.95 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 190.1, 140.6, 135.0, 134.1, 132.8, 132.5, 129.7, 129.6, 129.5, 129.3, 128.9, 128.5, 127.5, 124.8. HRMS (ESI) m/z calcd for $C_{19}H_{14}OS_2$ [M+H $^+$]: 323.0564, found: 323.0558.

S-(4-Methoxyphenyl) 4-((4-methoxyphenyl)thio)benzothioate (36): The title compound was isolated as

orange crystals (64 mg, 0.17 mmol, 67%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.85 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 9.2 Hz, 2H), 3.85 (s, 3H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 190.0, 160.87,

¹² Os'kina, I. A.; Vlasov, V. M. Russ. J. Org. Chem. 2008, 44, 561.

160.86, 147.7, 137.0, 136.8, 133.3, 128.0, 126.0, 121.3, 118.0, 115.6, 115.1, 55.6, 55.5. HRMS (ESI) m/z calcd for $C_{21}H_{18}O_3S_2$ [M+Na⁺]: 405.0595, found: 405.0583.

S,S-diphenyl benzene-1,4-bis(carbothioate) (37):¹³ Anisole was used as the solvent in both chambers. The title compound was isolated as colorless crystals (30 mg, 0.09 mmol, 34%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.13 (s, 4H), 7.55-7.48 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 189.6, 163.9, 140.4, 135.0, 129.9, 129.4, 127.8, 126.7. HRMS (\overline{ESI}) m/z calcd for $C_{20}H_{14}O_2S_2$ [M+H⁺]: 351.0508, found: 351.0509.

VII. Acyl Substitutions

N-hexyl-4-methoxybenzamide (38):¹⁴ General protocol for acyl transfer 1: Thioester 17 (100 mg, 0.365)

mmol) and hexylamine (36 µL, 0.27 mmol) in 1:1 TEA/pyridine (1.0 mL) was mixed in a 4 mL vial sealed with a PTFE-coated screw cap, heated to 70 °C and stirred for 26 hours. The reaction was cooled to rt, evaporated in vacuo and EtOAc (40 mL) was added to the reaction

mixture and subsequently washed with 1 M HCl (2 x 10 mL) and brine (10 mL). The organic phase was dried over Na₂SO₄, evaporated in vacuo and subjected to flash column chromatography on silica gel (30% EtOAc in pentane as the eluant) to obtain the title compound 38 (42 mg, 0.18 mmol, 95%) colorless solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.71 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.25 (br s, 1H), 3.80 (s, 3H), 3.38 (q, J = 6.8 Hz, 2H), 1.56 (quint, J = 7.2 Hz, 2H), 1.38-1.23 (m, 6H), 0.85 (t, J = 6.8 Hz).

(4-(2-hydroxyphenyl)piperazin-1-yl)(4-methoxyphenyl)methanone (39): According to "General protocol

for acyl transfer 1": Thioester 17 (50 mg, 0.18 mmol), 2-(piperazin-1yl)phenol (49 mg, 0.27 mmol). Flash column chromatography on silica gel (50% EtOAc in pentane as the eluant) afforded the title compound 39 (33 mg, 0.11 mmol, 58%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 (d, J = 8.8 Hz, 2H), 7.13-7.05 (m, 2H), 6.97-6.89 (m, 1H), 6.92 (d, J = 8.4 Hz, 2H) 6.86 (td, J = 8.0, 1.6 Hz, 1H), 3.82 (s, 3H), 3.85-3.69

(m, 4H), 2.87 (br s, 4H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 170.7, 161.1, 151.5, 138.5, 129.4 (2C), 127.7, 127.1, 121.6, 120.4, 114.7, 114.0 (2C), 67.3 (2C), 55.6, 52.9 (br, 2C). HRMS (ESI) m/z calcd for $C_{18}H_{20}N_2O_3$ [M+H⁺]: 313.1547, found: 313.1546. R_f (50% EtOAc in pentane) = 0.31.

4-methoxy-N,N-dimethylbenzamide (40):¹⁵ According to "General protocol for acyl transfer 1": Thioester

17 (50 mg, 0.18 mmol), dimethylamine hydrochloride (45 mg, 0.55 mmol). Flash column chromatography on silica gel (50% EtOAc in pentane as the eluant) afforded the title compound 40 (29 mg, 0.16 mmol, 90%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.36 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H),

3.01 (br s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.7, 160.8, 129.3 (2C), 128.6, 113.7 (2C), 55.5, 40.1

¹⁵ Sawant, D. N.; Wagh, Y. S.; Bhatte, K. D.; Bhanage, B. M. J. Org. Chem., 2011, 76, 5489.

¹³ Bandgar, B. P.; More, P. E.; Kamble, V. T.; Sawant, S. S. Aust. J. Chem. 2008, 61, 1006.

¹⁴ Hermange, P.; Lindhardt, A. T.; Taaning, R. H.; Bjerglund, K.; Lupp, D.; Skrydstrup, T. J. Am. Chem. Soc. 2011, 133, 6061.

(br), 35.7 (br). HRMS (ESI) m/z calcd for $C_{10}H_{13}NO_2$ [M+H⁺]: 180.1019, found: 180.1019. R_f (50% EtOAc in pentane) = 0.21.

tert-butyl (3-(4-methoxybenzamido)propyl)carbamate (41): According to "General protocol for acyl

N NHBoc

transfer 1": Thioester **17** (100 mg, 0.37 mmol), *tert*-butyl (3-aminopropyl)carbamate (96 mg, 0.55 mmol). Flash column chromatography on silica gel (50% EtOAc in pentane as the eluant) afforded the title compound **41** (107 mg, 0.35 mmol, 95%) as a

colorless solid. 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.76 (d, J = 8.4 Hz, 2H), 7.35 (br t) 6.84 (d, J = 8.8 Hz, 2H), 5.22 (br t, J = 6.4 Hz, 1H), 3.77 (s, 3H), 3.41 (q, J = 6.0 Hz, 2H), 3.15 (q, J = 6.4 Hz, 2H), 1.62 (quint, J = 5.6 Hz, 2H), 1.38 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 167.4, 162.1, 157.0, 128.9 (2C), 126.9, 113.7 (2C), 79.3, 55.4, 37.2, 36.2, 30.2, 28.5 (3C). HRMS (ESI) m/z calcd for $C_{16}H_{24}N_2O_4$ [M+H⁺]: 309.1809, found: 309.1813. R_f (50% EtOAc in pentane) = 0.24.

4-methoxy-N-(4-nitrobenzyl)benzamide (42): According to "General protocol for acyl transfer 1":

Thioester **17** (100 mg, 0.37 mmol), (4-nitrophenyl)methanamine hydrochloride (103 mg, 0.55 mmol). Flash column chromatography on silica gel (50% EtOAc in pentane as the eluant) afforded the title compound **42** (53 mg, 0.18 mmol, 51%) as a light-yellow solid. 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.13 (d, J = 8.8 Hz, 2H), 7.76 (d, J =

9.2 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 9.2 Hz, 2H), 6.70 (br t, J = 4.8 Hz, 1H), 4.69 (d, J = 6.4 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.3, 162.7, 147.4, 146.4, 129.1 (2C), 128.4 (2C), 126.1, 124.1 (2C), 114.1 (2C), 55.7, 43.4. HRMS (ESI) m/z calcd for $C_{15}H_{14}N_2O_4$ [M+H⁺]: 287.1026, found: 287.1029. R_f (50% EtOAc in pentane) = 0.34.

N-(tert-butyl)-4-methoxybenzamide (43):¹⁶ According to "General protocol for acyl transfer 1": Thioester

17 (50 mg, 0.18 mmol), *tert*-butylamine (170 μL, 1.6 mmol). Flash column chromatography on silica gel (20% EtOAc in pentane as the eluant) afforded the title compound **43** (23 mg, 0.11 mmol, 60%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.66 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.85 (br s, 1H), 3.81 (s, 3H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.6,

162.0, 128.6 (2C), 113.8 (2C), 55.6, 51.6, 29.1 (3C). HRMS (ESI) m/z calcd for $C_{12}H_{17}NO_2$ [M+H⁺]: 208.1332, found: 208.1333. R_f (30% EtOAc in pentane) = 0.39.

(4-(cyclopropanecarbonyl)piperazin-1-yl)(4-((4-methoxyphenyl)thio)phenyl)methanone (44): General

procedure for acyl transfer 2: Thioester **36** (40 mg, 0.11 mmol), K₂CO₃ (29 mg, 0.21 mmol), cyclopropyl(piperazin-1-yl)methanone (24 mg, 0.16 mmol) and DMF (1 mL) was stirred at rt in a 4 mL vial sealed with a PTFE-coated screw cap for 69 hours (over weekend). Et₂O (100 mL) was added to

the reaction mixture and washed with 1 M HCl (2 x 10 mL) and brine (10 mL). The organic phase was dried

¹⁶ Baum, J. C.; Milne, J. E.; Murry, J. A.; Thiel, O. R. J. Org. Chem., 2009, 74, 2207.

over Na₂SO₄, evaporated *in vacuo* and subjected to flash column chromatography on silica gel (70% EtOAc in pentane as the eluant) to obtain the title compound **44** (23 mg, 0.057 mmol, 55%) as a wax. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.43 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 3.78-3.42 (m, 8H), 1.75-1.66 (m, 1H), 1.01-0.96 (m, 2H), 0.81-0.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 172.5, 170.5, 160.6, 142.7, 136.6 (2C), 132.0, 128.0 (2C), 127.0 (2C), 122.5, 115.5, 55.6, 11.2, 7.9. HRMS (ESI) m/z calcd for C₂₂H₂₄N₂O₃S [M+H⁺]: 397.1582, found: 397.1580 R_f (70% EtOAc in pentane) = 0.20.

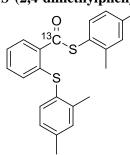
4-((4-methoxyphenyl)thio)-*N***-(3-phenylprop-2-yn-1-yl)benzamide (45):** According to the "General conditions for acyl transfer 2": Thioester **36** (40 mg, 0.11 mmol), K₂CO₃ (44 mg, 0.32 mmol), 3-phenylprop-2-yn-1-amine (27 mg, 0.16 mmol) and DMF (1 mL) was stirred at rt for 25 h. Flash column chromatography

on silica gel (20% EtOAc in pentane as the eluant) afforded the title compound **45** (26 mg, 0.07 mmol, 66%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.65 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.45-7.39 (m, 2H), 7.34-7.27 (m, 3H), 7.11 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.37 (br t, J = 8.8 Hz, 2H), 6.37 (br t, J = 8.8 Hz, 2H), 6.37

4.8 Hz, 1H), 4.45 (d, J = 4.8 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.7, 160.7, 144.8, 136.7 (2C), 131.9 (2C), 130.7, 128.7, 128.5 (2C), 127.7 (2C), 126.7 (2C), 122.7, 122.2, 115.5 (2C), 84.9, 83.9, 55.6, 30.8. HRMS (ESI) m/z calcd for $C_{23}H_{19}NO_2S$ [M+H⁺]: 374.1209, found: 374.1205. R_f (20% EtOAc in pentane) = 0.24.

VIII. One-pot Procedure

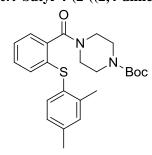
tert-butyl (3-(4-((4-methoxyphenyl)thio)benzamido)propyl)carbamate (46): The title compound


was prepared using the general procedure for the Thiocarbonylation-Arylation. **Chamber 1:** 1,2-diiodobenzene (83mg, 0.25 mmol), $Pd(OAc)_2$ (0.234 mL stock solution, 2.5 μ mol,), DPEphos (1.3 mg, 2.5 μ mol,) and NaOAc (45.1 mg,

0.55 mmol) was dissolved in DME (0.766 mL). **Chamber 2:** 3.0 equivalents of CO were generated in chamber 2. The glassware was then removed from the glovebox, and 2,4-dimehylthiophenol (68 μ L, 0.50 mmol) was injected into chamber 1 before mixing at 85 °C. After 18 h, the reaction mixture from chamber 1 was transferred to a round bottomed flask and the solvent was removed *in vacuo*. The remaining solid was dissolved in 1:1TEA/pyridine (0.6 mL) and *N*-Boc-1,3-propanediamine (66 μ L, 0.38 mmol) and mixed overnight at 70 °C. The reaction was cooled to rt, evaporated *in vacuo* and the desired compound was purified by flash chromatography on silica gel using pentane/EtOAc (3:1 to 1:1) as eluent. The title compound was isolated as a yellow oil (35 mg, 0.09 mmol, 34%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.68 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H), 7.25 (br s, 1H), 7.11 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 4.95 (br s, 1H), 3.83 (s, 3H), 3.45 (q, J = 6.2 Hz, 2H), 3.20 (q, J = 6.2 Hz, 2H), 1.66 (pent, J = 5.8 Hz, 2H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.9, 160.4, 157.0, 143.8, 136.3, 131.3, 127.5, 126.6, 122.4, 115.2, 79.5, 55.4, 37.0, 35.9, 30.2, 28.4. HRMS (ESI) m/z calcd for C₂₂H₂₈N₂O₄S [M+Na⁺]: 439.1667, found: 439.1669.

IX. Synthesis of the Vortioxetine Analog

S-(2,4-dimethylphenyl) 2-((2,4-dimethylphenyl)thio)benzothioate (47): The title compound was prepared using the general procedure for the Thiocarbonylation-Arylation. Chamber 1: 1,2diiodobenzene (83mg, 0.25 mmol), Pd(OAc)₂ (0.234 mL stock solution, 2.5 μmol,), DPEphos (1.3 mg, 2.5 μmol,) and NaOAc (45.1 mg, 0.55 mmol) was dissolved in DME (0.766 mL). Chamber 2: 3.0 equivalents of CO were generated in chamber 2. The glassware was then removed from the glovebox, and 2,4dimehylthiophenol (68 µL, 0.50 mmol) was injected into chamber 1 before mixing at 85 °C. After 18 h, the solvent was removed from chamber 1 in vacuo and the desired compound was purified by flash chromatography on silica gel using pentane/CH₂Cl₂ (3:1) as eluent. The title compound was isolated as pale yellow


crystals (60 mg, 0.16 mmol, 64%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.13 (dd, J = 7.7 Hz, J = 1.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.27-7.16 (m, 4H), 7.11-7.05 (m, 2H), 6.72 (dd, J = 8.1 Hz, J = 1.1 Hz, 1H), 2.43 (s, 3H), 2.37 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 190.0, 142.7, 142.3, 140.8, 140.4, 139.9, 136.7, 136.4, 133.7, 132.3, 131.8, 131.7, 129.7, 128.0, 127.9, 127.5, 126.9, 124.1, 123.6, 21.3, 21.2, 20.8, 20.5. HRMS (ESI) m/z calcd for C₂₃H₂₂OS₂ [M+H⁺]: 379.1184, found: 379.1185.

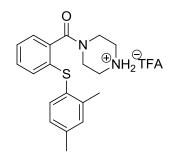
S-(2,4-dimethylphenyl) 2-((2,4-dimethylphenyl)thio)benzo[13C]thioate (13C-47): The title compound was prepared using the general procedure for the Thiocarbonylation-Arylation. Chamber 1: 1,2-diiodobenzene (83mg, 0.25 mmol), Pd(OAc)₂ (0.234 mL stock solution, 2.5 µmol,), DPEphos (1.3 mg, 2.5 µmol,) and NaOAc (45.1 mg, 0.55 mmol) was dissolved in DME (0.766 mL). **Chamber 2:** 3.0 equivalents of ¹³CO were generated in chamber 2. The glassware was then removed from the glovebox, and 2,4-dimehylthiophenol (68 µL, 0.50 mmol) was injected into chamber 1 before mixing at 85 °C. After 18 h, the solvent was removed from chamber 1 in vacuo and the desired compound was purified by flash chromatography on silica gel using pentane/CH₂Cl₂ (3:1) as eluent. The title compound was isolated as pale yellow

crystals (62 mg, 0.16 mmol, 65%). H NMR (400 MHz, CDCl₃) δ (ppm) 8.13 (ddd, J = 7.7 Hz, J = 5.5 Hz, J == 1.4 Hz, 1 H), 7.43 (t, J = 7.5 Hz, 2 H), 7.27-7.16 (m, 4H), 7.11-7.05 (m, 2H), 6.72 (dd, J = 8.0 Hz, J = 1.3 HzHz, 1H), 2.43 (s, 3H), 2.37 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 190.0 (13 C), 142.7, 142.4, 140.8, 140.4, 139.9, 136.7, 136.4, 133.7 (d, J = 62 Hz), 132.3, 131.8, 131.7, 129.7 (d, J = 62 Hz) 3.8 Hz), 128.0, 127.9, 127.5, 126.9 (d, J = 3.7 Hz), 124.1 (d, J = 4.7 Hz), 123.6 (d, J = 1.4 Hz), 21.3, 21.2, 20.8, 20.5. HRMS (ESI) m/z calcd for $[^{13}C]C_{22}H_{22}OS_2$ [M+H $^+$]: 380.1218, found: 380.1219.

tert-butyl 4-(2-((2,4-dimethylphenyl)thio)benzoyl)piperazine-1-carboxylate (48): S-(2,4-dimethylphenyl)

2-((2,4-dimethylphenyl)thio)benzothioate (47) (56 mg, 0.15 mmol), 1-Bocpiperazine (83 mg, 0.45 mmol) and K₂CO₃ (83 mg, 0.60 mmol) was dissolved in DMF (1.0 mL) and stirred at 100 °C overnight. Thereafter the reaction was cooled to rt and H₂O (20 mL) was added. The water phase was then extracted with Et₂O (3 x 20 mL) and the combined organic phase was washed with brine and dried with MgSO₄. The desired compound was purified by flash chromatography on silica gel using Pentane/EtOAc (3:1) as eluent. The title compound was isolated as a clear oil (45 mg, 0.10 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.29 (d, J = 7.8 Hz, 1H), 7.20-7.14 (m, 3H), 7.10 (br s,

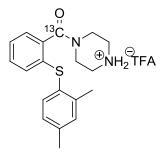
1H), 6.99 (d, J = 7.9 Hz, 1H), 6.81-6.79 (m, 1H), 3.78 (br s, 2H), 3.53 (t, J = 5.2 Hz, 2H), 3.42 (br s, 2H), 3.26 (br s, 2H), 2.31 (s, 3H), 2.30 (s, 3H), 1.45 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 168.5, 154.5, 141.3, 139.2, 135.2 134.9, 131.8, 129.6, 128.2, 127.8, 127.6, 126.7, 125.8, 80.3, 46.8, 41.5, 28.4, 21.1, 20.6. HRMS (ESI) m/z calcd for $C_{24}H_{30}N_2O_3S$ [M+H⁺]: 427.2050, found: 427.2051.


tert-butyl 4-(2-((2,4-dimethylphenyl)thio)[13C]benzoyl)piperazine-1-carboxylate (13C-48): S-(2,4-dimethylphenyl)thio)[13C]benzoyl)piperazine-1-carboxylate (13C-48): S-(2,4-dimethylphenyl)thio)[13C]benzoylate (13C-4

O 13C N Boc

dimethylphenyl) 2-((2,4-dimethylphenyl)thio)benzo[13 C]thioate (13 C-47) (58 mg, 0.15 mmol), 1-Boc-piperazine (86 mg, 0.45 mmol) and K₂CO₃ (85 mg, 0.60 mmol) was dissolved in DMF (1.0 mL) and stirred at 100 °C overnight. Thereafter the reaction was cooled to rt and H₂O (20 mL) was added. The water phase was then extracted with Et₂O (3 x 20 mL) and the combined organic phase was washed with brine and dried with MgSO₄. The desired compound was purified by flash chromatography on silica gel using Pentane/EtOAc (3:1) as eluent. The title compound was isolated as a clear oil (46 mg, 0.11 mmol, 70%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.29 (d, J = 7.8 Hz, 1H), 7.20-7.14 (m, 3H), 7.10 (br s, 1H),

6.99 (dd, J = 7.9 Hz, J = 1.4 Hz, 1H), 6.81-6.79 (m, 1H), 3.78 (br s, 2H), 3.53 (t, J = 4.8 Hz, 2H), 3.43 (br s, 2H), 3.27 (br s, 2H), 2.33 (s, 3H), 2.31 (s, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.6 (¹³C), 154.5, 141.4, 139.3, 135.2 134.9, 131.8, 129.6, 128.1 (d, J=2.1 Hz), 127.8, 127.6, 126.7 (d, J=1.3 Hz), 125.8 (d, J=4.0 Hz), 80.3, 46.8, 41.5, 28.4, 21.1, 20.7. HRMS (ESI) m/z calcd for [¹³C]C₂₃H₃₀N₂O₂S [M+H⁺]: 428.2083, found: 428.2087.

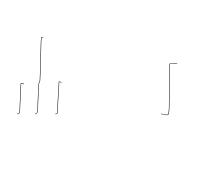

4-(2-((2,4-dimethylphenyl)thio)benzoyl)piperazin-1-ium trifluoroacetate (49): tert-butyl 4-(2-((2,4-dimethylphenyl)thio)benzoyl)piperazin-1-ium trifluoroacetate (49):

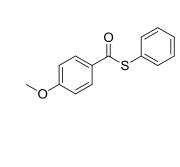
dimethylphenyl)thio)benzoyl)piperazine-1-carboxylate (**48**) (46 mg, 0.11 mmol) was dissolved in dry CH₂Cl₂ (1.4 mL) under an argon atmosphere followed by addition of TFA (0.14 mL). The reaction mixture was stirred at rt for 3 h, where after the solvent was evaporated. TFA was removed by evaporation of the compound with CH₂Cl₂ several times giving the crude product (45 mg, 0.11 mmol, 100%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.29-7.18 (m, 4H), 7.13 (br s, 1H), 7.01 (d, J =7.5 Hz, 1H), 6.83 (d, J =8.1 Hz, 1H), 4.13 (br s, 2H), 3.66 (br s, 2H), 3.32 (br s, 2H), 3.24 (br s, 2H), 2.35 (s, 3H), 2.31 (s, 3H). 13 C NMR (100

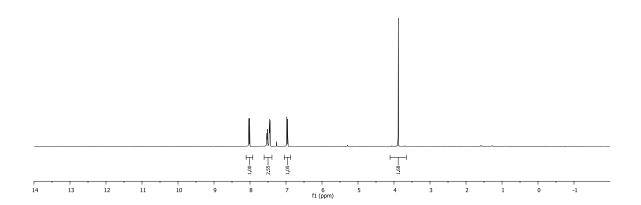
MHz, CDCl₃) δ (ppm) 168.4, 141.4, 139.7, 135.2, 135.1, 133.8, 131.9, 130.2, 128.2, 128.0, 126.9, 126.8, 126.0, 43.5, 38.4, 21.1, 20.6. ¹⁹F NMR (377 MHz, CDCl₃) δ (ppm) -75.65. HRMS (ESI) m/z calcd for C₁₉H₂₃N₂OS [M⁺]: 327.1526, found: 327.1525. The amine protons were exchanged with deuterium atoms. Grease impurities were detected in the ¹H NMR.

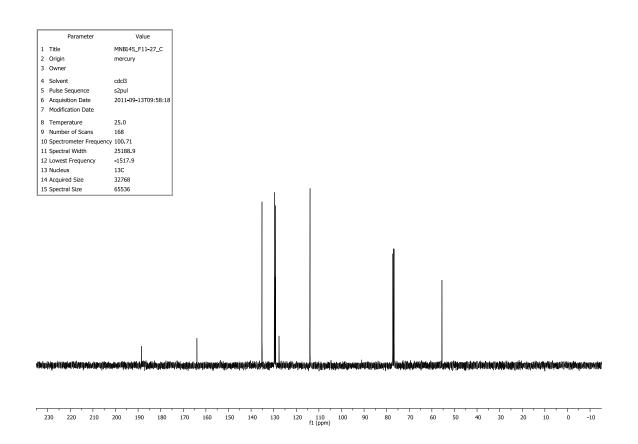
4-(2-((2,4-dimethylphenyl)thio)[13C]benzoyl)piperazin-1-ium trifluoroacetate (13C-49): tert-butyl 4-(2-

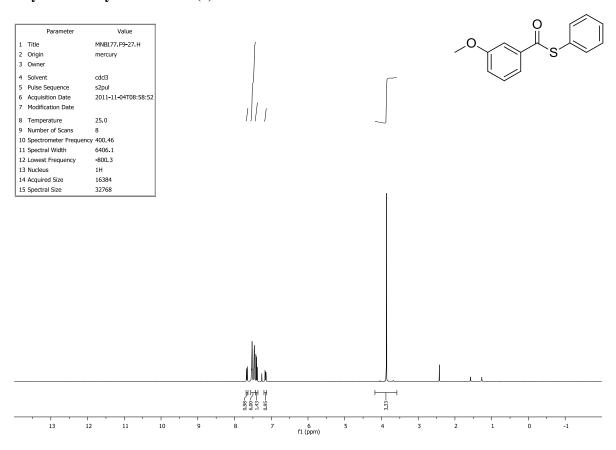


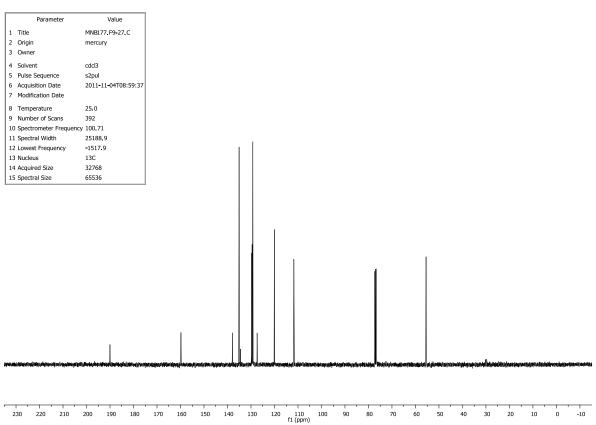

((2,4-dimethylphenyl)thio)[13 C]benzoyl)piperazine-1-carboxylate (13 C-48) (46 mg, 0.11 mmol) was dissolved in dry CH₂Cl₂ (1.4 mL) under an argon atmosphere followed by addition of TFA (0.14 mL). The reaction mixture was stirred at rt for 3 h, where after the solvent was evaporated. TFA was removed by evaporation of the compound with CH₂Cl₂ several times giving the crude product (43 mg, 0.10 mmol, 95%). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 9.31 (br s, 2H), 7.24-7.19 (m, 4H), 7.11 (br s, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 4.05 (br s, 2H), 3.56 (br s, 2H), 3.29 (br s, 2H), 3.20 (br s, 2H), 2.32

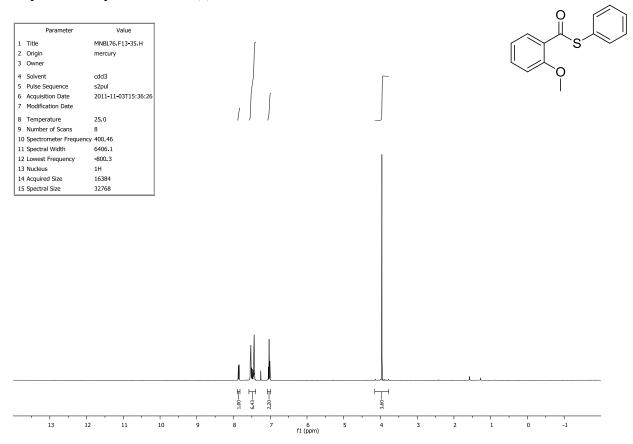

(s, 3H), 2.27 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 168.8 (13 C), 141.2, 139.7, 135.0, 134.9, 133.5 (d, J=67.0 Hz), 132.0, 130.4, 128.5 (d, J=3.2 Hz), 128.0, 126.78, 126.76, 126.2 (d, J=4.0 Hz), 43.6, 38.4, 21.1, 20.5. 19 F NMR (377 MHz, CDCl₃) δ (ppm) -75.90. HRMS (ESI) m/z calcd for [13 C]C₁₈H₂₃N₂OS [M $^{+}$]: 328.1559, found: 328.1568.

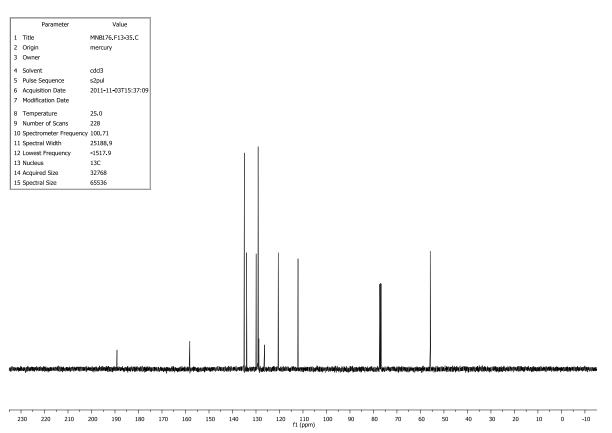

X. Spectral Data

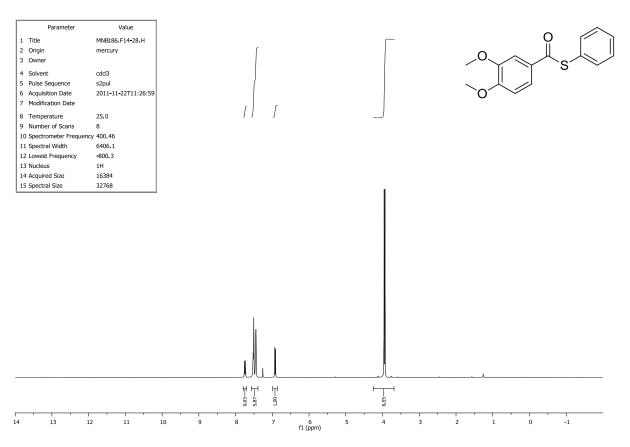

S-Phenyl 4-methoxybenzothioate (1)

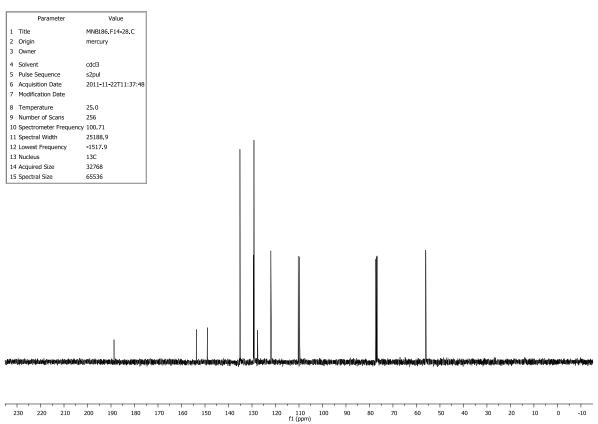


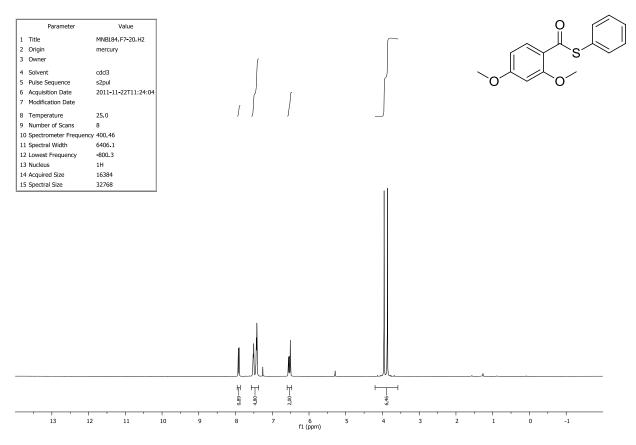


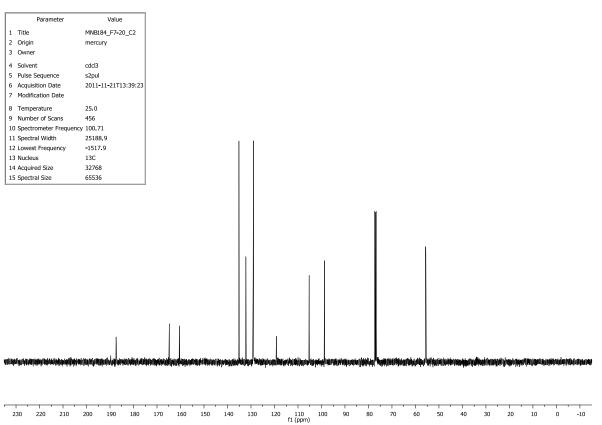


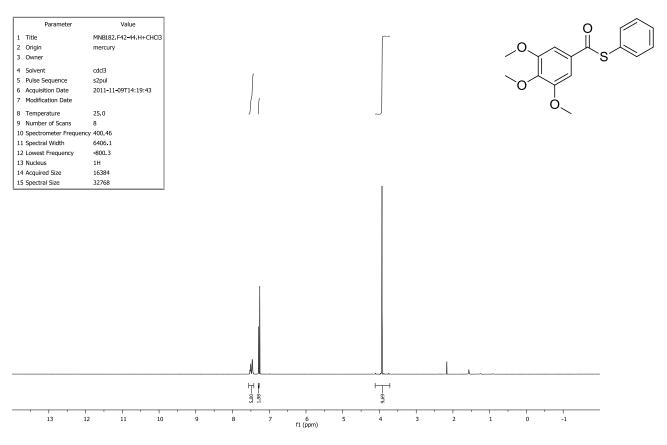

S-Phenyl 3-methoxybenzothioate (3)

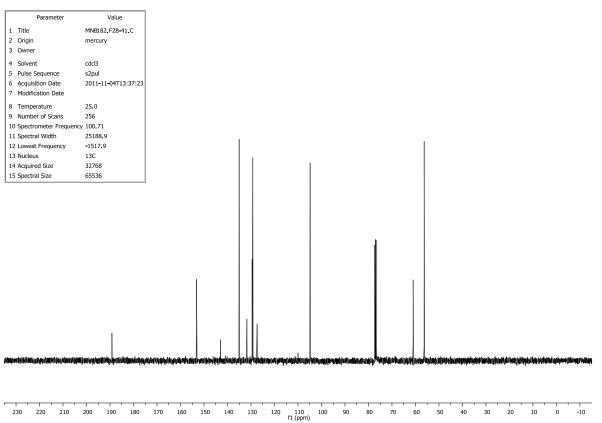


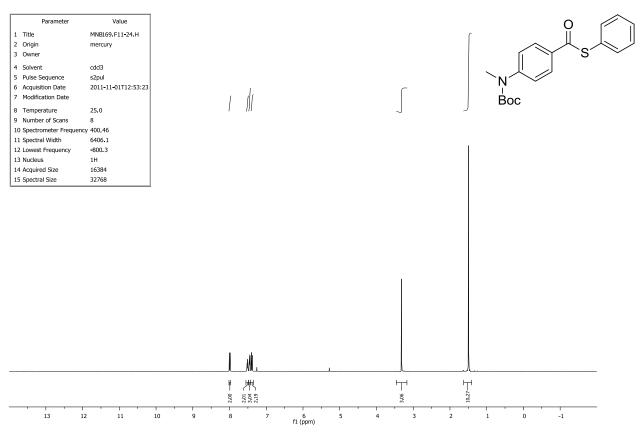

S-Phenyl 2-methoxybenzothioate (4)

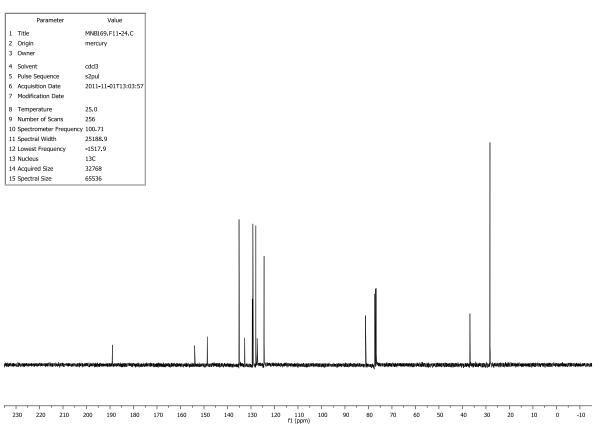


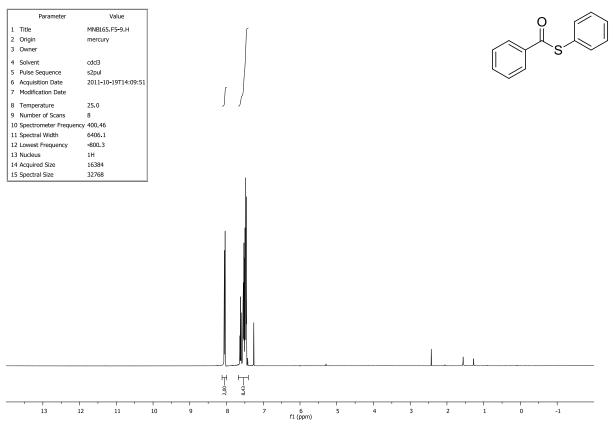

S-Phenyl 3,4-dimethoxybenzothioate (5)

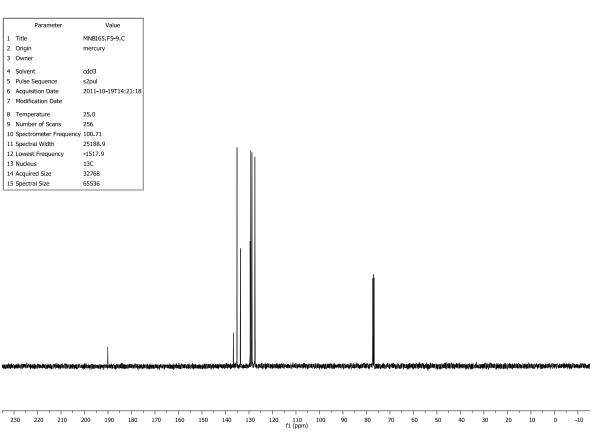


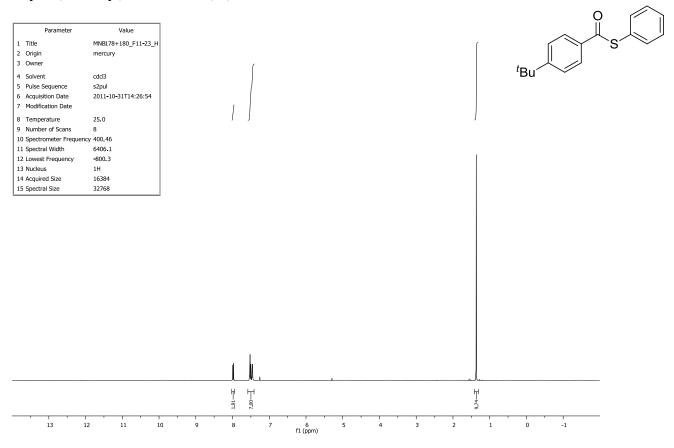

S-Phenyl 2,4-dimethoxybenzothioate (6)

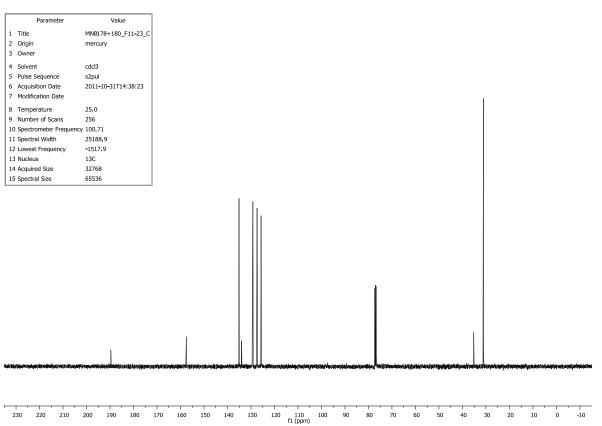


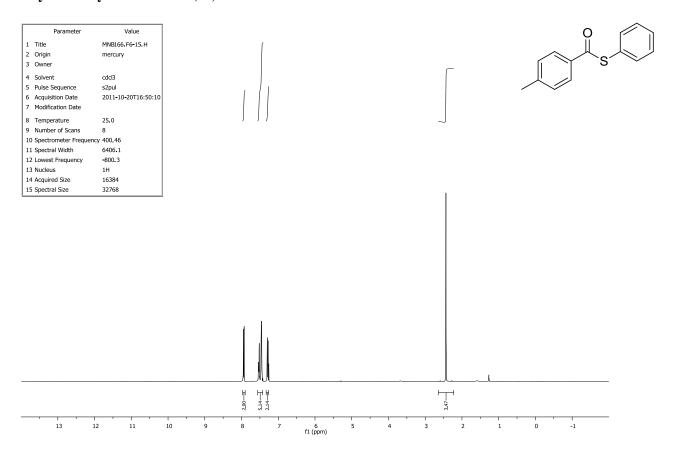

S-Phenyl 3,4,5-trimethoxybenzothioate (7)



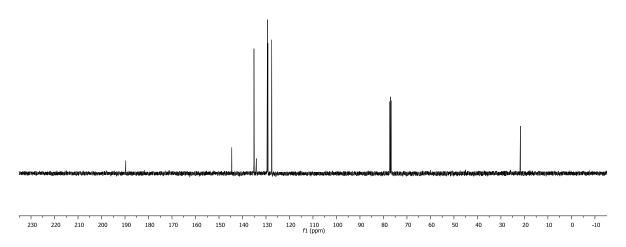

S-Phenyl 4-((tert-butoxycarbonyl)(methyl)amino)benzothioate (8)

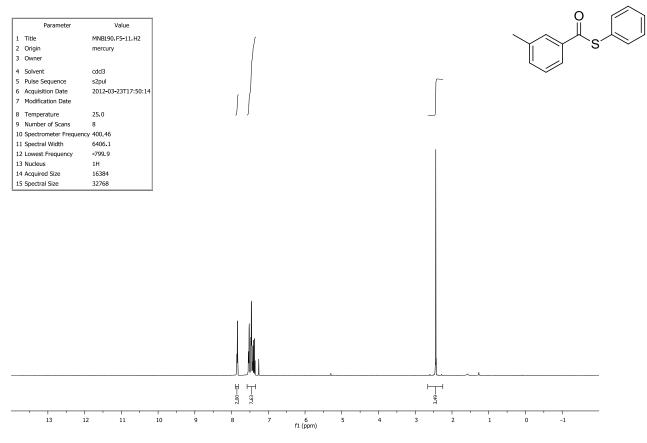


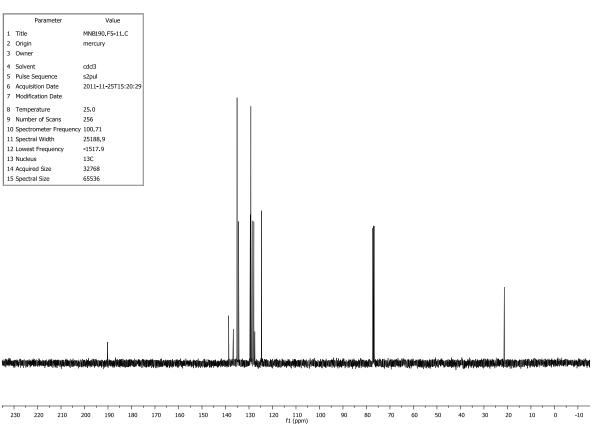

S-Phenyl benzothioate (9)



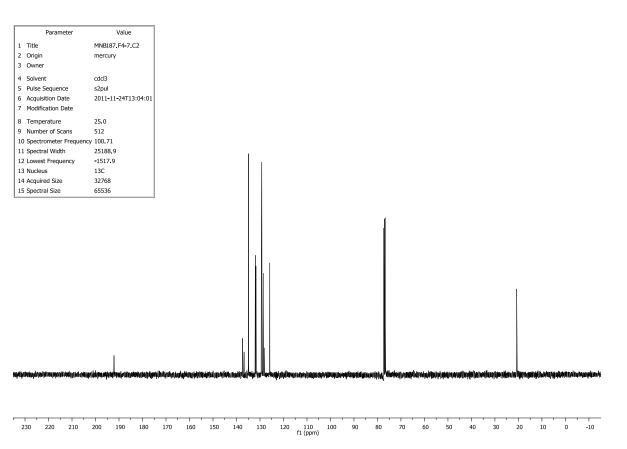
S-Phenyl 4-(tert-butyl)benzothioate (10)



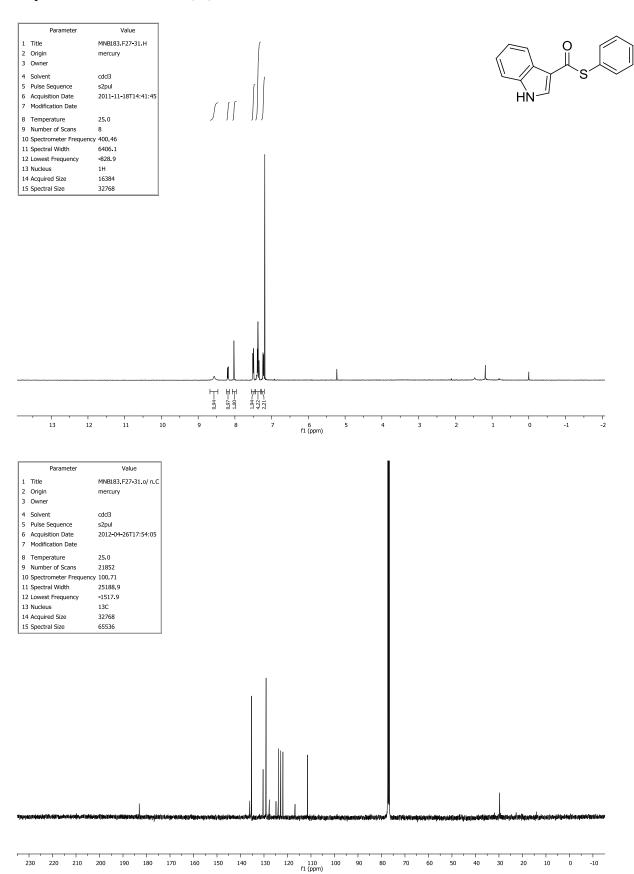

S-Phenyl 4-methylbenzothioate (11)

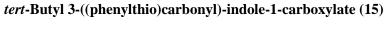


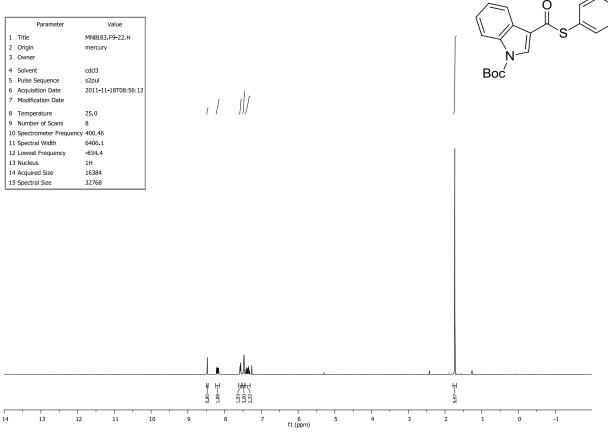
Г	Parameter	Value
1	Title	MNB166_F6-15_C
2	Origin	mercury
3	Owner	
4	Solvent	cdcl3
5	Pulse Sequence	s2pul
6	Acquisition Date	2011-10-20T17:01:17
7	Modification Date	
8	Temperature	25.0
9	Number of Scans	256
10	Spectrometer Frequency	100.71
11	Spectral Width	25188.9
12	Lowest Frequency	-1517.9
13	Nucleus	13C
14	Acquired Size	32768
15	Spectral Size	65536

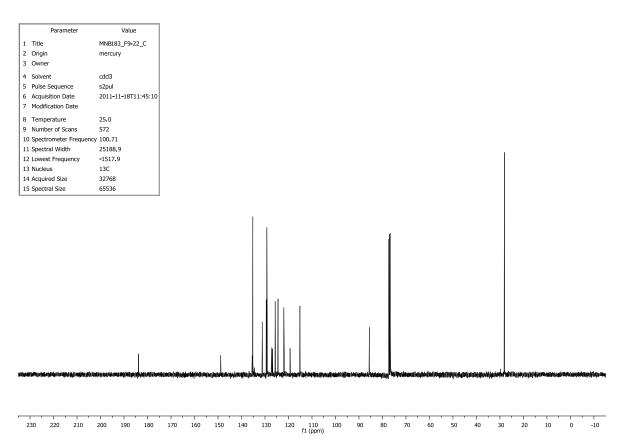


S-Phenyl 3-methylbenzothioate (12)

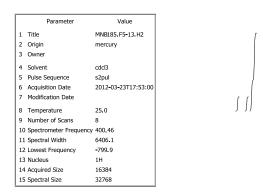


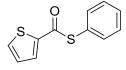


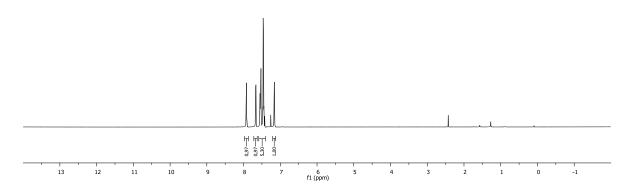

S-Phenyl 2-methylbenzothioate (13) Parameter Value 1 Title MNB187.F4-7.H 2 Origin 3 Owner mercury 4 Solvent 5 Pulse Sequence 6 Acquisition Date 7 Modification Date cdcl3 s2pul 2011-11-24T12:12:21 8 Temperature 9 Number of Scans 25.0 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency -800.3 13 Nucleus 1H 14 Acquired Size 15 Spectral Size 5.89 2.00 4.00 5.89 0.91—≡ 6 f1 (ppm)

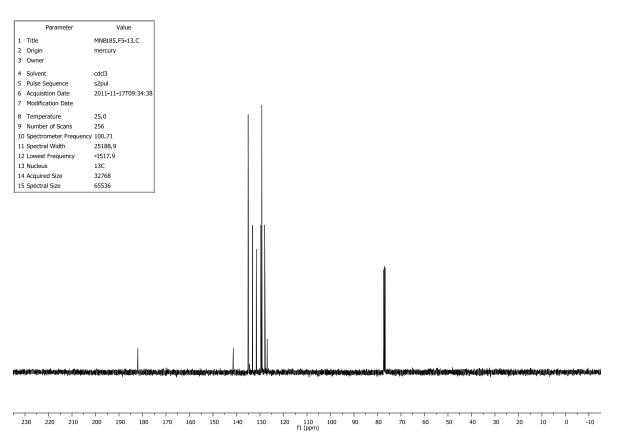


S-Phenyl-indole-3-carbothioate (14)

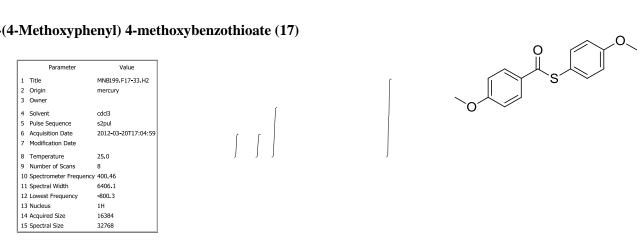


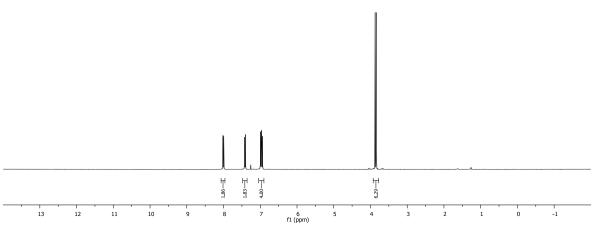


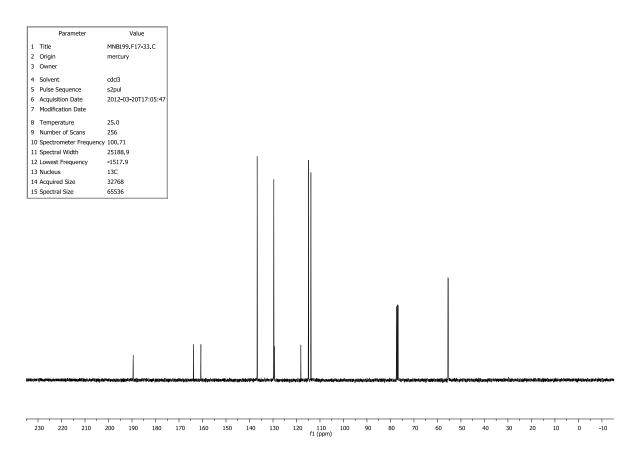




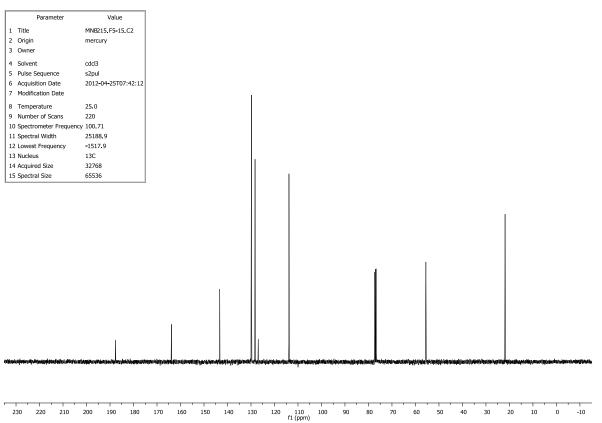
S-Phenyl thiophene-2-carbothioate (16)

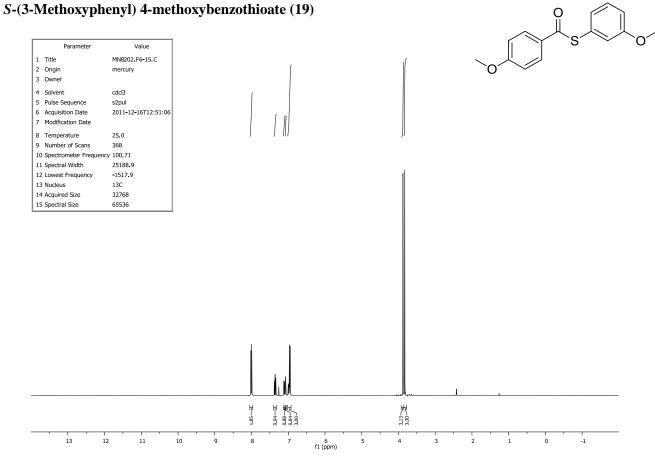


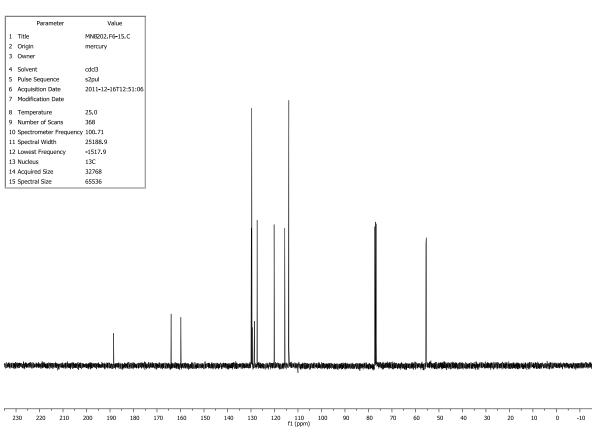


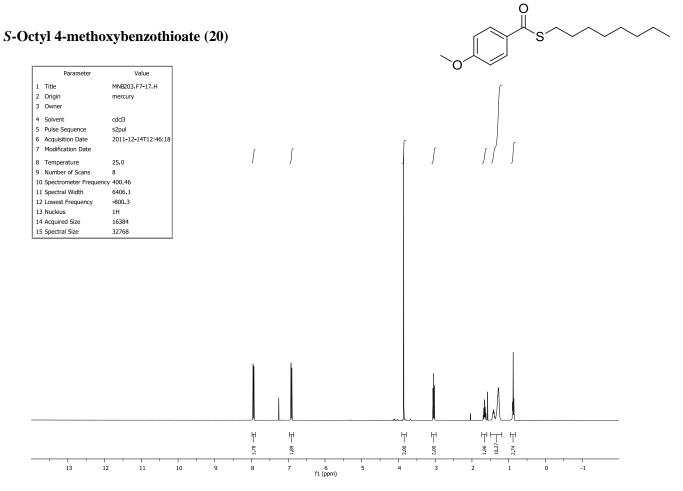


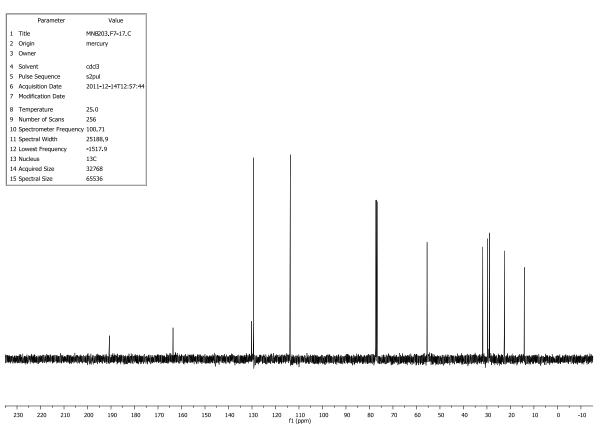

S-(4-Methoxyphenyl) 4-methoxybenzothioate (17)

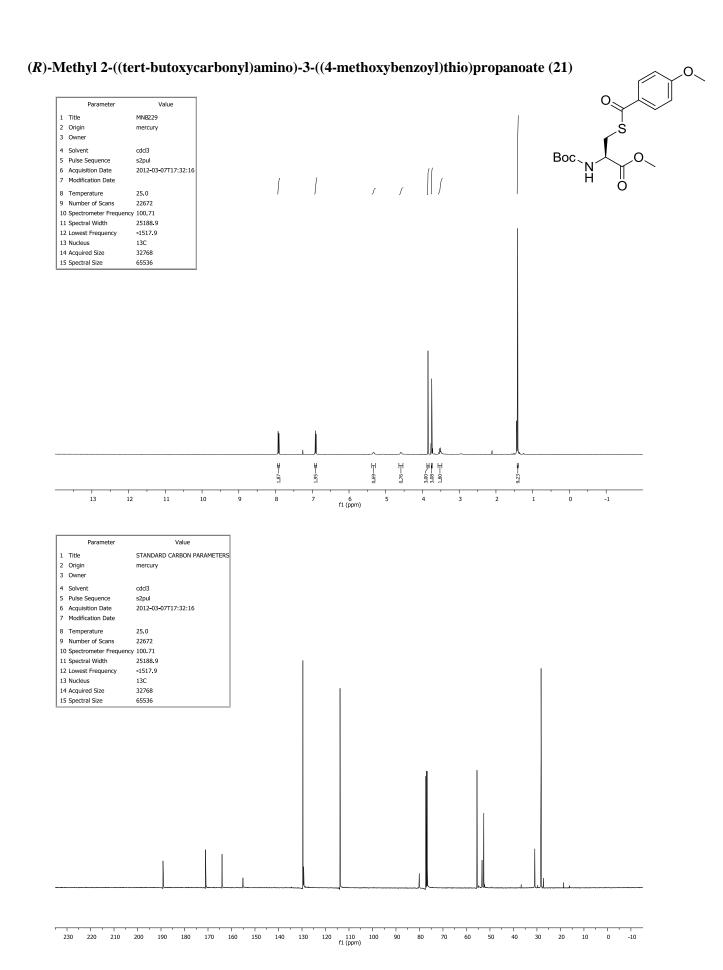


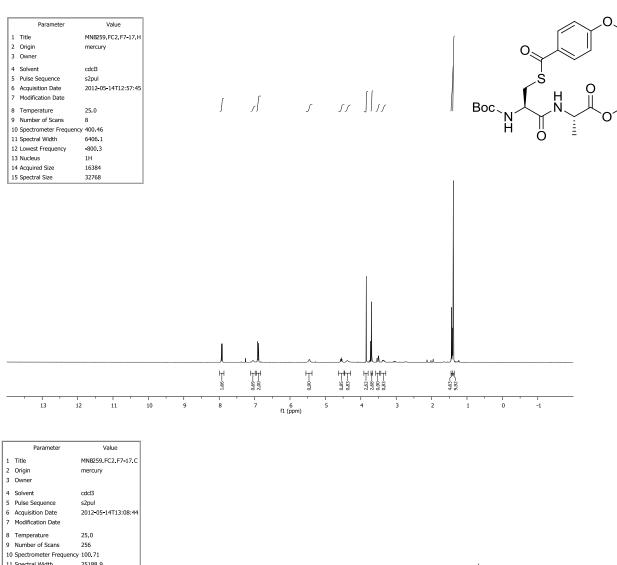


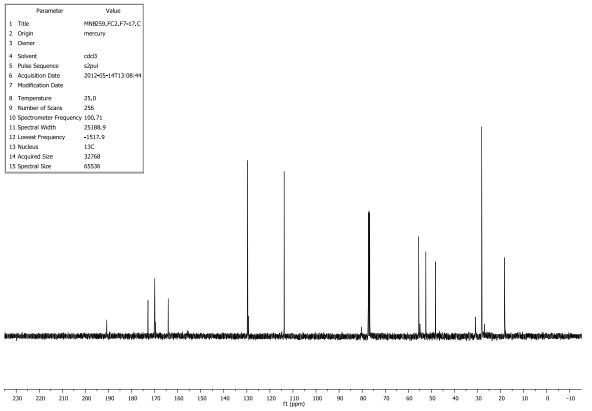


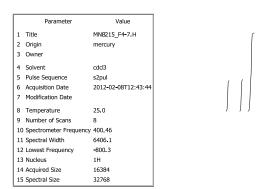

S-(2,6-Dimethylphenyl) 4-methoxybenzothioate (18)

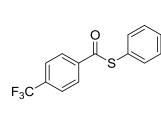


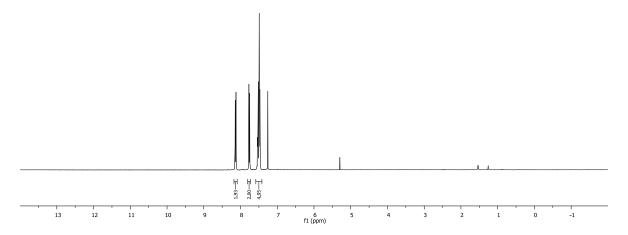


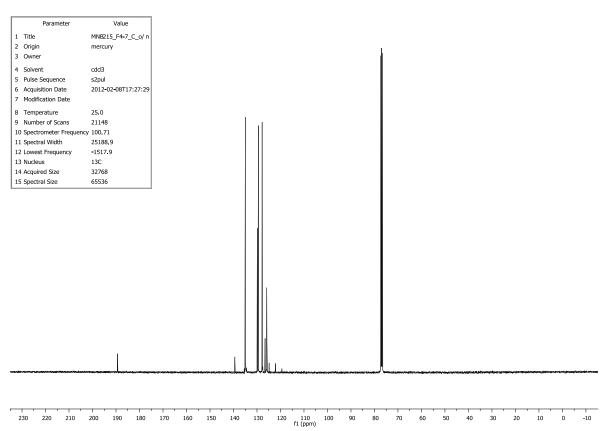




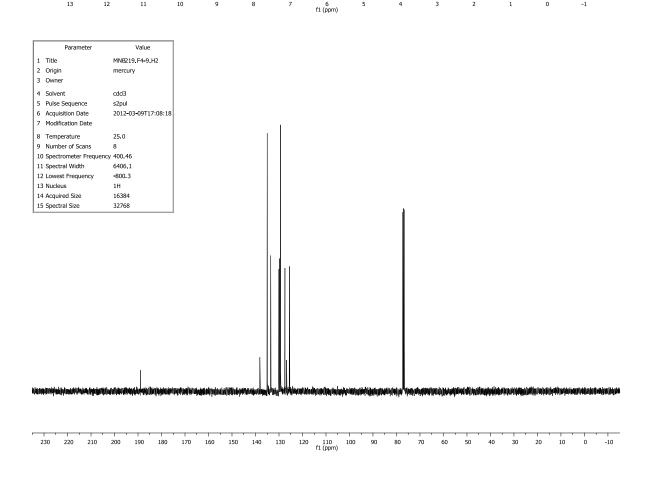


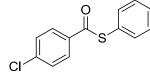

$(S) - Methyl\ 2 - ((R) - 2 - ((tert - butoxycarbonyl) amino) - 3 - ((4 - ethoxybenzoyl) thio) propanamido) propanoate (22)$

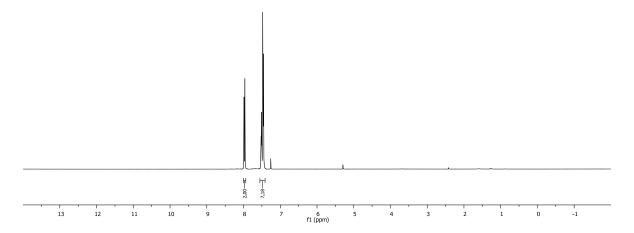


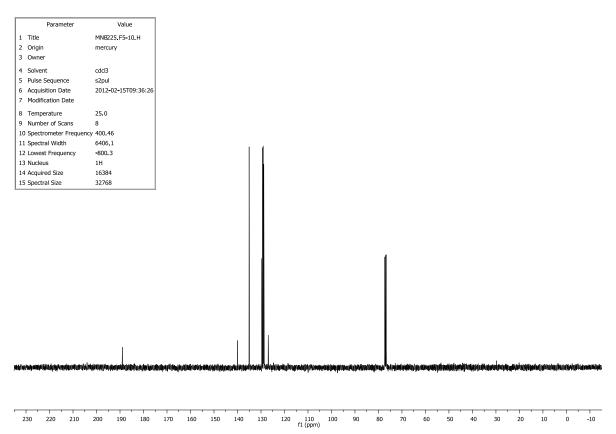


S-Phenyl 4-(trifluoromethyl)benzothioate (23)

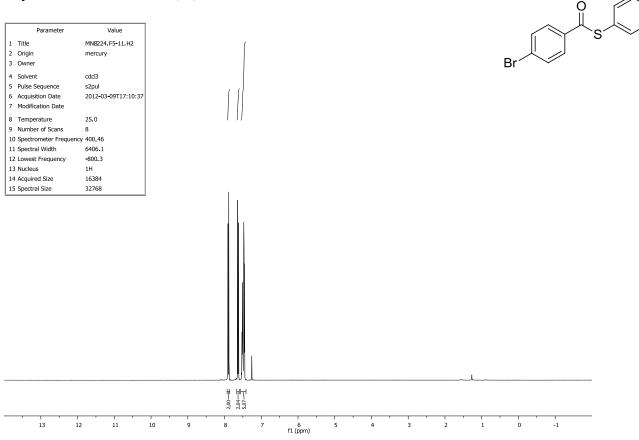


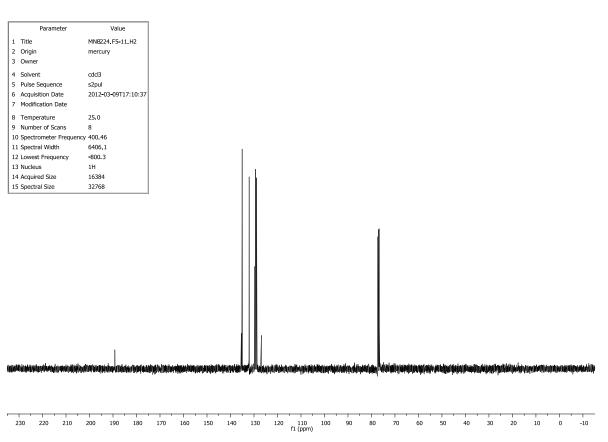

Parameter	Value
1 Title	MNB215.F4-7.F
2 Origin	mercury
3 Owner	
4 Solvent	cdcl3
5 Pulse Sequence	s2pul
6 Acquisition Date	2012-03-20T17:02:34
7 Modification Date	2022 03 20127.02.34
8 Temperature	25.0
9 Number of Scans	25.0 16
10 Spectrometer Frequency	
11 Spectrometer Frequency 11 Spectral Width	86956.5
12 Lowest Frequency	-75507.1
13 Nucleus	19F
14 Acquired Size	64000
	131072
15 Spectral Size	1310/12
-50 -51 -52 -53 -	54 -55 -56 -57
-50 -51 -52 -55 -	D4 -DD -DD -D/

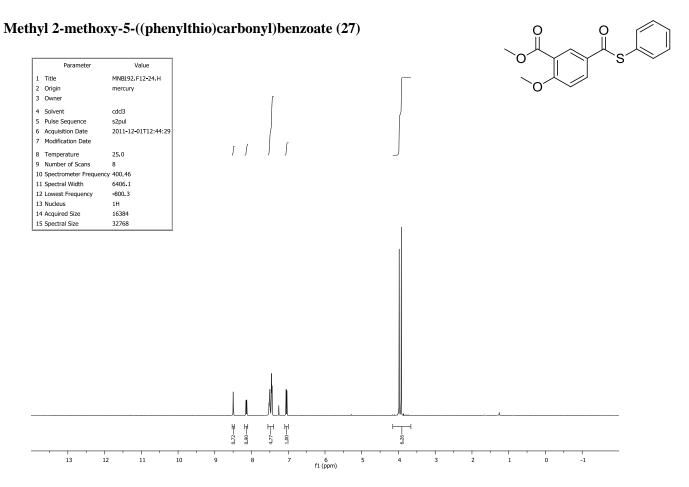

S-Phenyl 3-chlorobenzothioate (24) Parameter Value 1 Title MNB219.F4-9.H2 2 Origin 3 Owner mercury 4 Solvent 5 Pulse Sequence 6 Acquisition Date 7 Modification Date cdcl3 s2pul 2012-03-09T17:08:18 $\int \int$ 8 Temperature 9 Number of Scans 25.0 10 Spectrometer Frequen 11 Spectral Width icy 400.46 6406.1 12 Lowest Frequency -800.3 13 Nucleus 14 Acquired Size 1H 16384 15 Spectral Size # ## ##

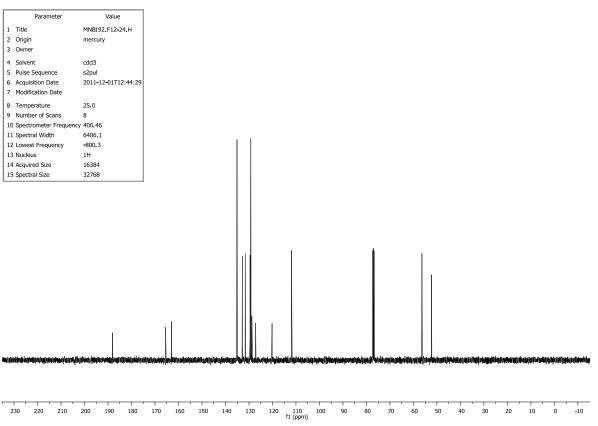


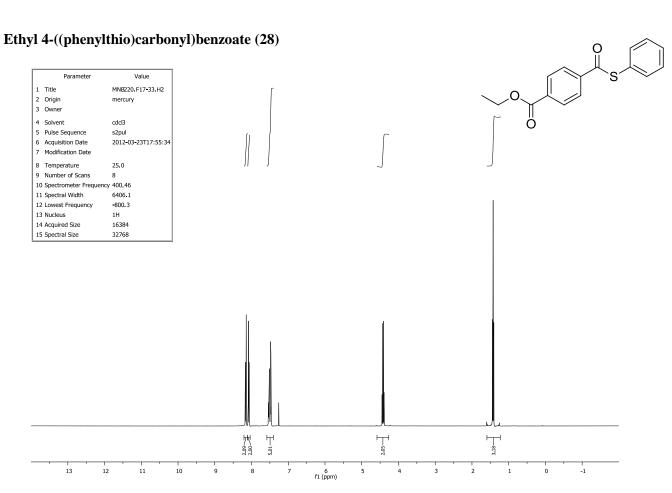
S-Phenyl 4-chlorobenzothioate (25)

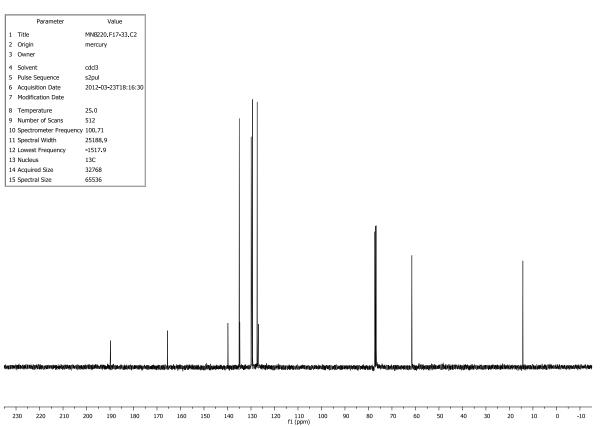


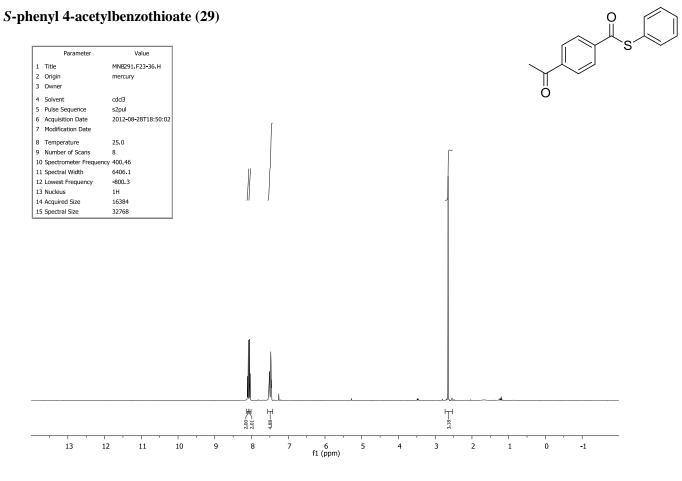


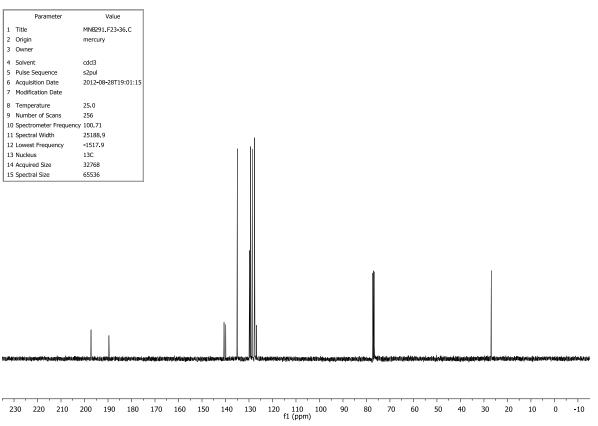


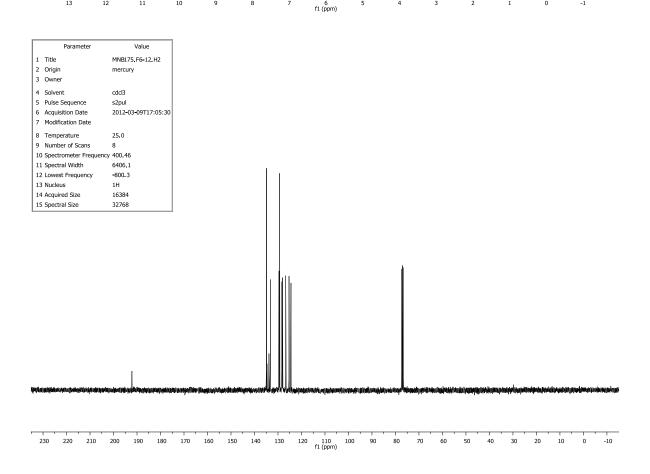


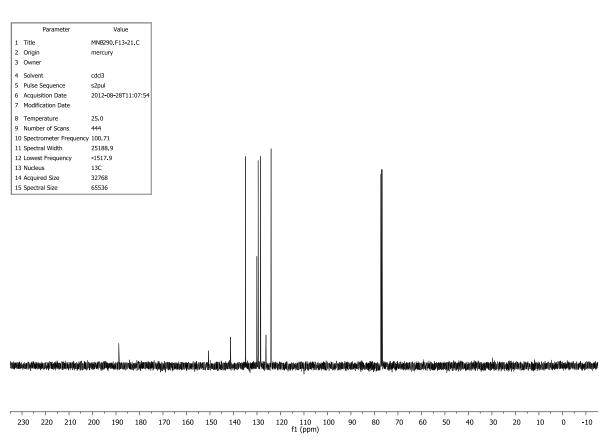

S-Phenyl 4-bromobenzothioate (26)

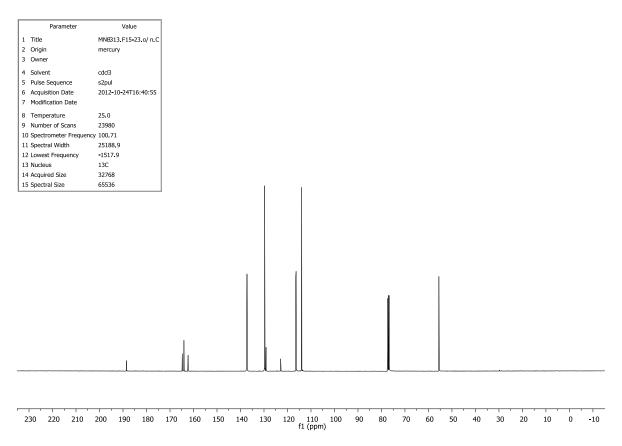




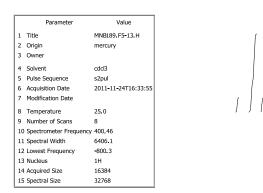


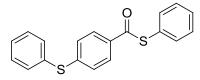


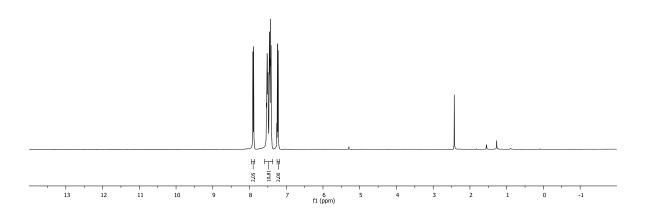


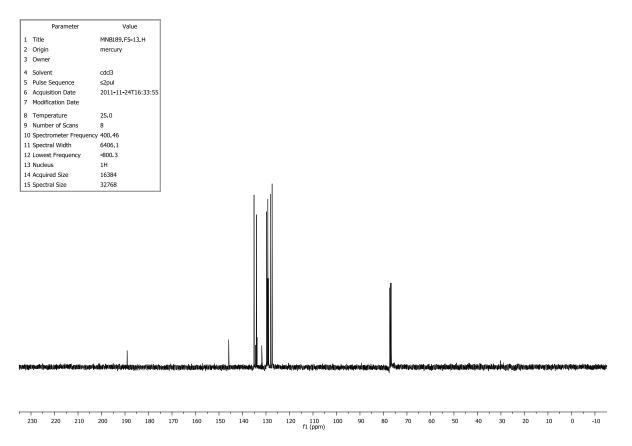

S-Phenyl naphthalene-2-carbothioate (30) Parameter Value 1 Title MNB175.F6-12.C 2 Origin 3 Owner mercury 4 Solvent 5 Pulse Sequence 6 Acquisition Date 7 Modification Date cdcl3 s2pul 2011-11-03T10:48:59 $\int \int \int \int \int$ 8 Temperature 9 Number of Scans 25.0 10 Spectrometer Frequer 11 Spectral Width cy 100.71 25188.9 12 Lowest Frequency -1517.9 13 Nucleus 14 Acquired Size 13C 32768 15 Spectral Size 65536

O₂N S S-phenyl 4-nitrobenzothioate (31) Parameter Value 1 Title MNB317.F17-28.F 2 Origin 3 Owner mercury 4 Solvent 5 Pulse Sequence cdcl3 s2pul 6 Acquisition Date 7 Modification Date 2012-10-25T12:58:58 8 Temperature 9 Number of Scans 25.0 10 Spectrometer Frequen 11 Spectral Width icy 400.46 6406.1 12 Lowest Frequency -800.3 13 Nucleus 1H 14 Acquired Size 15 Spectral Size 13 12 -1 11 8 6 f1 (ppm) 10

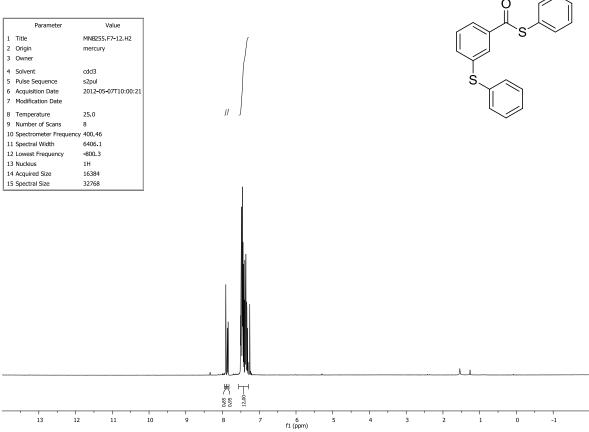


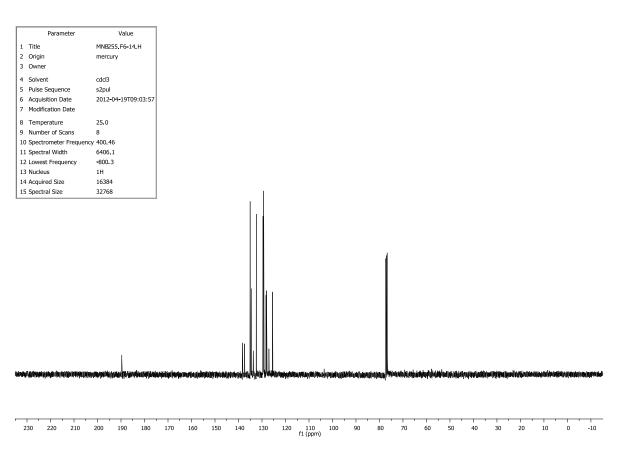

S-(4-fluorophenyl) 4-methoxybenzothioate (32) Parameter Value 1 Title MNB313.F15-23.H 2 Origin 3 Owner mercury 4 Solvent 5 Pulse Sequence cdcl3 s2pul 6 Acquisition Date 7 Modification Date 2012-10-24T16:32:14 8 Temperature 9 Number of Scans 25.0 10 Spectrometer Frequen 11 Spectral Width cy 400.46 6406.1 12 Lowest Frequency -800.3 13 Nucleus 1H 14 Acquired Size 15 Spectral Size 2.02—<u>T</u> 8 13 12 11 9 4 -1 10 6 f1 (ppm)

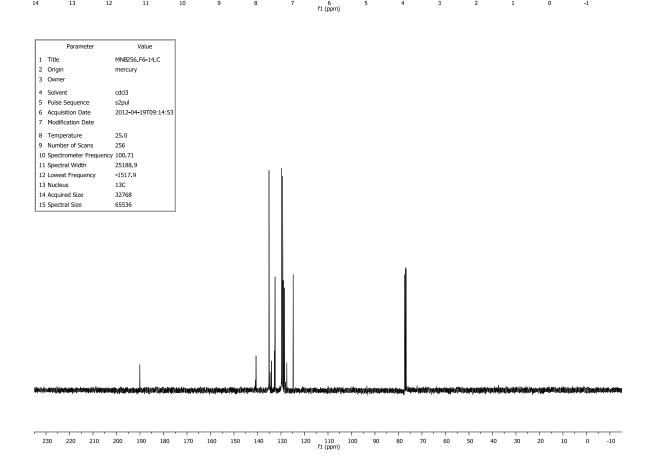


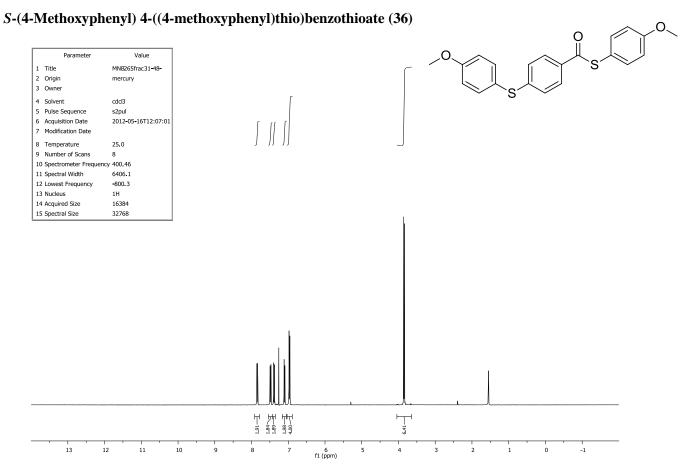

0 20	10 0 -10		-50 -60	-70	-80 -90 f1 (ppm)	-100 -110	0 -120	-130 -14() -150	-160 -17	70 -180	-1
				overen and the server of the s								
14 Acquired 15 Spectral S												
13 Nucleus	19F											
12 Lowest Fr		1										
10 Spectrom 11 Spectral V	eter Frequency 376.78 Width 86956.5	1										
9 Number o		1										
8 Temperat	ture 25.0											
7 Modificati		/ I. II										
6 Acquisitio		34-41										
5 Pulse Sea	cdcl3											
4 Solvent 5 Pulse Seq												
4 Solvent	MNB313.F15-23. mercury	·										

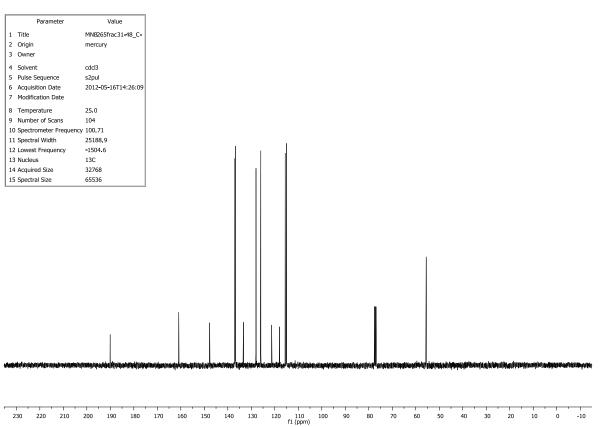
S-Phenyl 4-(phenylthio)benzothioate (33)

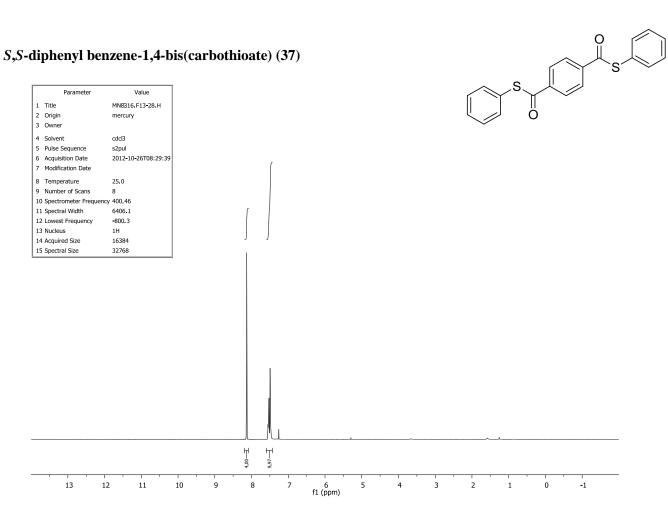


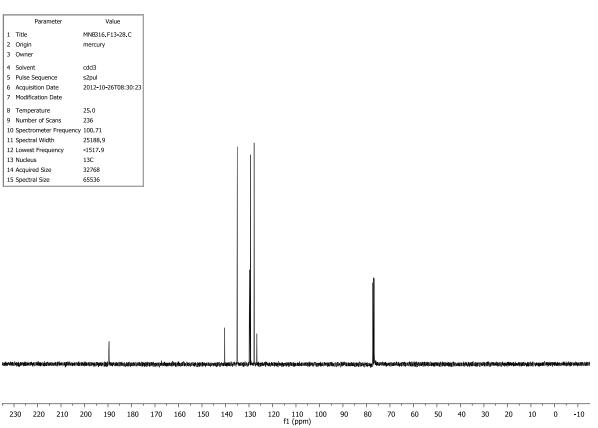


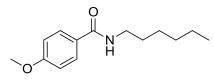

${\it S-Phenyl~3-(phenylthio)} benzothioate~(34)$

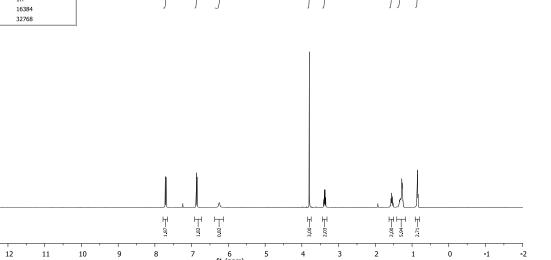




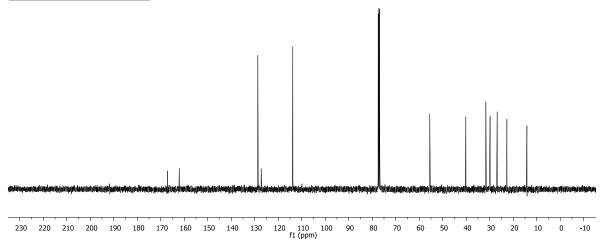

S-Phenyl 2-(phenylthio)benzothioate (35) Parameter Value 1 Title 2 Origin 3 Owner mercury 4 Solvent 5 Pulse Sequence 6 Acquisition Date 7 Modification Date cdcl3 s2pul 2012-04-19T09:14:53][] 8 Temperature 9 Number of Scans 25.0 10 Spectrometer Frequer 11 Spectral Width cy 100.71 25188.9 12 Lowest Frequency -1517.9 13 Nucleus 14 Acquired Size 13C 32768 15 Spectral Size

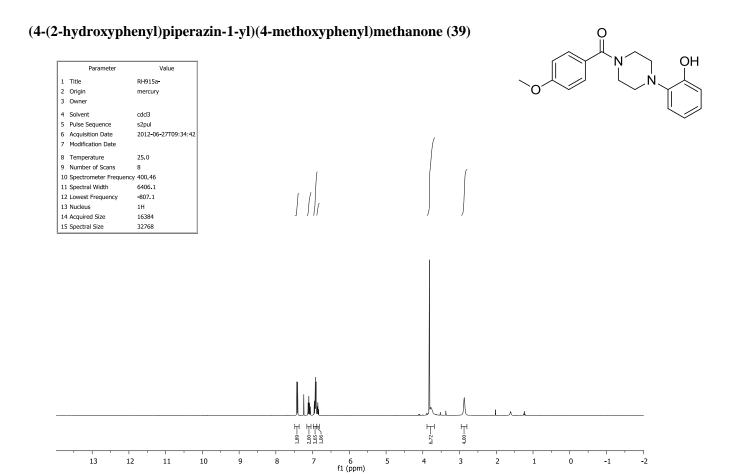

₩ ₩ 88.001 88.001 88.001

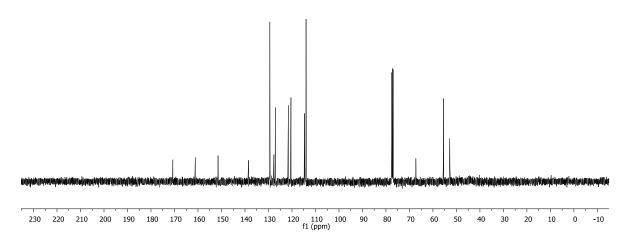


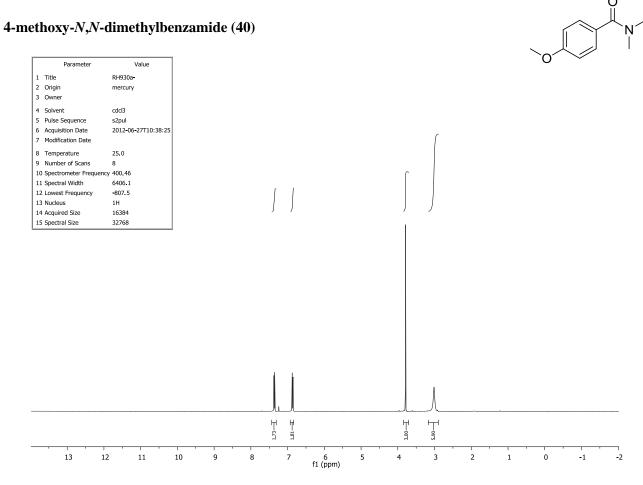


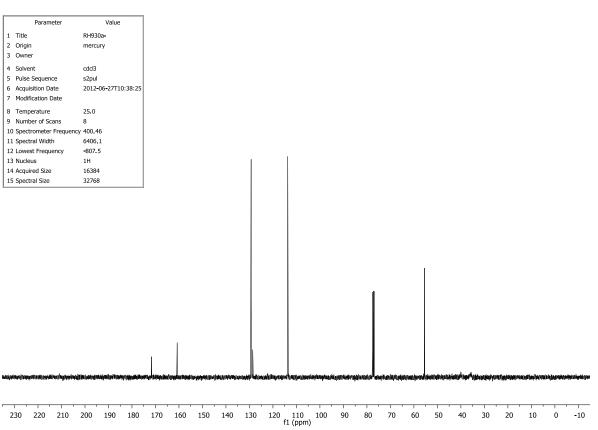
N-hexyl-4-methoxybenzamide (38)

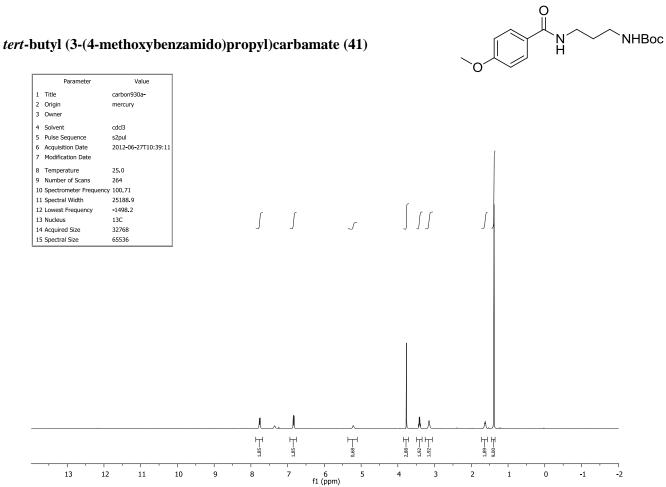

		Parameter	Value
	1	Title	RH915a-
	2	Origin	mercury
ı	3	Owner	
	4	Solvent	cdcl3
	5	Pulse Sequence	s2pul
	6	Acquisition Date	2012-06-27T09:34:42
	7	Modification Date	
ı	8	Temperature	25.0
	9	Number of Scans	8
	10	Spectrometer Frequency	400.46
	11	Spectral Width	6406.1
	12	Lowest Frequency	-807.1
	13	Nucleus	1H
	14	Acquired Size	16384
	15	Spectral Size	32768

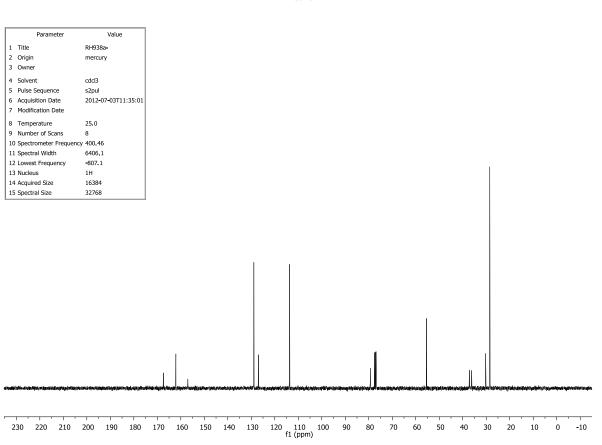


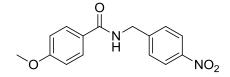

Г	Parameter	Value
1	Title	carbon571a
2	Origin	mercury
3	Owner	
4	Solvent	CDCl3
5	Pulse Sequence	s2pul
6	Acquisition Date	2010-08-05T07:54:21
7	Modification Date	
8	Temperature	26.0
9	Number of Scans	456
10	Spectrometer Frequency	100.71
11	Spectral Width	25188.9
12	Lowest Frequency	-1527.6
13	Nucleus	13C
14	Acquired Size	30211
15	Spectral Size	65536

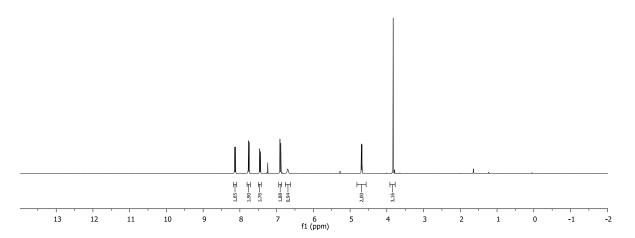

13



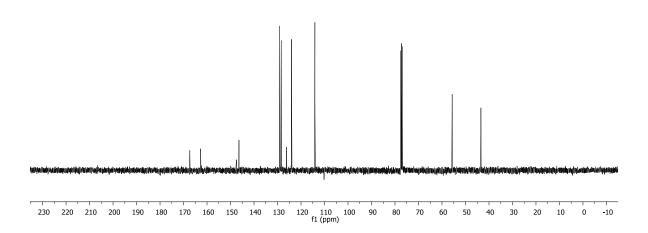


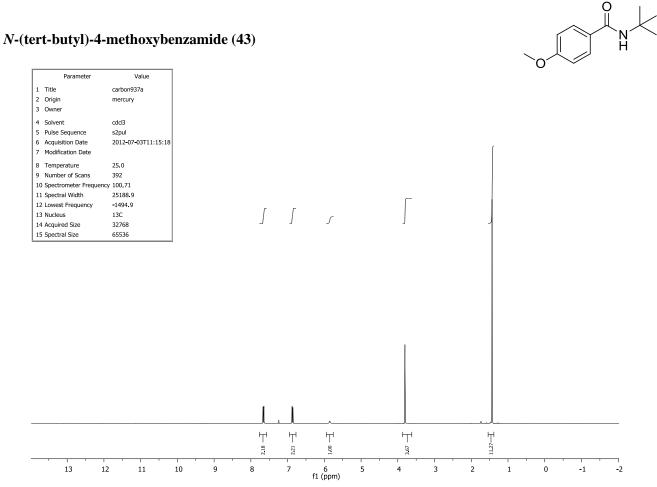

	Parameter	Value
,	Title	carbon928a-
1 -	Origin	mercury
3	Owner	meredry
1		
4	Solvent	cdcl3
5	Pulse Sequence	s2pul
6	Acquisition Date	2012-10-10T08:06:37
7	Modification Date	
8	Temperature	25.0
9	Number of Scans	328
10	Spectrometer Frequency	100.71
11	Spectral Width	25188.9
12	Lowest Frequency	-1497.1
13	Nucleus	13C
14	Acquired Size	32768
15	Spectral Size	65536

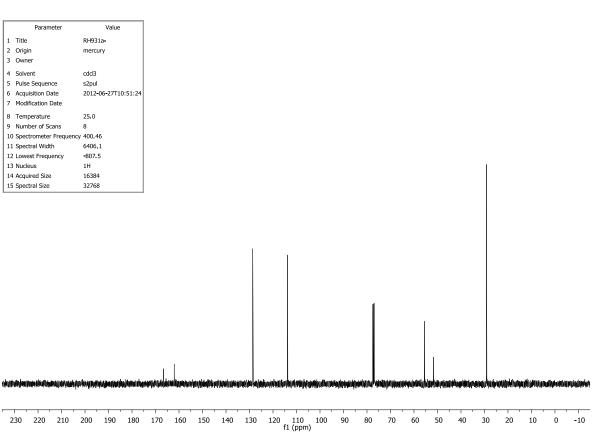


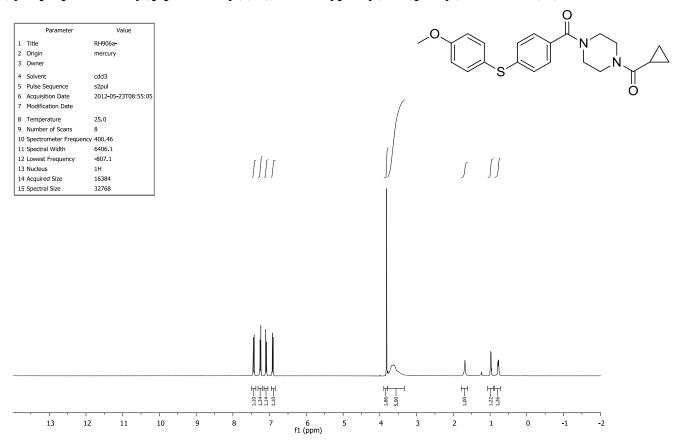


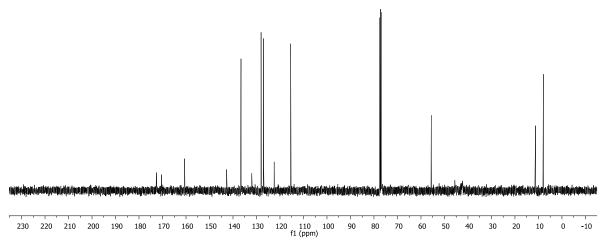
${\bf 4\text{-}methoxy-} N\text{-} ({\bf 4\text{-}nitrobenzyl}) benzamide~({\bf 42})$

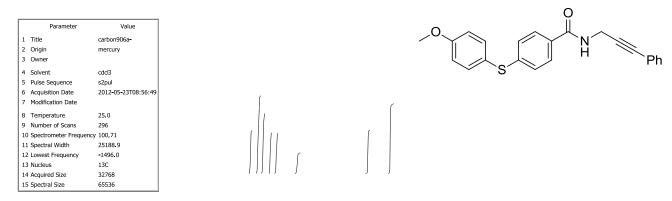


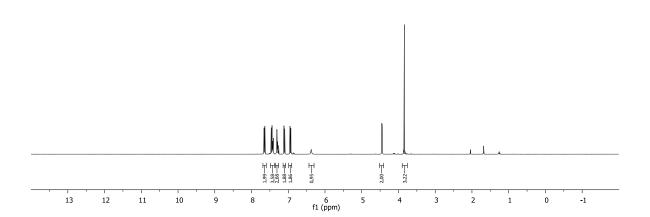

	Parameter	Value
1	Title	RH937a
2	Origin	mercury
3	Owner	
4	Solvent	cdcl3
5	Pulse Sequence	s2pul
6	Acquisition Date	2012-07-03T11:14:04
7	Modification Date	
8	Temperature	25.0
9	Number of Scans	8
10	Spectrometer Frequency	400.46
11	Spectral Width	6406.1
12	Lowest Frequency	-807.3
13	Nucleus	1H
14	Acquired Size	16384
15	Spectral Size	32768

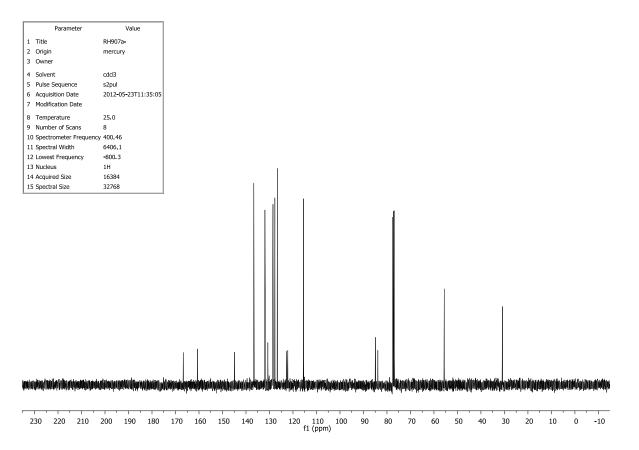


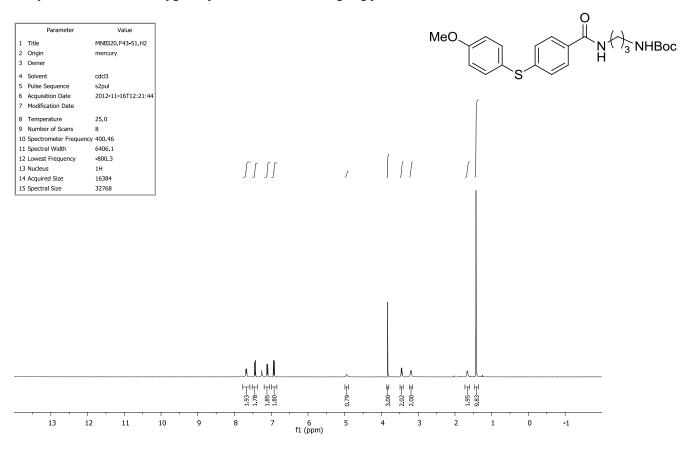

		Parameter	Value
ı	1	Title	carbon937a
ı	2	Origin	mercury
ı	3	Owner	
	4	Solvent	cdcl3
ı	5	Pulse Sequence	s2pul
ı	6	Acquisition Date	2012-07-03T11:15:18
	7	Modification Date	
	8	Temperature	25.0
ı	9	Number of Scans	392
ı	10	Spectrometer Frequency	100.71
ı	11	Spectral Width	25188.9
ı	12	Lowest Frequency	-1494.9
ı	13	Nucleus	13C
ı	14	Acquired Size	32768
ı	15	Spectral Size	65536

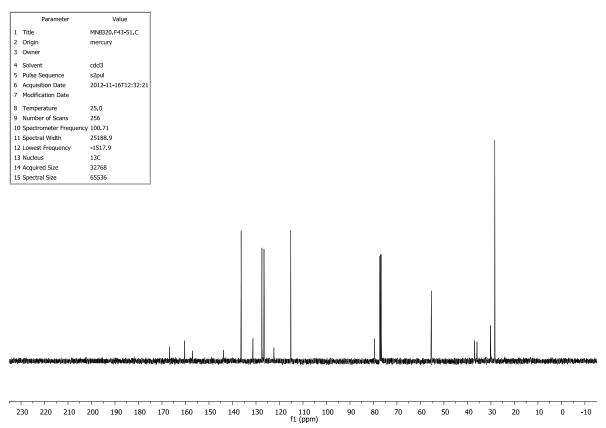


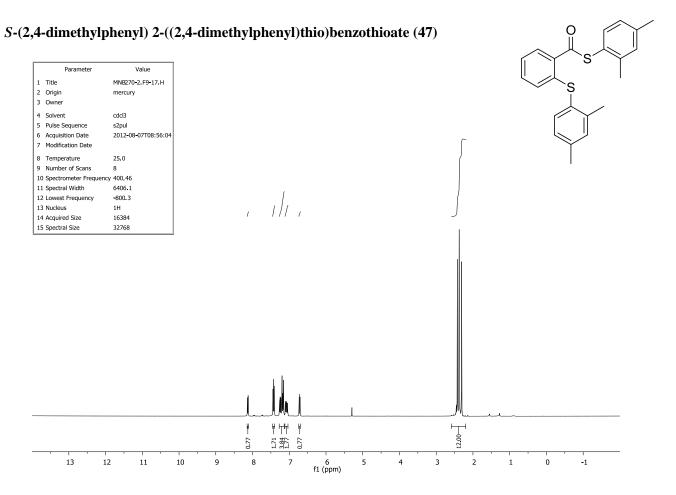

$(4-(cyclopropanecarbonyl)piperazin-1-yl)(4-((4-methoxyphenyl)thio)phenyl)methanone\ (44)$

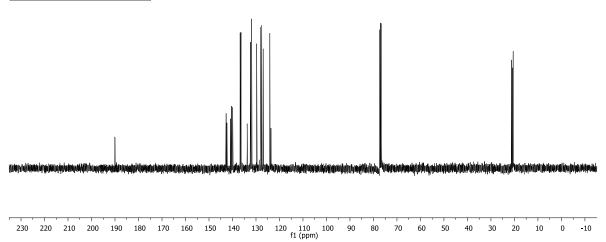


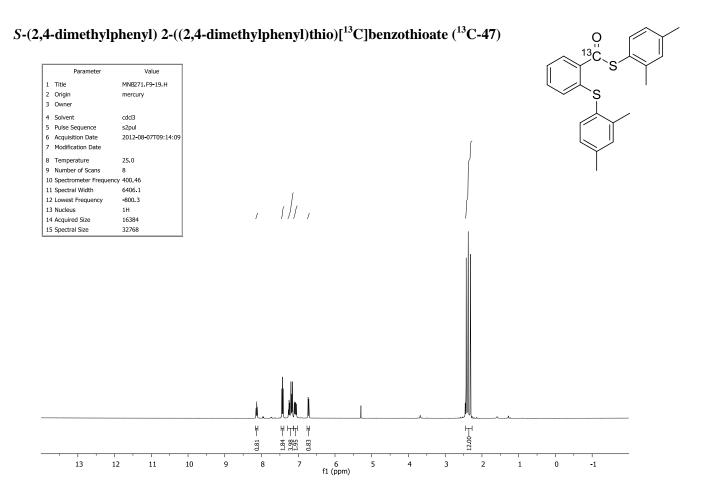

	Parameter	Value
1	Title	RH906a-
2	Origin	mercury
3	Owner	
4	Solvent	cdcl3
5	Pulse Sequence	s2pul
6	Acquisition Date	2012 - 05 - 23T08:55:05
7	Modification Date	
8	Temperature	25.0
9	Number of Scans	8
10	Spectrometer Frequency	400.46
11	Spectral Width	6406.1
12	Lowest Frequency	-807.1
13	Nucleus	1H
14	Acquired Size	16384
15	Spectral Size	32768

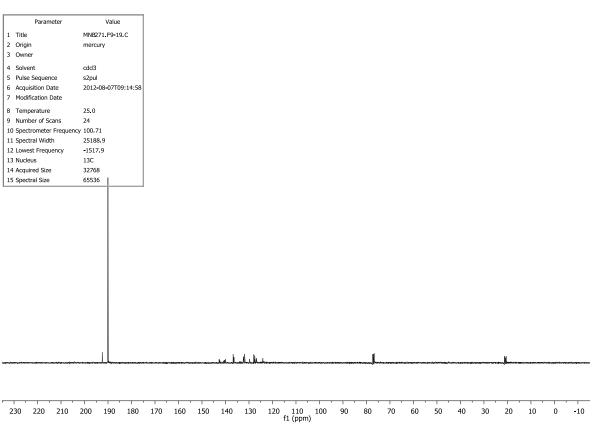

4-((4-methoxyphenyl)thio)-N-(3-phenylprop-2-yn-1-yl)benzamide (45)

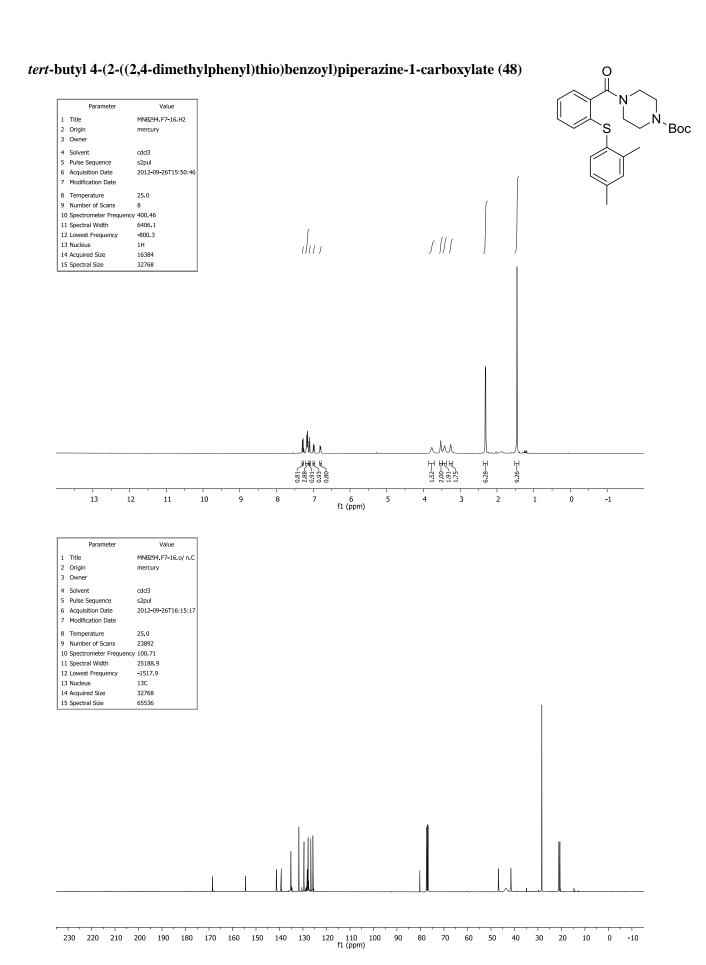




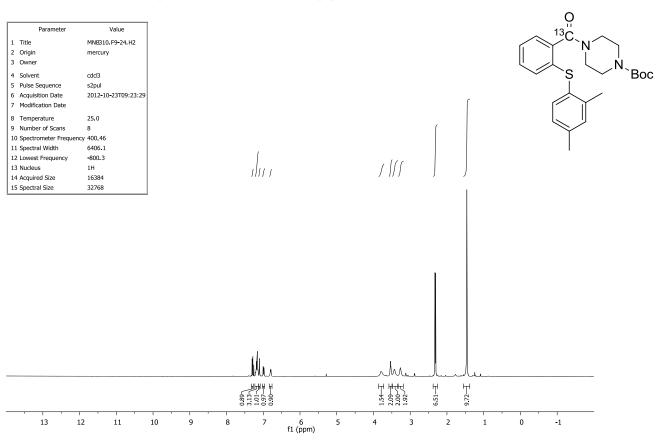

tert-butyl (3-(4-((4-methoxyphenyl)thio)benzamido)propyl)carbamate (46)

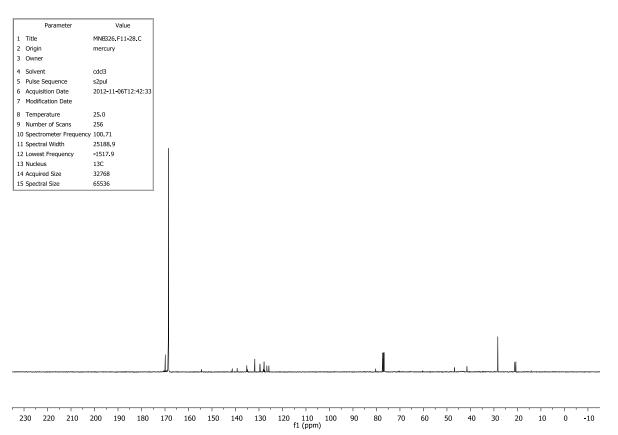


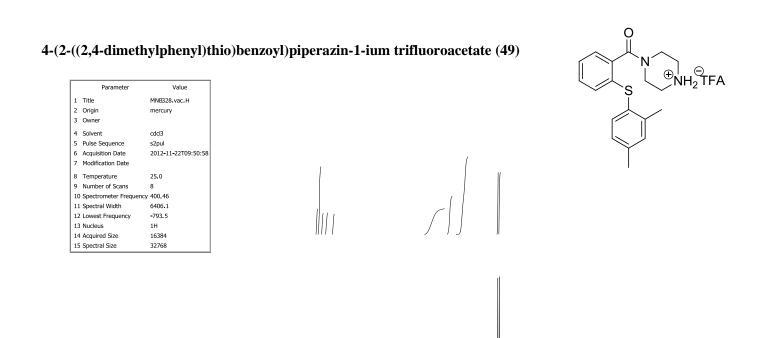


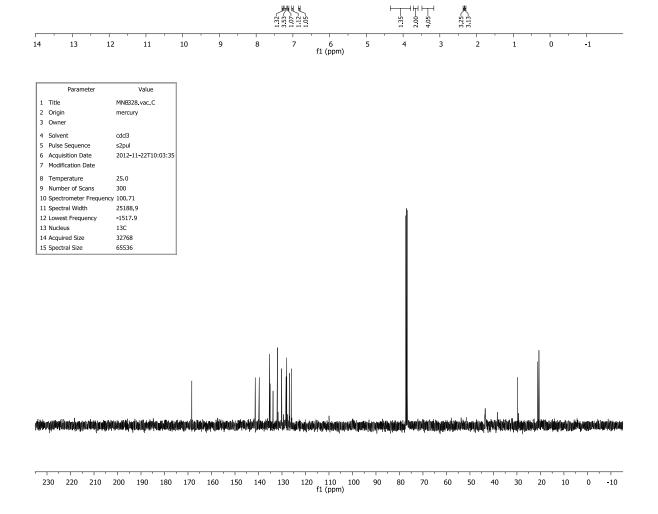


	Parameter	Value
1	Title	MNB270-2.F9-17.H
2	Origin	mercury
3	Owner	
4	Solvent	cdcl3
5	Pulse Sequence	s2pul
6	Acquisition Date	2012 - 08-07T09:07:00
7	Modification Date	
8	Temperature	25.0
9	Number of Scans	256
10	Spectrometer Frequency	100.71
11	Spectral Width	25188.9
12	Lowest Frequency	-1517.9
13	Nucleus	13C
14	Acquired Size	32768
15	Spectral Size	65536

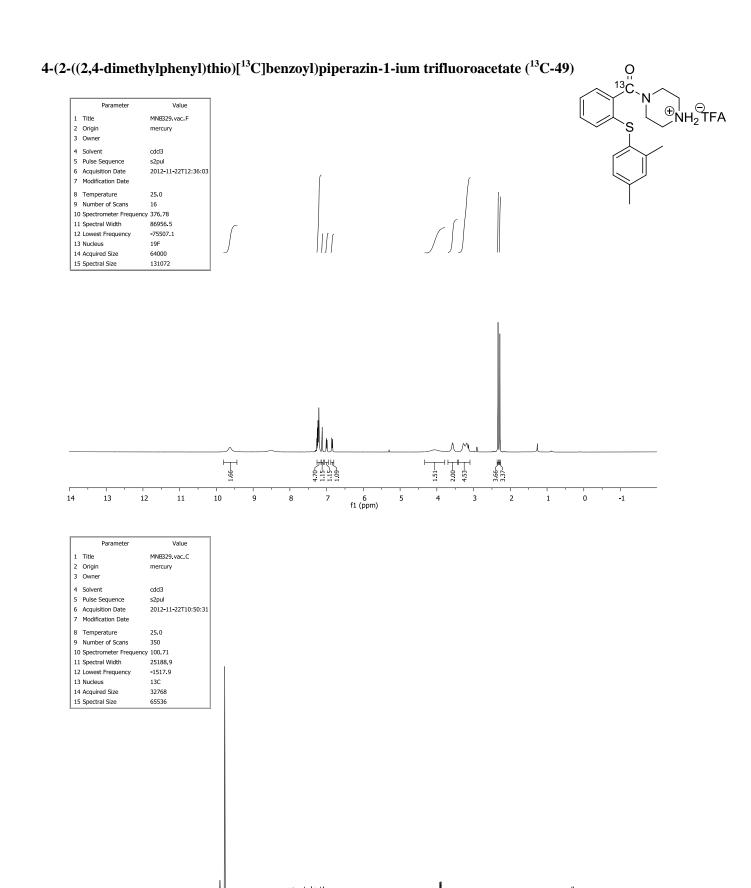








tert-butyl 4-(2-((2,4-dimethylphenyl)thio)[13C]benzoyl)piperazine-1-carboxylate (13C-48)



Parameter	Value
1 Title	MNB328.vac.F
2 Origin	mercury
3 Owner	
	cdcl3
	s2pul
	2012-11-22T12:33:28
7 Modification Date	
8 Temperature	25.0
9 Number of Scans	16
10 Spectrometer Frequency	
	86956.5
	-75507.1
	19F
	64000
15 Spectral Size	131072

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

50

40 30

80 70 60

20 10

230 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

2 Origin mercury 3 Owner 4 Solvent cdcl3 5 Pulse Sequence s2pul 6 Acquisition Date 2012-11-05T12:32:11 7 Modification Date 8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency 800.3 13 Nucleus 1H	Origin mercury Owner cdc3 Pulse Sequence s2pul Acquisition Date 2012-11-05T12:32:11 Modification Date 5.0 Temperature 25.0 Number of Scans 8 Spectrometer Frequency 400.46 L Spectral Width 6406.1 L Lowest Frequency -800.3 Nucleus 1H 4 Acquired Size 16384	Origin mercury Owner Cdc3 Solvent s2pul Acquisition Date 2012-11-05T12:32:11 Modification Date 5.0 Temperature 25.0 Number of Scans 8 Spectrometer Frequeny 40.46 Spectral Width 6406.1 Lowest Frequeny 800.3 Nucleus 1H Acquired Size 16384	2 Origin mercury 3 Owner Cdcl3 4 Solvent cdcl3 5 Pulse Sequence s2pul 6 Acquisition Date 2012-11-05T12:32:11 7 Modification Date 8 8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency 800.3 13 Nucleus 1H 14 Acquired Size 16384	2 Origin mercury 3 Owner Cdcl3 4 Solvent cdcl3 5 Pulse Sequence s2pul 6 Acquisition Date 2012-11-05T12:32:11 7 Modification Date 8 8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency 800.3 13 Nucleus 1H 14 Acquired Size 16384	2 Origin mercury 3 Owner Cdcl3 4 Solvent cdcl3 5 Pulse Sequence s2pul 6 Acquisition Date 2012-11-05T12:32:11 7 Modification Date 8 8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency 800.3 13 Nucleus 1H 14 Acquired Size 16384	brigin mercury Where Johen Cdcl3 Jules Sequence \$2pul cquisition Date 2012-11-05T12:32:11 Jodification Date Temperature 25.0 Jumber of Scans 8 Jeptometer Frequency 400.46 pectral Width 6406.1 Where I was a sequence with the course of the course	Parameter	Value
5 Pulse Sequence	Pulse Sequence \$2pul Acquisition Date 2012-11-05T12:32:11 Modification Date 25.0 Temperature 25.0 Number of Scans 8 Dispectrometer Frequency 400.46 Lowest Frequency 800.3 Nucleus 1H 4 Acquired Size 16384	Pulse Sequence \$2pul Acquisition Date 2012-11-05T12:32:11 Modification Date Femperature Pumber of Scans 8 Spectrometer Frequency 400.46 Spectral Width 6406.1 Lowest Frequency 800.3 Nucleus 1H Acquired Size 16384	5 Pulse Sequence	5 Pulse Sequence	5 Pulse Sequence	ulse Sequence \$2pul cquisition Date 2012-11-05T12:32:11 flootification Date remperature 25.0 tumber of Scans 8 spectrometer Frequency 400.46 pectral Width 6406.1 owest Frequency -800.3 tucleus 1H cquired Size 16384	2 Origin	
8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency -800.3 13 Nucleus 1H	Temperature 25.0 Number of Scans 8 0 Spectrometer Frequency 400.46 L Spectral Width 6406.1 2 Lowest Frequency 800.3 8 Nucleus 1H 4 Acquired Size 16384	Temperature 25.0 Number of Scans 8 Spectrometer Frequency 400.46 Spectral Width 6406.1 Lowest Frequency -800.3 Nucleus 1H Acquired Size 16384	8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency -800.3 13 Nucleus 1H 14 Acquired Size 16384	8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency -800.3 13 Nucleus 1H 14 Acquired Size 16384	8 Temperature 25.0 9 Number of Scans 8 10 Spectrometer Frequency 400.46 11 Spectral Width 6406.1 12 Lowest Frequency -800.3 13 Nucleus 1H 14 Acquired Size 16384	emperature 25,0	5 Pulse Sequence 6 Acquisition Date	s2pul
14 Acquired Size 16384							8 Temperature 9 Number of Scans 10 Spectrometer Frequency 11 Spectral Width 12 Lowest Frequency 13 Nucleus	8 / 400.46 6406.1 -800.3