
Supporting Information:

Universal Chemiluminescence Flow-Through Device Based on Directed Self-Assembly of Solid-State Organic Chromophores on Layered Double Hydroxide Matrix

Zhihua Wang, Xu Teng, and Chao Lu*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Figure S1. Schematic diagram of CL detection by flow injection system. a, 0.03 M H₂O₂–0.05 M HCl at 2.8 mL/min; b, 0.01 M NaNO₂ at 2.8 mL/min; p, peristaltic pump; v, six-way injection valve; s, sample; w, waste; f, PTFE flow cell; PMT, photomultiplier tube; BPCL, Biophysics Chemiluminescence; PC, personal computer.

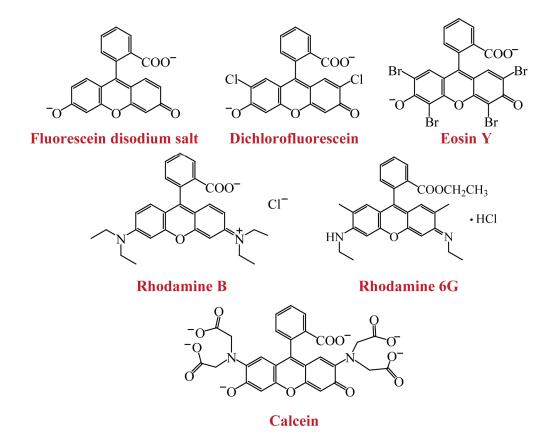
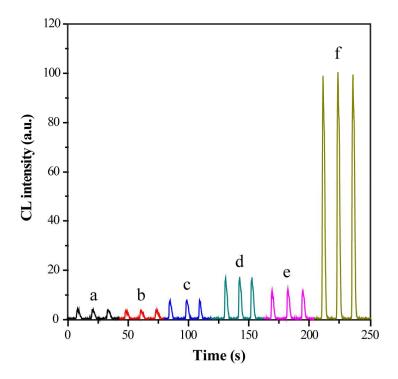
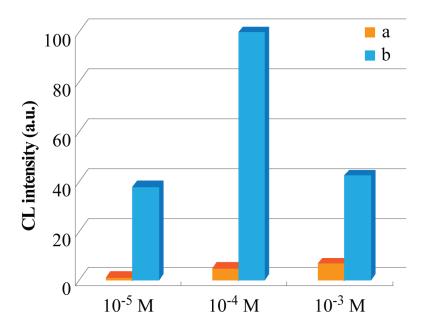
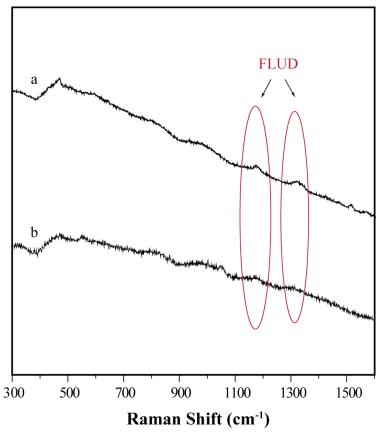
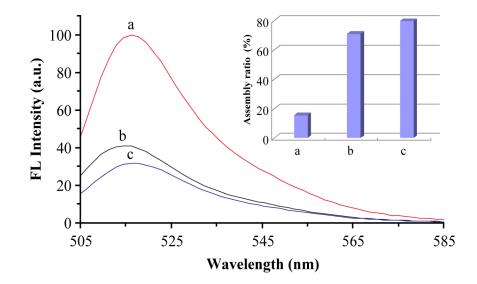
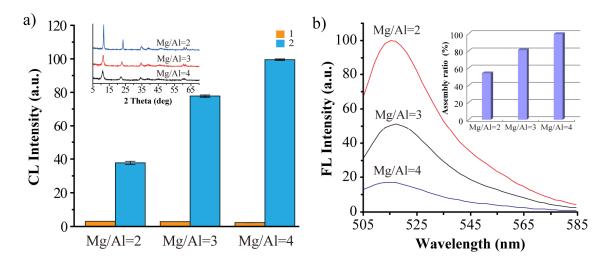




Figure S2. Structures of organic chromophores assembled on the external surface of Mg-Al-CO₃ LDHs.

Figure S3. CL intensity of peroxynitrous acid system mixed with the assembly of organic chromophores onto the surface of Mg-Al-CO₃ LDHs. a, rhodamine B; b, rhodamine 6G; c, eosin Y; d, fluorescein dianion; e, dichlorofluorescein; f, calcein.

Figure S4. CL intensity of peroxynitrous acid system with different solutions: (a) Mg-Al-CO₃ LDHs, and (b) the assembly of 1.0×10^{-5} M FLUD onto the surface of Mg-Al-CO₃ LDHs.

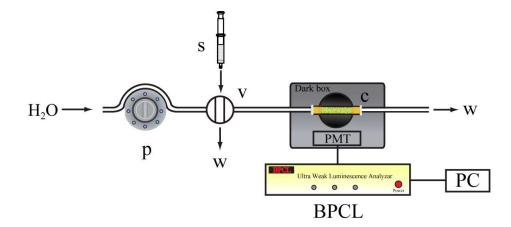

Figure S5. Raman spectra of (a) FLUD; (b) the assembly of 1.0×10^{-4} M FLUD onto the surface of Mg-Al-CO₃ LDHs.

Figure S6. Emission spectra of supernatant liquid of FLUD-LDHs after one centrifugation. (a) Mg-Al-CO₃ LDHs synthesized by urea hydrolysis; (b) Mg-Al-CO₃ LDHs synthesized by variable pH coprecipitation; (c) Mg-Al-CO₃ LDHs synthesized by constant pH coprecipitation. Inset: assembly ratio of FLUD to Mg-Al-CO₃ LDHs.

Figure S7. a) CL intensity of peroxynitrous acid system with different solutions: (1) Mg-Al-CO₃ LDHs with different synthesis methods, and (2) the assembly of 1.0×10^{-5} M FLUD onto the surface of Mg-Al-CO₃ LDHs with different Mg/Al ratios. Inset: Powder XRD patterns of Mg-Al-CO₃ LDHs with different synthesis methods; b) Emission spectra of supernatant liquid of FLUD-LDHs after one centrifugation. Inset: assembly ratio of FLUD to Mg-Al-CO₃ LDHs.

Figure S8. Schematic diagram of the CL flow-through device. p, peristaltic pump; v, six-way injection valve; s, sample; w, waste; PMT, photomultiplier tube; BPCL, Biophysics Chemiluminescence; PC, personal computer.

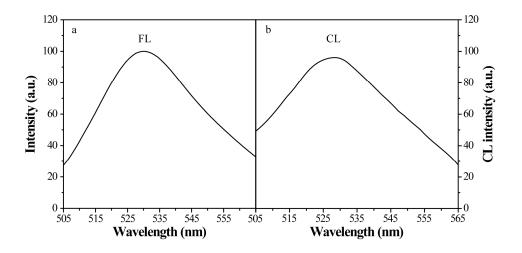
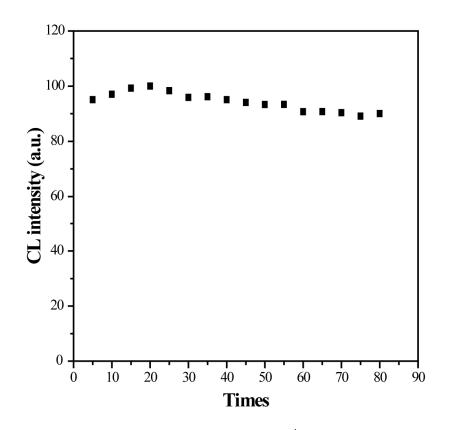



Figure S9. a) Emission spectra of the assembly of 1.0×10^{-5} M FLUD onto the surface of Mg-Al-CO₃ LDHs, and b) CL spectrum of peroxynitrous acid system mixed with the assembly of 1.0×10^{-5} M FLUD onto the surface of Mg-Al-CO₃ LDHs.

Figure S10. CL intensity for the repeated injections of 1.0×10^{-4} M peroxynitrous acid.

Tolerance (M)	Coexistent substances
1.0×10 ⁻²	glucose, sucrose
5.0×10 ⁻³	$H_2PO_4^-$, Ac ⁻ , Mg ²⁺ , K ⁺ , Ba ²⁺
1.0×10 ⁻³	Fe ³⁺ , HPO ₄ ²⁻ , SO ₄ ²⁻ , Ca ²⁺ , C ₂ O ₄ ²⁻ , Al ³⁺ , NO ₃ ⁻
5.0×10 ⁻⁴	Pb ²⁺ , Zn ²⁺ , F ⁻ , Ni ²⁺ , Br ⁻ , SO ₃ ²⁻ , I ⁻ , PO ₄ ³⁻
1.0×10 ⁻⁴	$Co^{2+}, Cr^{3+}, Cd^{2+}, Cu^{2+}$

Table S1 Tolerance Limit of Various Coexistent Substances on the Determination of 10 μ M Nitrite