Supporting Information

Water Sorption and Glass Transition of Pig Gastric Mucin Studied by QCM-D

Yana Znamenskaya[†], Javier Sotres[†], Sergei Gavryushov[‡], Johan Engblom[†], Thomas Arnebrant[†] and Vitaly Kocherbitov^{*†}

[†] Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö,
 Sweden

‡ On leave from Engelhardt Institute of Molecular Biology RAS, Moscow, Russia

*Corresponding author. Address: Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden. E-mail: <u>vitaly.kocherbitov@mah.se</u>

Figure S1. The dependence of dissipation changes on time at low RH. It presents a zoomed area of the dissipation changes at low RH.

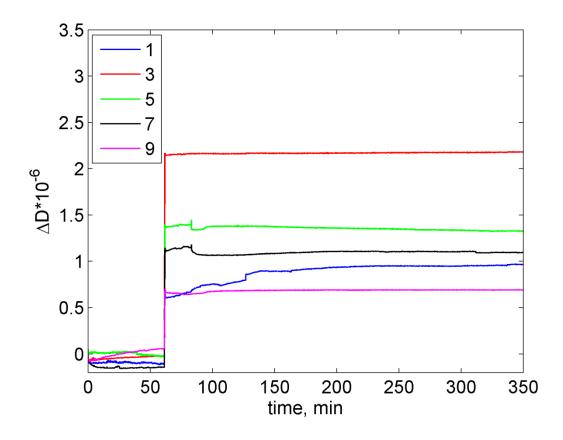


Figure S2. $\Delta f/n$ versus $n^{-\frac{1}{2}}$ at different PGM film thickness: 236 nm (red), 262 nm (blue)

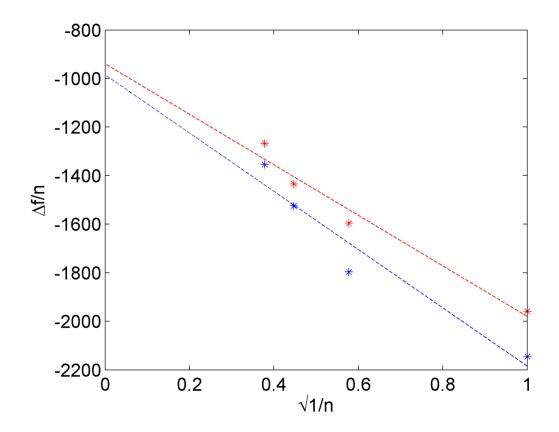


Figure S3. Sauerbrey masses of the water absorbed by the PGM film obtained by QCM-D and compared with water sorption isotherm studied by sorption calorimetry. Dashed line-sorption calorimetric data;¹ stars- QCM-D data, corresponding to different overtones (blue-1, red-3, green-5, black-7). The thickness of PGM film is 541 nm.

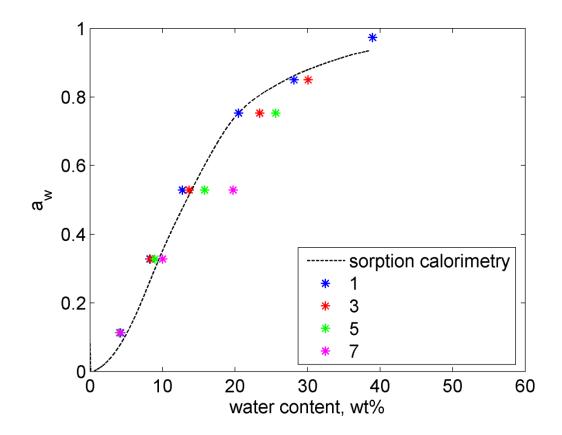
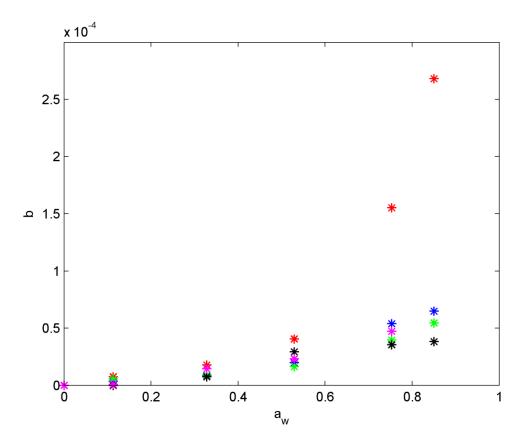


Figure S4. The parameter *b* (which defines the rheological properties of the PGM film) versus a_w for different PGM film thicknesses.



SI. Derivation of a formula for calculation of water content

The data on the frequency change normalized to overtone number of coated SiO₂ sensor with respect to uncoated sensor were analyzed using the equation for a single viscoelastic film² in air, where the frequency shift $\frac{\Delta f}{n}$ is proportional to square of the overtone order n^2 :

$$\frac{\Delta f}{n} = \frac{-2f_0^2 m_f}{Z_q} \left(1 + \frac{1}{3} \frac{Z_q^2}{Z_f^2} \left(\frac{m_f}{m_q} n\pi \right)^2 \right)$$
(S1)

where $Z_q = 8.8*10^6 kg m^{-2} s^{-1}$ - the acoustic or mechanical impedance of quartz; $Z_f = \sqrt{\rho(G' + G'')}$ – the acoustic impedance of the film; f_0 – the fundamental frequency; m_f – the mass of the film per unit area; m_q – is the areal mass density of the crystal.

The eq S1 was simplified in the following way:

$$\frac{\Delta f}{n} = -am_f(1 + bm_f^2 n^2) \tag{S2}$$

where $a = \frac{2f_0^2}{z_q}$ and $b = \frac{1}{3} \frac{z_q^2 \pi^2}{z_f^2 m_q^2}$.

The frequency changes normalized to the overtone number is found as a frequency of each overtone at each RH for coated sensor with PGM film in respect to empty (uncoated) sensor:

$$\frac{\Delta f}{n} = \frac{f_f}{n} - \frac{f_e}{n} \tag{S3}$$

The frequency change for the dry PGM film is found as a frequency of each overtone at each RH for coated sensor with dry PGM film in respect to empty (uncoated) sensor:

$$\frac{\Delta f_d}{n} = \frac{f_d}{n} - \frac{f_e}{n} \tag{S4}$$

Combining eq S3 and S4, one gets:

$$\frac{\Delta f}{n} = \frac{f_f}{n} + \frac{\Delta f_d}{n} - \frac{f_e}{n} = \frac{\Delta f_w}{n} + \frac{\Delta f_d}{n}$$
(S5)

Combining eq S2 and S5, one can write:

$$\frac{\Delta f_w}{n} + \frac{\Delta f_d}{n} = -am_f(1 + bm_f^2 n^2) \tag{S6}$$

The mass of the dry film was calculated using Sauerbrey³ equation:

$$\frac{\Delta f_d}{n} = -am_d \tag{S7}$$

where $a = \frac{2f_0^2}{z_q}$ from the eq S1.

Then eq S6 will be:

$$\frac{\Delta f_w}{n} = -am_f \left(1 + bm_f^2 n^2\right) + am_d = -am_w - abm_f^3 n^2$$
(S8)

Let us introduce the Sauerbrey mass of the water absorbed by PGM film:

$$\frac{\Delta f_w}{n} = -am_w^s \tag{S9}$$

Then eq S8 will be:

$$-am_w^s = -am_w - abm_f^3 n^2 \tag{S10}$$

After eq S10 was simplified and data on calculated mass of water absorbed by PGM film were normalized to the to the dry mass of PGM film, \overline{m}_d , the water content per dry mucin can be extrapolated to the zero overtone, using the following eq:

$$\frac{m_w^s}{\overline{m}_d} = \frac{m_w}{\overline{m}_d} + b \frac{m_f^3}{\overline{m}_d} n^2 \tag{S11}$$

SII. Derivation of a formula for calculation the ratio of the storage to the loss modulus $G'/_{G''}$

Viscoelastic properties can be extracted from the equation for a single viscoelastic film in air:²

$$\Delta \tilde{f} = -\frac{f_0}{\pi Z_q} Z_f \tan(k_f d_f)$$
(S12)

where k_f is the wavenumber in the film; d_f is the film thickness. If $k_f d_f$ is much less than unity, the tangent in eq S13 can be Taylor-expanded as $\tan(x) \approx x + 1/3 \ x^3$, resulting in the following:

$$\frac{\Delta \tilde{f}}{f_0} = -\frac{1}{\pi Z_q} \omega m_f \left(1 + \frac{1}{3} \frac{Z_q^2}{Z_f^2} \left(\frac{m_f}{m_d} n\pi \right)^2 \right)$$
(S13)

$$-\frac{\Delta \tilde{f} \pi Z_q}{f_0 \omega m_f} = 1 + \frac{1}{3} \frac{Z_q^2}{Z_f^2} \left(\frac{m_f}{m_q}\right)^2$$
(S14)

$$\frac{1}{Z_f^2} = \frac{1}{\rho_f G_f} = \frac{3}{Z_q^2 \left(\frac{m_f}{m_q} n\pi\right)^2} \left(-\frac{\Delta \tilde{f} \pi Z_q}{f_0 \omega m_f} - 1\right)$$
(S15)

Multiplying the numerator and denominator of $\frac{1}{G_f}$ by the complex conjugate of G_f ,

$$\frac{1}{G_f} = \frac{\bar{G}}{|G|^2} = \frac{G' - iG''}{(G')^2 + (G'')^2}$$
(S16)

one can write:

$$G' - iG'' = \frac{3\rho((G')^2 + (G'')^2)}{z_q^2 \left(\frac{m_f}{m_q} n\pi\right)^2} \left(-\frac{\Delta \tilde{f} \pi Z_q}{f_0 \omega m_f} - 1\right)$$
(S17)

Denoting k for the expression

$$k = \frac{3\rho((G')^2 + (G'')^2)}{Z_q^2 (\frac{m_f}{m_q} n\pi)^2}$$
(S18)

we obtain:

$$G' - iG'' = k\left(-\frac{(\Delta f + i\Delta\Gamma)\pi Z_q}{f_0 \omega m_f} - 1\right)$$
(S19)

$$G' - iG'' = -\frac{\Delta f \pi Z_q k}{f_0 \omega m_f} - \frac{i \Delta \Gamma \pi Z_q k}{f_0 \omega m_f} - k$$
(S20)

and

$$G' = -\frac{\Delta f \pi Z_q k}{f_0 \omega m_f} - k \tag{S21}$$

$$-iG'' = -\frac{i\Delta\Gamma\pi Z_q k}{f_0 \omega m_f} \tag{S22}$$

Thus, the ratio of the storage modulus to the loss modulus $\frac{G'}{G''}$, can be calculated as:

$$\frac{G'}{G''} = -\frac{\Delta f + \frac{2f_0 n m_f}{Z_q}}{\Delta \Gamma} = -\frac{\Delta f + \left(\frac{\Delta f}{n}\right)_{extrap} n}{\Delta \Gamma}$$
(S23)

References

(1) Znamenskaya, Y.; Sotres, J.; Engblom, J.; Arnebrant, T.; Kocherbitov, V. Effect of Hydration on Structural and Thermodynamic Properties of Pig Gastric and Bovine Submaxillary Gland Mucins *J. Phys. Chem. B* **2012**, *116*, 5047-5055.

(2) Johannsmann, D. Viscoelastic Analysis of Organic Thin Films on Quartz Resonators *Macromol. Chem. Phys.* **1999**, 200, 501-516.

(3) Sauerbrey, G. Verwendung Von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung Zeitschrift für Physik A Hadrons and Nuclei **1959**, 155, 206-222.