Supporting Information for:

The Monomer Formation Model versus the Chain Growth Model of the Fischer-Tropsch Reaction

Rutger A. van Santen, ${ }^{\text {+** }}$ Albert J. Markvoort, ${ }^{\text {直 }}$ Minhaj M. Ghouri, ${ }^{+7}$ Peter A. J. Hilbers, ${ }^{\text {s }}$ Emiel J. M. Hensen ${ }^{\text {* }}$
${ }^{\dagger}$ Institute for Complex Molecular Systems, ${ }^{\dagger}$ Department of Chemical Engineering and Chemistry, and ${ }^{\S}$ Computational Biology group, Eindhoven University of Technology, PO Box 513, 5600 MB , Eindhoven, The Netherlands.

Table of contents:

S1 Details of molecular microkinetics simulations 2

S1A Methods used for calculation of the elementary rate constants............ 2
S1B Microkinetics rate expressions... 5
S2 List of Symbols... 7
S3 Supporting References (with more than 10 authors).......................... 10

Section S1: Details of molecular microkinetics simulations

In this section, we provide further details on the molecular microkinetics simulations employed in this study. This section is divided into three subsections. Subsection S1A details the methods used for the calculation of the elementary rate constants, while subsection S1B explains the microkinetic rate expressions.

Section S1A: Methods used for calculation of the elementary rate constants

The reaction energy profile shown in Figure 1 in the main paper illustrates the relative energies as well as the reaction energy barriers for each of the elementary reaction steps of Table S1.

The rate constants for elementary reactions are calculated using the Eyring transition state reaction rate expression. No change in entropy is assumed for the surface reactions. Hence a standard pre-factor of 10^{13} is used for the corresponding reactions. There is gain in entropy in the product desorption and loss in entropy for reagent adsorption. Product re-adsorption is not included.

The rates of CO and H_{2} adsorption are calculated using the expression (S1) below.

$$
\begin{equation*}
W_{a d s}=\frac{P A_{\text {site }} \sigma}{\sqrt{2 \pi m k_{B} T}} \tag{S1}
\end{equation*}
$$

Here, $A_{\text {site }}$ is the area of a single adsorption site, P is the partial gas pressure and T, temperature (in Kelvin). The total pressure is 20 bar with $\mathrm{H}_{2}: \mathrm{CO}$ pressure ratio of 3:1. A sticking coefficient of 10^{-2} is used for CO and 10^{-5} is used for H_{2}. The rates of CO and H_{2} desorption are calculated using Equation S2 below.

$$
\begin{equation*}
W_{d e s}=\frac{k_{B} T}{h} \frac{Q^{\ddagger}}{Q} \exp \left[-\frac{E_{b a r}}{k_{B} T}\right] \tag{S2}
\end{equation*}
$$

Here, the partition functions Q and Q^{\ddagger} of the initial state and the transition state respectively are calculated using $Q=Q_{\text {trans }} Q_{\text {rot }} Q_{\text {vib }}$. The pre-factor for desorption reduces to $\frac{k_{B} T}{h} Q_{\text {trans }}^{\ddagger} Q_{\text {rot }}^{\ddagger}$. The translational partition function is then calculated using the expression (S3) below.

$$
\begin{equation*}
Q_{\text {trans }}^{\ddagger}=\frac{A_{\text {site }} 2 \pi m k_{B} T}{h^{2}} \tag{S3}
\end{equation*}
$$

The rotational partition function is calculated using

$$
\begin{equation*}
Q_{r o t, 2 D}^{\ddagger}=\frac{1}{\sigma} \frac{T}{\theta_{r o t}} \tag{S4}
\end{equation*}
$$

where σ is the symmetry number and $\theta_{\text {rot }}$ is the rotational temperature. The values for these are tabulated for various small molecules. For hydrogen, $\theta_{\text {rot }}$ is 87.9 K and the symmetry number σ is 2 . For $\mathrm{CO}, \theta_{\text {rot }}$ is 2.73 K and the symmetry number σ is 1 .

For all the other types of reactions for which the DFT calculated vibrational frequencies are available, the prefactors are calculated using the vibrational partition function which is given by expression (S5) below:

$$
\begin{equation*}
Q_{v i b}=\Pi_{i}\left[\tilde{Q}_{i} \exp \left[-\frac{\hbar \omega_{i}}{2 k_{B} T}\right]\right] \tag{S5}
\end{equation*}
$$

where \tilde{Q}_{i} is defined as

$$
\begin{equation*}
\tilde{Q}_{i}=\frac{1}{1-\exp \left[-\frac{\hbar \omega_{i}}{k_{B} T}\right]} \tag{S6}
\end{equation*}
$$

Using the above mentioned expressions (S1) to (S6), the calculated prefactors are listed in Table S1, with the activation energies for the corresponding forward and reverse reactions. Formation of hydrocarbons of chain length $n \geq 2$ is treated in homologous fashion.

Table S1: List of prefactors and activation energies used in the calculation of the elementary rate constants. In columns 2 and 3, the first number indicates the forward rate, while the second number indicates the reverse rate.

Reaction	$v\left(s^{-1}\right)$	Activation Barrier (kJ/mol)
$\mathrm{CO}(\mathrm{gas}) \leftrightarrows \mathrm{CO}$ (ads)	*	0,120
H_{2} (gas) $\leftrightarrows \mathrm{H}(\mathrm{ads})+\mathrm{H}(\mathrm{ads})$	*	0, 86
$\mathrm{CO} \leftrightarrows \mathrm{C}+\mathrm{O}$	$10^{13}, 10^{13}$	70, 40
$\mathrm{C}+\mathrm{H} \leftrightarrows \mathrm{CH}$	$3.21 \times 10^{13}, 2.81 \times 10^{13}$	70, 70
$\mathrm{CH}+\mathrm{H} \leftrightarrows \mathrm{CH}_{2}$	$2.10 \times 10^{13}, 1.00 \times 10^{13}$	60, 70
$\mathrm{CH}_{2}+\mathrm{H} \leftrightarrows \mathrm{CH}_{3}$	$1.25 \times 10^{14}, 4.53 \times 10^{13}$	60, 60
$\mathrm{CH}_{3}+\mathrm{H} \leftrightarrows \mathrm{CH}_{4}$	$1.01 \times 10^{17}, 10^{13}$	80, 32
CH_{4} (ads) $\leftrightarrows \mathrm{CH}_{4}$ (gas)	10^{13}, --	2, --
$\mathrm{CH}+\mathrm{CH} \leftrightarrows \mathrm{CHCH}$	$10^{13}, 10^{13}$	50, 70
$\mathrm{CHCH}+\mathrm{H} \leftrightarrows \mathrm{CHCH}_{2}$	$10^{13}, 10^{13}$	50, 50
$\mathrm{CHCH}_{2}+\mathrm{H} \leftrightarrows \mathrm{CHCH}_{3}$	$10^{13}, 10^{13}$	50, 50
$\mathrm{CHCH}_{3}+\mathrm{CH} \leftrightarrows \mathrm{CHCHCH}_{3}$	$10^{13}, 10^{13}$	50, 70
$\mathrm{CHCHCH}_{3}+\mathrm{H} \leftrightarrows \mathrm{CH}_{2} \mathrm{CHCH}_{3}$	$10^{13}, 10^{13}$	70, 20
$\mathrm{CH}_{2} \mathrm{CHCH}_{3}$ (ads) $\leftrightarrows \mathrm{CH}_{2} \mathrm{CHCH}_{3}$ (gas)	10^{17}, --	80, --
$\mathrm{CHCH}_{2}+\mathrm{H} \leftrightarrows \mathrm{CH}_{2} \mathrm{CH}_{2}$	$10^{13}, 10^{13}$	70, 20
$\mathrm{CH}_{2} \mathrm{CH}_{2}$ (ads) $\leftrightarrows \mathrm{CH}_{2} \mathrm{CH}_{2}$ (gas)	10^{17}, --	80, --
$\mathrm{O}+\mathrm{H} \leftrightarrows \mathrm{OH}$	$10^{13}, 10^{10}$	70, 64
$\mathrm{OH}+\mathrm{H} \leftrightarrows \mathrm{H}_{2} \mathrm{O}$ (gas)	4.45×10^{16}, --	106, --

* The rates of adsorption are calculated using expression S1.
-- Readsorption of gas phase products not included in the simulations

Section S1B: Microkinetic rate expressions

The microkinetics model used in this work consists of reaction sites that form (111)-type hexagonal lattice. Only one reaction site is assumed per lattice unit cell. Rate equations are derived using a mean field approximation. Corresponding to the elementary steps shown in Figure 1 in the main paper, the kinetics is described using the following set of coupled differential equations:

$$
\begin{aligned}
\frac{d \Theta_{C O}}{d t}= & k_{C O}^{\text {ads }} \Theta_{v}-k_{C O}^{\text {des }} \Theta_{C O}-k_{C O}^{\text {diss }} \Theta_{C O} \Theta_{v}+k_{C O}^{\text {rec }} \Theta_{C} \Theta_{O} \\
\frac{d \Theta_{C}}{d t}= & k_{C O}^{\text {diss }} \Theta_{C O} \Theta_{v}-k_{C O}^{r e c} \Theta_{C} \Theta_{O}-k_{C H}^{\text {form }} \Theta_{C} \Theta_{H}+k_{C H}^{r e v} \Theta_{C H} \Theta_{v} \\
\frac{d \Theta_{O}}{d t}= & k_{C O}^{\text {diss }} \Theta_{C O} \Theta_{v}-k_{C O}^{r e c} \Theta_{C} \Theta_{O}-k_{O H}^{\text {form }} \Theta_{O} \Theta_{H}+k_{O H}^{\text {diss }} \Theta_{O H} \Theta_{v} \\
\frac{d \Theta_{H}}{d t}= & k_{H_{2}}^{\text {ads }} \Theta_{v} \Theta_{v}-k_{H_{2}}^{\text {des }} \Theta_{H} \Theta_{H}-k_{O H}^{\text {form }} \Theta_{O} \Theta_{H}+k_{O H}^{\text {diss }} \Theta_{O H} \Theta_{v}-k_{H_{2} O}^{\text {des }} \Theta_{O H} \Theta_{H} \ldots . \\
& -k_{C H}^{\text {form }} \Theta_{C} \Theta_{H}+k_{C H}^{r e v} \Theta_{C H} \Theta_{v}-k_{C H_{2}}^{\text {form }} \Theta_{C H} \Theta_{H}+k_{C H_{2}}^{r e v} \Theta_{C H_{2}} \Theta_{v} \ldots \ldots \ldots . \\
& -k_{C H_{3}}^{\text {form }} \Theta_{C H_{2}} \Theta_{H}+k_{C H_{3}}^{\text {rev }} \Theta_{C H} \Theta_{v}-k_{C H_{4}}^{\text {form }} \Theta_{C H_{3}} \Theta_{H}+k_{C H_{4}}^{r e v} \Theta_{C H_{4}} \Theta_{v} \ldots \ldots . . \\
& -k_{C H C H_{2}}^{\text {form }} \Theta_{C H C H} \Theta_{H}+k_{C H C H_{2}}^{r e v} \Theta_{C H C H_{2}} \Theta_{v}-k_{C H_{2} C H_{2}}^{\text {form }} \Theta_{C H C H_{2}} \Theta_{H}+k_{C H_{2} C H_{2}}^{\text {rev }} \Theta_{C H_{2} C H_{2}} \Theta_{v} \ldots \ldots . \\
& -k_{C H C H_{3}}^{\text {form }} \Theta_{C H C H} \Theta_{H}+k_{C H C H_{3}}^{r e v} \Theta_{C H C H_{3}} \Theta_{v}-k_{C H_{2} C H C H_{3}}^{\text {form }} \Theta_{C H C H C H_{3}} \Theta_{H}+k_{C H_{2} C H C H_{3}}^{r e v} \Theta_{C H_{2} C H C H H_{3}} \Theta_{v}
\end{aligned}
$$

$$
\frac{d \Theta_{C H}}{d t}=k_{C H}^{\text {form }} \Theta_{C} \Theta_{H}-k_{C H}^{r e v} \Theta_{C H} \Theta_{v}-k_{C H_{2}}^{\text {form }} \Theta_{C H} \Theta_{H}+k_{C H_{2}}^{\text {rev }} \Theta_{C H_{2}} \Theta_{v}-k_{C H C H}^{\text {form }} \Theta_{C H} \Theta_{C H}+k_{C H C H}^{r e v} \Theta_{C H C H} \Theta_{v} \ldots \ldots .
$$

$$
-k_{\text {CHCHCH }_{3}}^{\text {form }} \Theta_{\text {CHCH }_{3}} \Theta_{C H}+k_{\text {CHCHCH }_{3}}^{\text {rev }} \Theta_{\text {CHCHCH }_{3}} \Theta_{v}
$$

$$
\frac{d \Theta_{C H_{2}}}{d t}=k_{C H_{2}}^{\text {form }} \Theta_{C H} \Theta_{H}-k_{C H_{2}}^{r e v} \Theta_{C H_{2}} \Theta_{v}-k_{C H_{3}}^{\text {form }} \Theta_{C H_{2}} \Theta_{H}+k_{C H_{3}}^{r e v} \Theta_{C H_{3}} \Theta_{v}
$$

$$
\frac{d \Theta_{C H_{3}}}{d t}=k_{C H_{3}}^{\text {form }} \Theta_{C H_{2}} \Theta_{H}-k_{C H_{3}}^{\text {rev }} \Theta_{C H_{3}} \Theta_{v}-k_{C H_{4}}^{\text {form }} \Theta_{C H_{3}} \Theta_{H}+k_{C H_{4}}^{\text {rev }} \Theta_{C H_{4}} \Theta_{v}
$$

$$
\frac{d \Theta_{C H_{4}}}{d t}=k_{C H_{4}}^{\text {form }} \Theta_{C H_{3}} \Theta_{H}-k_{C H_{4}}^{r e v} \Theta_{C H_{4}} \Theta_{v}-k_{C H_{4}}^{d e s o r p} \Theta_{C H_{4}}
$$

$$
\frac{d \Theta_{O H}}{d t}=k_{O H}^{\text {form }} \Theta_{O} \Theta_{H}-k_{O H}^{\text {diss }} \Theta_{O H} \Theta_{v}-k_{H_{2} O}^{\text {desorp }} \Theta_{H} \Theta_{O H}
$$

$$
\begin{aligned}
& \frac{d \Theta_{C H C H}}{d t}=k_{C H C H}^{\text {form }} \Theta_{C H} \Theta_{C H}-k_{C H C H}^{r e v} \Theta_{C H C H} \Theta_{v}-k_{C H C H_{2}}^{\text {form }} \Theta_{C H C H} \Theta_{H}+k_{C H C H}^{r e v} \Theta_{C H C H_{2}} \Theta_{v} \\
& \frac{d \Theta_{\mathrm{CHCH}_{2}}}{d t}=k_{\mathrm{CHCH}_{2}}^{\text {form }} \Theta_{C H C H} \Theta_{H}-k_{\mathrm{CHCH}_{2}}^{\text {rev }} \Theta_{\text {CHCH }_{2}} \Theta_{v}-k_{\mathrm{CH}_{2} \mathrm{CH}_{2}}^{\text {form }} \Theta_{\mathrm{CHCH}_{2}} \Theta_{H}+k_{\mathrm{CH}_{2} \mathrm{CH}_{2}}^{\text {rev }} \Theta_{\mathrm{CH}_{2} \mathrm{CH}_{2}} \Theta_{v} \\
& \frac{d \Theta_{\mathrm{CH}_{2} \mathrm{CH}_{2}}}{d t}=k_{\mathrm{CH}_{2} \mathrm{CH}_{2}}^{\text {form }} \Theta_{\mathrm{CHCH}_{2}} \Theta_{\mathrm{H}}-k_{\mathrm{CH}_{2} \mathrm{CH}_{2}}^{\text {rev }} \Theta_{\mathrm{CH}_{2} \mathrm{CH}_{2}} \Theta_{v}-k_{\mathrm{CH}_{2} \mathrm{CH}_{2}}^{\text {desorp }} \Theta_{\mathrm{CH}_{2} \mathrm{CH}_{2}} \\
& \frac{d \Theta_{C H C H_{3}}}{d t}=k_{C H C H_{3}}^{\text {form }} \Theta_{\text {CHCH }_{2}} \Theta_{H}-k_{C H C H_{3}}^{\text {rev }} \Theta_{\text {CHCH }_{3}} \Theta_{v}-k_{C H C H C H_{3}}^{\text {form }} \Theta_{\text {CHCH }_{3}} \Theta_{C H}+k_{C H C H C H_{3}}^{\text {rev }} \Theta_{C H C H C H_{3}} \Theta_{v} \\
& \frac{d \Theta_{\text {CHCHCH }_{3}}}{d t}=k_{\text {CHCHCH }_{3}}^{\text {form }} \Theta_{\text {CHCH }_{3}} \Theta_{C H}-k_{C H C H C H_{3}}^{\text {rev }} \Theta_{\text {CHCHCH }_{3}} \Theta_{v}-k_{C H_{2} \text { CHCH }_{3}}^{\text {form }} \Theta_{\text {CHCHCH }_{3}} \Theta_{H}+\ldots . . . \\
& k_{\mathrm{CH}_{2} \mathrm{CHCH}_{3}}^{\mathrm{rev}} \Theta_{\mathrm{CH}_{2} \mathrm{CHCH}_{3}} \Theta_{v} \\
& \frac{d \Theta_{\mathrm{CH}_{2} \mathrm{CHCH}_{3}}}{d t}=k_{\mathrm{CH}_{2} \mathrm{CHCH}_{3}}^{\text {form }} \Theta_{\text {CHCHCH }_{3}} \Theta_{H}-k_{\mathrm{CH}_{2} \mathrm{CHCH}_{3}}^{\text {rev }} \Theta_{\text {CH }_{2} \text { CHCH }_{3}} \Theta_{v}-k_{\mathrm{CH}_{2} \mathrm{CHCH}_{3}}^{\text {deorp }} \Theta_{\text {CH }_{2} \mathrm{CHCH}_{3}} \\
& \frac{d \Theta_{v}}{d t}=-\frac{d \Theta_{C O}}{d t}-\frac{d \Theta_{C}}{d t}-\frac{d \Theta_{O}}{d t}-\frac{d \Theta_{H}}{d t}-\frac{d \Theta_{C H}}{d t}-\frac{d \Theta_{C H_{2}}}{d t}-\ldots \\
& \frac{d \Theta_{C H_{3}}}{d t}-\frac{d \Theta_{C H_{4}}}{d t}-\frac{d \Theta_{\text {OH }}}{d t}-\frac{d \Theta_{\text {СНСН }}}{d t}-\frac{d \Theta_{\text {CHCH }_{2}}}{d t}-\ldots \\
& \frac{d \Theta_{\mathrm{CH}_{2} \mathrm{CH}_{2}}}{d t}-\frac{d \Theta_{\text {СНСН }_{3}}}{d t}-\frac{d \Theta_{\text {СНСнСН }_{3}}}{d t}-\frac{d \Theta_{\text {CH }_{2} \text { СНСН }_{3}}}{d t}
\end{aligned}
$$

Since these rate expressions are solved for a (111) type of hexagonal grid, the rate expressions involving the reaction of adsorbates on two sites are multiplied with the coordination number $Z=6$. Parameters are assumed to be independent of lateral interactions. The actual microkinetics simulations reported in the paper continue chain growth by including also the differential equations homologous to the ones for C_{2} formation, for the formation of hydrocarbons longer than C_{3} upto C_{100}.

The equations are solved using a stiff ODE solver (ode15s) in MATLAB.
In the simulations direct CO activation has thus been assumed, as found for highly reactive Ru surfaces, although there would be no essential difference if hydrogen activated dissociation had been considered as long as $\mathrm{O}_{\text {ads }}$ removal is fast, as is the case considered in the simulations. The only difference then is direct formation of CH which in the present simulation occurs in two steps.

As can be seen from the above rate expressions, all the elementary reaction steps, excluding the product re-adsorption are considered reversible. This is a novel feature in
our simulations as against conventional FT kinetics models where the chain growth steps are considered irreversible.

Section S2 List of Symbols

ASF	Anderson-Schulz-Flory
α	chain growth parameter
$\alpha_{\text {BEP }}$	BEP proportionality parameter
A_{x}	pre-exponent of BEP rate constant expression of reaction x
BEP	Brønsted-Evans-Polanyi
β_{x}	BEP proportionality parameter of reaction x
$\theta_{C O}$	surface coverage of CO
$\theta_{C O}^{\text {ref }}$	surface coverage of CO with no reaction
θ_{v}	surface vacancy concentration
θ_{1}	surface coverage of CH_{x}
θ_{2}	surface coverage of C_{2} hydrocarbon chain
θ_{i}	surface coverage of hydrocarbon chain with i carbon atoms
θ_{t}	total surface concentration of hydrocarbons
$P_{C O}$	partial pressure of CO
$P_{H_{2}}$	partial pressure of H_{2}
$k_{\text {ads }}^{\text {co }}$	rate constant of CO adsorption
$k_{\text {des }}^{\text {Co }}$	rate constant of CO desorption
$k_{C O}^{C H_{x}}$	lumped rate constant of CO to CH_{x} transformation
$k_{C C}^{f}$	forward lumped rate constant of $\mathrm{C}-\mathrm{C}$ bond formation
$k_{c c}^{b}$	reverse lumped rate constant of $\mathrm{C}-\mathrm{C}$ bond formation

k_{t}^{m}	lumped rate constant of CH_{x} to methane transformation
k_{t}	lumped rate constant of chain growth termination
$\Delta E_{\text {act }}$	change in activation energy
$\Delta E_{\text {reaction }}$	change in reaction energy
P_{1}	gas phase yield of CH_{4}
P_{i}	gas phase yield of hydrocarbon of chain length i
k_{x}	BEP rate constant expression of reaction x
E_{x}^{0}	default value of activation energy for reaction x
$E_{\text {ads }}(C)$	adsorption energy of C atom
$R_{\text {CO }}$	rate of total CO consumption
$R_{C_{2^{+}}}$	rate of hydrocarbon product formation with more than one carbon atom
$C_{2}{ }^{+}$	concentration of hydrocarbons with more than one carbon atom
$E_{\text {act }}^{C O}$	activation energy of CO dissociation
$E_{\text {act }}^{C C}$	activation energy for the incorporation of CH monomer into growing chain
$E_{\text {act }}^{\mathrm{CH} \rightarrow \mathrm{CH}_{2}}$	activation energy for the hydrogenation of CH into CH_{2}
$E_{\text {act }}^{\mathrm{CH}_{2} \mathrm{CH} R \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{R}}$	activation energy to terminate alkenyl chain by hydrogenation
E_{t}^{0}	default value of activation energy of termination
E_{f}^{0}	default value of activation energy of chain growth reaction
$E_{\mathrm{d}}{ }^{0}$	default value of activation energy of CO dissociation
FT	Fischer-Tropsch
r	rate

R	gas constant
T	temperature
TOF	Turn Over Frequency
TS	transition state
$\mathrm{T}_{\max }\left(C_{2}^{+}\right)$	temperature of maximum C_{2}^{+}yield`

Section S3 Supporting References (with more than 10 authors)

42. Andersson, M. P.; Abild-Pedersen, F.; Remediakis, I. N.; Bligaard, T.; Jones, G.; Engbæk, J.; Lytken, O.; Horch, S.; Nielsen, J. H.; Sehested, J.; Rostrup-Nielsen, J. R.; Nørskov, J. K.; Chorkendorff, I., Structure sensitivity of the methanation reaction: $\mathrm{H}_{2}-$ induced CO dissociation on nickel surfaces. Journal of Catalysis 2008, 255, 6-19.
43. Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B.; Rostrup-Nielsen, J. R.; Chorkendorff, I.; Sehested, J.; Nørskov, J. K., First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. Journal of Catalysis 2008, 259, 147-160.
