Electronic Supplementary Information

Uranium(IV) Alkyl Complexes of a Rigid Dianionic NON-Donor Ligand: Synthesis and Quantitative Alkyl Exchange Reactions with Alkyl Lithium Reagents

Nicholas R. Andreychuk,[†] Sougandi Ilango,[†] Balamurugan Vidjayacoumar,[†]

David J. H. Emslie, $*^{\dagger}$ and Hilary A. Jenkins[‡]

† Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada. Fax: (905)-522-2509; Tel: (905)-525-9140 x 23307.
E-mail: <u>emslied@mcmaster.ca</u>. Website: <u>http://www.chemistry.mcmaster.ca/emslie/emslie.html</u>

‡ McMaster University Analytical X-Ray Diffraction Facility, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada

Figures

- S1. Variable Temperature ¹H NMR spectra of $[(XA_2)U(CH_2SiMe_3)_2]$ (1)
- S2. Variable Temperature ¹H NMR spectra of $[Li(THF)_x][(XA_2)U(CH_2SiMe_3)_3]$ (3)
- S3. ¹H NMR spectrum of previously reported $[(XA_2)Th(CH_2SiMe_3)_2]$ (1-Th)
- S4. ¹H NMR spectrum of in-situ generated [(XA₂)Th(CH₂SiMe₃)(CH₂CMe₃)] (**5-Th**) as a 1:1 mixture with **2-Th** (as well as LiCH₂SiMe₃ and LiCH₂CMe₃)
- S5. ¹H NMR spectrum of in-situ generated $[(XA_2)Th(CH_2CMe_3)_2]$ (2-Th)
- S6. ¹H NMR spectrum of in-situ generated $[Li(THF)_x][(XA_2)UMe_3]$ (4)

Figure S1. Variable Temperature ¹H NMR spectra of $[(XA_2)U(CH_2SiMe_3)_2]$ (1) in toluene-*d*₈ (500 MHz). Signals for U-C*H*₂ protons, which are located at very high (>100 ppm) and very low (<-100 ppm) frequencies, are not shown.

Figure S2. Variable Temperature ¹H NMR spectra of $[Li(THF)_x][(XA_2)U(CH_2SiMe_3)_3]$ (3; generated in situ from the reaction of 1 with LiCH_2SiMe_3) in THF-*d*₈ (500 MHz). Signals for U-C*H*₂ protons, which are located at very high (>100 ppm) and very low (<-100 ppm) frequencies, are not shown.

Figure S3. ¹H NMR spectrum of previously reported $[(XA_2)Th(CH_2SiMe_3)_2]$ (**1-Th**) in toluene*d*₈ (600 MHz, 25°C). **Figure S4.** ¹H NMR spectrum (600 MHz, 25°C) of the reaction of $[(XA_2)Th(CH_2SiMe_3)_2]$ (1-Th) with 2 equiv. LiCH₂CMe₃ in toluene- d_8 to give a 1:1:3:1 mixture of $[(XA_2)Th(CH_2CMe_3)_2]$ (2-Th), $[(XA_2)Th(CH_2SiMe_3)(CH_2CMe_3)]$ (5-Th), eliminated LiCH₂SiMe₃, and remaining LiCH₂CMe₃. Peaks for 5-Th are identified in the spectrum below, and peaks are due to 2-Th are identified with an × symbol (see also Figure S5) (* = toluene- d_8). Integration values are shown only for peaks due to 5-Th.

See page 6 for zoomed-in regions

Figure S4 (continued)

Figure S5. ¹H NMR spectrum (600 MHz, 25°C) of the reaction of $[(XA_2)Th(CH_2SiMe_3)_2]$ (1-Th) with 15 equiv. LiCH₂CMe₃ in toluene-*d*₈ to give $[(XA_2)Th(CH_2CMe_3)_2]$ (2-Th) and 2 equiv. of eliminated LiCH₂SiMe₃ (in addition to 13 equiv. of remaining LiCH₂CMe₃). Integration values are shown only for peaks due to 2-Th. (* = toluene-*d*₈)

Figure S6. ¹H NMR spectrum of $[Li(THF)_x][(XA_2)UMe_3]$ (**4**; generated in situ from the reaction of **1** with excess MeLi) in THF-*d*₈ (500 MHz, 25°C). Integration values are shown only for peaks due to **4**. Signals for U-C*H*₃ protons were not located between +400 and -400 ppm.

