Supporting Information:

Synthesis and Characterization of All-conjugated Graft Copolymers Comprised of *n*-Type or *p*-Type Backbones and Poly(3-hexylthiophene) Side Chains

Jin Wang,^{a,†} Chien Lu,^{b,†} Tetsunari Mizobe,^a Mitsuru Ueda,^a Wen-chang Chen,^{b,*} Tomoya Higashihara^{a,c,*}

^a Department of Organic and Polymeric Materials, Graduated School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-H120, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan. ^b Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan,10617. ^c Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan E-mail: thigashihara@polymer.titech.ac.jp; chenwc@ntu.edu.tw † These authors contributed equally

Table of contents:

- 1. ¹H NMR spectra of PNDICTT series and PCTT (Figure S1-4): Page 2-3
- 2. ¹H NMR spectra of CTT-P3HT and CTT (Figure S5-6): Page 4
- 3. ¹H NMR spectra of graft copolymers (Figure S7-9): Page 5-6
- 4. SEC traces of graft copolymers (Figure S10): Page 6
- UV-vis absorption spectra of graft copolymer and its precursor in chloroform (Figure S11): Page 7
- Electrical parameters of bottom-gate FETs based graft polymers (Table S1): Page
 7
- 7. The transfer characteristic of graft copolymers (Figure S12): Page 8
- The transfer characteristic of physical blend of PCTT-g-P3HT and PNDICTT₉₁ (Figure S13): Page 9
- 9. Electrical parameters of bottom-gate FETs based blends (Table S2): Page 9

Figure S4. ¹H NMR spectrum of PCTT in CDCl₃.

Figure S5. ¹H NMR spectrum of CTT-P3HT prepared in model reaction *via* externally initiated KCTP.

Figure S6. ¹H NMR spectra of CTT (above) and CTT-P3HT (below) in CDCl₃.

Figure S7. ¹H NMR spectra of PNDICTT₉₁(black) and PNDICTT₉₁-*g*-P3HT (red) in CDCl₃.

Figure S8. ¹H NMR spectra of PNDICTT₇₃ (black) and PNDICTT₇₃-g-P3HTa (red) in CDCl₃.

CDCl₃.

Figure S10. SEC traces of (A) PNDICTT₉₁-*g*-P3HT; (B) PNDICTT₇₃-*g*-P3HTa; and (C) PNDICTT₅₅-*g*-P3HT.

Figure S11. UV-vis spectra of product as indicated in CHCl₃.

Table S1. Electrical	parameters of bottom-gate FETs based graft polymers	
		•

CF:CB ^a	nonanneal			Annealing ^b		
8 mg/ml	μ°	I_{on}/I_{off}	V_{th}	μ^{c}	I_{on}/I_{off}	V_{th}
	$(cm^2 V^{-1} S^{-1})$			$(cm^2 V^{-1} S^{-1})$		
PNDICTT ₉₁	1.08×10^{-3}	3.82×10^{6}	30.50	2.66×10 ⁻³	8.96×10 ⁷	33.07
PCTT-g-P3HT	2.46×10 ⁻³	1.14×10^{2}	-2.07	7.91×10 ⁻³	8.12×10^2	11.90
PNDICTT ₉₁ - <i>g</i> -P3HT	8.76×10 ⁻⁴	2.22×10 ⁰	127.67	9.87×10 ⁻⁴	1.86×10^{0}	256.03
PNDICTT ₇₃ -g-P3HTa	2.78×10 ⁻⁴	1.78×10^{0}	263.77	3.47×10 ⁻⁴	2.24×10^{0}	131.71
PNDICTT ₅₅ -g-P3HT	5.53×10 ⁻⁴	2.48×10^{0}	157.81	6.03×10 ⁻⁴	2.07×10^{0}	218.14

^a device were fabricated from chloroform and chlorobenzene (95:5 in v/v) with a concentration of 7.5 mg/ml. ¹annealing at 140 $^{\circ}$ C for 1 hour. ^c charge mobility of PNDICTT₉₁ shows a *n*-type while the other samples show *p*-type molility.

Figure S12. The transfer characteristic of PCTT-*g*-P3HT (A), PNDICTT₉₁ (B), PNDICTT₉₁-*g*-P3HT(C), PNDICTT₇₃-*g*-P3HTa(D), PNDICTT₅₅-*g*-P3HT (E), and physical blend of PCTT-*g*-P3HT and PNDICTT91 (F).

Figure S13. The transfer characteristic of physical blend of PCTT-*g*-P3HT and PNDICTT₉₁.

 Table S2. Electrical parameters of bottom-gate FETs based blends of PCTT-g-P3HT

and PNDICTT₉₁.

CF	10mg/ml	μ (cm ² V ⁻¹ s ⁻¹)	I_{on}/I_{off}	V_{th}
nonanneal	р	4.74E-07	3.8E+00	75.37
	n	1.66E-04	1.1E+02	0.70
anneal	p	2.85E-06	9.3E+01	27.48
	n	1.33E-05	1.0E+03	1.71