Supporting Information

Efficient Combination of Environment Change and Alchemical Perturbation Within the Enveloping Distribution Sampling (EDS) Scheme: Twin-System EDS and Application to the Determination of Octanol-Water Partition Coefficients

Niels Hansen, Philippe H. Hünenberger, Wilfred F. van Gunsteren*

Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093 Zürich, Switzerland

*To whom correspondence should be addressed. E-mail: wfvgn@igc.phys.chem.ethz.ch

(Date: January 16, 2013)

Table S1: Relevant non-bonded interaction parameters^a used for the $-CH_2-O-H$ headgroup in alcohols (A), the CH_x groups in aliphatic hydrocarbon chains (B) and the ether function in 1,2-dimethoxyethane (C), in the 54A7^{1,2} and 53A6_{OXY}³/53A6_{OXY+D}⁴ versions of the GROMOS force field. For each atom type, denoted by the atom type code IAC, they include the Lennard-Jones (LJ) dispersion parameter, $C_6^{1/2}$, repulsion parameter for non-hydrogenbonding interactions, $C_{12,I}^{1/2}$, and repulsion parameter for hydrogen-bonding interactions, $C_{12,II}^{1/2}$, as well as the atomic partial charges q. The functional forms of the corresponding terms and the applied (geometric-mean) combination rule for LJ parameters are described in Refs 5,6. For alcohols, 54A7 and 53A6_{OXY} differ in the LJ parameters and charges for the atom type OA and in the charges for the atom types H and CH2, connected to OA. For alkanes the two versions are identical. For ethers, 54A7 and 53A6_{OXY} differ in the LJ parameters and charges for the atom types CH3 and CH2 connected to OE. 53A6_{OXY} and 53A6_{OXY+D} differ only in the torsional-energy parameters for the dihedral types OCCO and CCOC, which are reported in Figure S1.

				54A7				$53A6_{OXY(+D)}$			
				$C_{12}^{1/2}$				$C_{12}^{1/2}$			
group	IAC	type	$C_{6}^{1/2}$	Ι	II	q	C_{i}	$\frac{1}{2}{6}$	Ι	II	q
	21	Н	_	_	_	0.408			_	_	0.410
А	3	OA	0.04756	1.100	1.227	-0.674	0.04	4500	1.150	1.350	-0.700
	15	CH2	0.08642	5.828	—	0.266	0.08	8642	5.828	—	0.290
В	16	CH3	0.09805	5.162	_	0.000	0.09	9805	5.162	_	0.000
	15	CH2	0.08642	5.828	—	0.000	0.08	8642	5.828	—	0.000
С	16	CH3	0.09805	5.162	_	0.162	0.09	9805	5.162	_	0.290
	4	OE	0.04756	1.100	1.227	-0.324	0.04	4123	1.5297	1.5297	-0.580
	15	CH2	0.08642	5.828	—	0.162	0.08	8642	5.828	—	0.290

 $\overline{{}^{a}\text{The units of } C_{6}^{1/2}, C_{12}^{1/2} \text{ and } q \text{ are } (\text{kJ mol}^{-1}\text{nm}^{6})^{1/2}, (10^{-3}[\text{kJ mol}^{-1}\text{nm}^{12}]^{1/2}) \text{ and } (e).}$

	bond type	bond-angle type	dihedral-angle type
alkanes	27 ²⁷ 27	15 15	34
alcohols	27 ¹⁸ 0 ¹ H	12 	, , , , , , , , , , , , , , , , , , ,
1,2-di- methoxy- ethane	0 18 18 18 27 0 18	0 15 15 15 15 0	D1-D3 D1-D3 D4-D6

Figure S1: Covalent interaction types (bond stretching, bond-angle bending and dihedral-angle torsion) used in the present work. The numbers refer to the type codes of the 54A7 parameter set,^{1,2} except for the dihedral-angle types of 1,2-dimethoxyethane which are defined in the $53A6_{OXY+D}$ parameter set (see Table IV in Ref. 4).

Table S2: EDS reference-state parameters s and $E_{\rm B}^{\rm R}$ (kJ mol⁻¹) used in the twin-system EDS production simulations to obtain free enthalpy differences between hexane_(+D) and compounds X in dry octanol or wet octanol and water. $E_{\rm A}^{\rm R}$ was fixed to zero in all cases.

		5	$53A6_{OXY(+D)}$			
	dry octanol		wet octanol		wet octanol	
Compound X	S	$E_{\rm B}^{\rm R}$	S	$E_{\rm B}^{\rm R}$	S	$E_{\rm B}^{\rm R}$
butane	0.25	7.0	0.25	8.0	0.25	8.0
pentane	0.40	3.0	0.40	3.0	0.40	2.0
heptane	0.60	-3.0	0.60	-3.0	0.60	-4.0
octane	0.25	-7.0	0.25	-7.0	0.25	-7.0
hexanol	0.08	11.0	0.085	11.0	0.085	14.0
1,2-dimethoxy- ethane ^b	—	_	_	—	0.128	26.6

^a the +D version applies only for 1,2-dimethoxyethane.

^b for this compound an additional calculation considering an octanol-water mixture with a water mole fraction of 0.27 (experimental saturation concentration) instead of 0.16 was carried out using EDS parameters of s = 0.128 and $E_{\rm B}^{\rm R} = 26.0 \,\rm kJ \, mol^{-1}$.

Figure S2: Average of the derivative of the Hamiltonian with respect to the coupling parameter λ as a function of λ for the process of gradually activating the solute-solvent interactions from no interactions at $\lambda = 0$ to full interactions at $\lambda = 1$. The upper panel summarizes the results obtained for hexane in different solvents, the lower panel summarizes the results obtained for hexanol.

Figure S3: Average of the derivative of the Hamiltonian with respect to the coupling parameter λ as a function of λ for the process of gradually activating the solute-solvent interactions of hexane with modified torsional-energy parameters⁴ from no interactions at $\lambda = 0$ to full interactions at $\lambda = 1$. The solvents employed were SPC water and wet octanol.

Figure S4: Left: Energy difference distributions for the reference state, $\rho_{\rm R}(\Delta V_{\rm BA})$ (black), and the two end states, $\tilde{\rho}_{\rm A}(\Delta V_{\rm BA})$ (red), $\tilde{\rho}_{\rm B}(\Delta V_{\rm BA})$ (green), as obtained from twin-system EDS simulations. State B represents the combined Hamiltonians of solute X solvated in dry octanol (X = butane, pentane, heptane, octane, hexanol; from top to bottom) and solute M solvated in water (M = hexane). State A represents the combined Hamiltonians of solute X solvated in water and solute M solvated in dry octanol. The simulations were performed with the 54A7^{1,2} force field. The energy difference distributions of the end states were determined by reweighting. Right: Nonbonded solute-solute plus solute-solvent energy distributions of the EDS end states obtained νia reweighting from EDS reference-state simulations ($\tilde{\rho}_{\rm A}(V_{\rm A})$ and $\tilde{\rho}_{\rm B}(V_{\rm B})$, red and green) and from independent MD simulations of the end states ($\rho_{\rm A}(V_{\rm A})$ and $\rho_{\rm B}(V_{\rm B})$, blue and orange).

Figure S5: Energy difference distributions for the reference state, $\rho_{\rm R}(\Delta V_{\rm BA})$ (black), and the two end states, $\tilde{\rho}_{\rm A}(\Delta V_{\rm BA})$ (red), $\tilde{\rho}_{\rm B}(\Delta V_{\rm BA})$ (green), as obtained from twinsystem EDS simulations. State B represents the combined Hamiltonians of solute X solvated in wet octanol (X = butane, pentane, heptane, octane, hexanol; from top to bottom) and solute M solvated in water (M = hexane). State A represents the combined Hamiltonians of solute X solvated in water and solute M solvated in wet octanol. The simulations were performed with the 54A7^{1,2} force field. The energy difference distributions of the end states were determined by reweighting. Right: Nonbonded solute-solute plus solute-solvent energy distributions of the EDS end states obtained νia reweighting from EDS reference-state simulations ($\tilde{\rho}_{\rm A}(V_{\rm A})$ and $\tilde{\rho}_{\rm B}(V_{\rm B})$, red and green) and from independent MD simulations of the end states ($\rho_{\rm A}(V_{\rm A})$ and $\rho_{\rm B}(V_{\rm B})$, blue and orange).

References

- D. Poger, W. F. van Gunsteren, A. E. Mark, A new force field for simulating phosphatidylcholine bilayers, J. Comput. Chem. 2010, 31, 1117–1125.
- [2] N. Schmid, A. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. E. Mark, W. F. van Gunsteren, Definition and testing of the GROMOS force-field versions: 54A7 and 54B7, *Eur. Biophys. J.* 2011, 40, 843–856.
- [3] B. A. C. Horta, P. F. J. Fuchs, W. F. van Gunsteren, P. H. Hünenberger, New interaction parameters for oxygen compounds in the GROMOS force field: Improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters, J. Chem. Theory Comput. 2011, 7, 1016–1031.
- [4] P. F. J. Fuchs, H. S. Hansen, P. H. Hünenberger, B. A. C. Horta, A GROMOS parameter set for vicinal diether functions: Properties of polyethyleneoxide and polyethyleneglycol, J. Chem. Theory Comput. 2012, 8, 3943–3963.
- [5] http://www.gromos.net.
- [6] W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger, A. E. Mark, W. R. P. Scott, I. G. Tironi, *Biomolecular Simulation: The GRO-MOS96 Manual and User Guide*, Vdf Hochschulverlag AG an der ETH Zürich, Zürich, Groningen **1996**.