SUPPORTING INFORMATION

<u>Appendix A: Scaled particle theory for ethyl acetate (1) - ethanol (2) -</u> <u>salt (3) system</u>

The theory illustrates the principle of extractive distillation to separate an azeotrope using salt as third component. The system under consideration consists of the following two solvents combined with salt, [1] Ethyl acetate, [2] Ethanol. The subscripts 1, 2, 3 & 4 are used to represent ethyl acetate, ethanol, cation of the salt and anion of the salt respectively.

For 1:1 electrolyte,

Expression for ky:-

$$\sum \rho_{i} = \rho_{1} + \rho_{2} + \rho_{3} + \rho_{4} \tag{A.1}$$

Neglecting ρ_{1} , we get the following equation,

$$\sum \rho_{i} = \rho_{2} + \rho_{3} + \rho_{4}$$

$$\rho_{2} = \frac{Nd_{2}}{M_{2}} \left(1 - \frac{c\phi}{1000} \right)$$

$$\rho_{3} = \rho_{4} = \frac{Nc}{1000}$$
(A.2)

Where, M₂ represents molecular weight of ethanol = 46.07 g/mol, d₂ represents density at $25^{\circ}C=785.22 \text{ kg.m}^{-3}$, ϕ^0 represents apparent molal volume of salt at infinite dilution at 25 °C

$$\ln \sum \rho_{i} = \ln \frac{Nd_{2}}{M_{2}} \left[1 - \frac{c\phi}{1000} + \frac{2cM_{2}}{1000d_{2}} \right]$$
(A.3)
$$\frac{1}{2.3} \ln \sum \rho_{i} = \frac{1}{2.3} \ln \frac{Nd_{2}}{M_{2}} \left[1 - \frac{c\phi}{1000} + \frac{2cM_{2}}{1000d_{2}} \right]$$

$$k_{\gamma} = \left[\frac{d}{dc} \log \sum \rho_{i} \right]_{c \to 0} = \frac{2M_{2}}{2300d_{2}} - \frac{\phi}{2300}$$
(A.4)

After substitution of values, we get,

$$k_{\gamma} = 0.0510 - 4.34 \times 10^{-4} \phi$$

(A.5)

Expression for k_{β} :-

$$\frac{\overline{g}_{1}^{s}}{2.3kT} = \frac{-32\pi Nc}{9000(2.3T)} \left[\frac{\varepsilon_{13}\sigma_{13}^{3}}{k} + \frac{\varepsilon_{14}\sigma_{14}^{3}}{k} \right] - \frac{4\pi Nd_{2}}{3(2.3T)M_{2}} \left[1 - \frac{c\phi}{1000} \right] \left[\frac{8\varepsilon_{12}\sigma_{12}^{3}}{3k} + \frac{\mu_{2}^{2}\alpha_{1}}{k\sigma_{12}^{3}} \right]$$
(A.6)

Considering the first derivative of the above equation with respect to 'C' and by further simplification we arrive at,

$$k_{\beta} = \frac{d}{dc} \left[\frac{\overline{g}_{1}^{s}}{2.3kT} \right]_{c \to 0} =$$

$$-9.8095 \times 10^{18} \left[\frac{\varepsilon_{13} \sigma_{13}^3}{k} + \frac{\varepsilon_{14} \sigma_{14}^3}{k} \right] + 1.6719 \times 10^{17} \phi \left[\frac{\varepsilon_{12} \sigma_{12}^3}{k} \right] + \frac{4\pi N d_2 \mu_2^2}{3000 (2.3T) M_2 \sigma_{12}^3}$$
(A.7)

Taking µ₂=1.69E-18 cm; T=298K,

The mixture parameters must be related to those parameters of the pure species. Hence we use a rule which is known as the "mixing rule", by which,

$$\varepsilon_{ij} = \left(\varepsilon_i \varepsilon_j\right)^{\frac{1}{2}}; \sigma_{ij} = \frac{\sigma_i + \sigma_j}{2}$$

And thereby assign a numerical value for $k_{\beta\!.}$ The numerical value for the energy parameter

$$\frac{\varepsilon_1}{k} = 450.$$

Also the values of ϵ/k for the cation and anion of the salt can be obtained by using Mavroyannis-Stephen equation, given as,

$$\frac{\varepsilon_{j}}{k} = 2.28 \times 10^{-8} \frac{\alpha_{j}^{\frac{3}{2}} z_{j}^{\frac{1}{2}}}{\sigma_{j}^{6}}$$

2 1

$$k_{\beta} = -1.85 \times 10^{14} \left(\frac{\varepsilon_{1}}{k}\right)^{\frac{1}{2}} \left[\alpha_{3}^{\frac{3}{4}} z_{3}^{\frac{1}{4}} \left(\frac{\sigma_{1} + \sigma_{3}}{\sigma_{3}}\right)^{3} + \alpha_{4}^{\frac{3}{4}} z_{4}^{\frac{1}{4}} \left(\frac{\sigma_{1} + \sigma_{4}}{\sigma_{4}}\right)^{3}\right] + 4.43 \times 10^{17} \phi \left(\frac{\varepsilon_{1}}{k}\right)^{\frac{1}{2}} \left(\sigma_{1} + \sigma_{2}\right)^{3} + 1.03 \times 10^{-2} \frac{\phi \alpha_{1}}{\left(\sigma_{1} + \sigma_{2}\right)^{3}}$$
(A.8)

Expression for k_{α} :-

The expression for free energy of cavity formation according to Scaled Particle Theory is as follows,

$$\frac{\overline{g}_{1}^{h}}{2.3kT} = -\log(1-\tau_{3}) + A$$
(A.9)
$$A = \frac{3\tau_{2}\sigma_{1}}{2.3(1-\tau_{3})} \left[1 + \frac{\tau_{1}\sigma_{1}}{\tau_{2}} + \frac{3\tau_{2}\sigma_{1}}{2(1-\tau_{3})} \right]$$

$$\tau_{n} = \frac{\pi}{6} \sum_{1}^{n} \rho_{j} \sigma_{j}^{n}$$
(A.10)
$$\tau_{1} = \frac{\pi}{6} \frac{Nd_{2}\sigma_{2}}{M_{2}} + c \left[\frac{\pi}{6} \frac{N}{1000} (\sigma_{3} + \sigma_{4}) - \frac{\pi}{6} \frac{Nd_{2}\sigma_{2}}{M_{2}} \frac{\phi}{1000} \right]$$

On substitution of values namely,

$$\begin{aligned} \tau_{1} &= 2.33 \times 10^{14} + c \Big[3.15 \times 10^{20} \left(\sigma_{3} + \sigma_{4} \right) - 2.33 \times 10^{11} \phi \Big] \\ \tau_{2} &= 1.012 \times 10^{7} + c \Big[3.15 \times 10^{20} \left(\sigma_{3}^{2} + \sigma_{4}^{2} \right) - 1.012 \times 10^{4} \phi \Big] \\ \tau_{3} &= 0.439 + c \Big[3.15 \times 10^{20} \left(\sigma_{3}^{3} + \sigma_{4}^{3} \right) - 4.393 \times 10^{-4} \phi \Big] \\ \ln \tau_{1} - \ln \tau_{2} &= \ln \Big(2.33 \times 10^{14} - 1.012 \times 10^{7} \Big) + 1351931.33 \big(\sigma_{3} + \sigma_{4} \big) c - 3.113 \times 10^{13} \big(\sigma_{3}^{2} + \sigma_{4}^{2} \big) c \\ \frac{\tau_{1}}{\tau_{2}} &= 2.30 \times 10^{7} + c \Big[3.113 \times 10^{13} \big(\sigma_{3} + \sigma_{4} \big) - 7.16 \times 10^{20} \big(\sigma_{3}^{2} + \sigma_{4}^{2} \big) \Big] \\ \frac{\tau_{2}}{1 - \tau_{3}} &= 1.80 \times 10^{7} + c \Big[5.59 \times 10^{20} \big(\sigma_{3}^{2} + \sigma_{4}^{2} \big) + 1.01 \times 10^{28} \big(\sigma_{3}^{3} + \sigma_{4}^{3} \big) - 3.21 \times 10^{4} \phi \Big] \\ A &= \frac{3\tau_{2}\sigma_{1}}{2.3(1 - \tau_{3})} \bigg[1 + \frac{\tau_{1}\sigma_{1}}{\tau_{2}} + \frac{3\tau_{2}\sigma_{1}}{2(1 - \tau_{3})} \bigg]$$
(A.11)

$$= 2.35 \times 10^{7} \sigma_{1} + c \sigma_{1} \Big[7.29 \times 10^{20} \left(\sigma_{3}^{2} + \sigma_{4}^{2} \right) + 1.32 \times 10^{28} \left(\sigma_{3}^{3} + \sigma_{4}^{3} \right) - 4.19 \times 10^{4} \phi \Big] \\ + c \sigma_{1}^{2} \Big[7.31 \times 10^{20} \left(\sigma_{3} + \sigma_{4} \right) + 3.94 \times 10^{28} \left(\sigma_{3}^{2} + \sigma_{4}^{2} \right) + 1.02 \times 10^{36} \left(\sigma_{3}^{3} + \sigma_{4}^{3} \right) - 3.23 \times 10^{12} \phi \Big] \\ k_{\alpha} = \Big[\frac{d \Big[\log (1 - \tau_{3}) \Big]}{dc} + \frac{dA}{dc} \Big]_{c \to 0} \\ k_{\alpha} = 2.44 \times 10^{20} \left(\sigma_{3}^{3} + \sigma_{4}^{3} \right) - 3.40 \times 10^{-4} \phi + \sigma_{1} \Big[7.29 \times 10^{20} \left(\sigma_{3}^{2} + \sigma_{4}^{2} \right) + 1.32 \times 10^{28} \left(\sigma_{3}^{3} + \sigma_{4}^{3} \right) - 4.19 \times 10^{4} \phi \Big] \\ + \sigma_{1}^{2} \Big[7.31 \times 10^{20} \left(\sigma_{3} + \sigma_{4} \right) + 3.94 \times 10^{28} \left(\sigma_{3}^{2} + \sigma_{4}^{2} \right) + 1.02 \times 10^{36} \left(\sigma_{3}^{3} + \sigma_{4}^{3} \right) - 3.23 \times 10^{12} \phi \Big]$$
(A.12)

For 1:2 electrolyte,

The following derivation is done on the same basis as that of the system containing a 1:1 electrolyte and the corresponding expressions for $k_{\alpha}, k_{\beta}, k_{\gamma}$ are obtained. The only difference is that the system considered here, is composed of two moles of anion and one mole of cation thereby leading to a change in density of a solution.

Expression for k_y:-

$$\rho_{2} = \frac{Nd_{2}}{M_{2}} \left(1 - \frac{c\phi}{1000} \right), \quad \rho_{3} = \frac{Nc}{1000},$$

$$\rho_{4} = \frac{2Nc}{1000}$$

$$k_{\gamma} = \frac{3M_{2}}{2300d_{2}} - \frac{\phi}{2300}$$
(A.13)

Expression for k_{β} :-

$$k_{\beta} = 1.8515 \times 10^{14} \left(\frac{\varepsilon_{1}}{k}\right)^{\frac{1}{2}} \left[\alpha_{3}^{\frac{3}{4}} z_{3}^{\frac{1}{4}} \frac{(\sigma_{1} + \sigma_{3})^{3}}{\sigma_{3}^{3}} + \alpha_{4}^{\frac{3}{4}} z_{4}^{\frac{1}{4}} \frac{(\sigma_{1} + \sigma_{4})^{3}}{\sigma_{4}^{3}}\right] + 4.433 \times 10^{17} \phi \left(\frac{\varepsilon_{1}}{k}\right)^{\frac{1}{2}} (\sigma_{1} + \sigma_{2})^{3} + 1.038 \times 10^{-2} \frac{\phi \alpha_{1}}{(\sigma_{1} + \sigma_{2})^{3}}$$
(A.14)

Expression for k_a:-

$$k_{\alpha} = 7.32 \times 10^{20} \left(\sigma_{3}^{3} + \sigma_{4}^{3}\right) - 3.40 \times 10^{-4} \phi + \sigma_{1} \left[2.19 \times 10^{21} \left(\sigma_{3}^{2} + \sigma_{4}^{2}\right) + 3.96 \times 10^{28} \left(\sigma_{3}^{3} + \sigma_{4}^{3}\right) - 4.19 \times 10^{4} \phi\right] + \sigma_{1}^{2} \left[2.19 \times 10^{21} \left(\sigma_{3} + \sigma_{4}\right) + 1.18 \times 10^{29} \left(\sigma_{3}^{2} + \sigma_{4}^{2}\right) + 3.05 \times 10^{36} \left(\sigma_{3}^{3} + \sigma_{4}^{3}\right) - 3.23 \times 10^{12} \phi\right]$$

(A.15)

NOMENCLATURE

с	Concentration of salt, mol/l
ks	Salting coefficient
$k_{\alpha}, k_{\beta}, k_{\gamma}$	Contributions to salting coefficient
М	Molecular weight (g/mol)
Ν	Avogadro number
S	Solubility of non-electrolyte in salt solution
So	Solubility of non-electrolyte in pure water
Т	Temperature, °C
x'i	Salt free mole fraction of component i in liquid
yi	mole fraction of component i in Vapor
Z	Salt mole fraction
γ_{i}	activity coefficient of component i in liquid
α_1	Polarizability of non-electrolyte
$ ho_i$	Density of the components (g/cc)
σ	molecule size or ion diameter (°A)
φ°	apparent molal volume of salt at infinite dilution (cc/mol)
ε/k	interaction energy parameter (K)