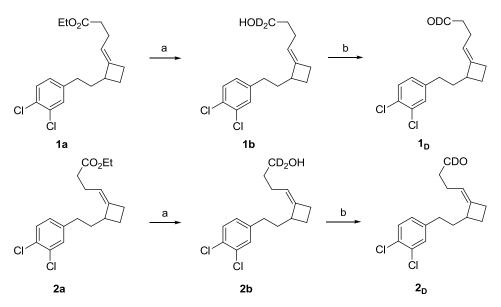
Multiple Rhodium-Catalysed Cleavages of Single C–C bonds

SUPPORTING INFORMATION

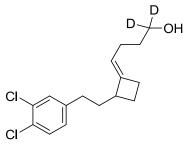
Christophe Aïssa,* Damien Crépin, Daniel J. Tetlow, and Kelvin Y. T. Ho


University of Liverpool, Department of Chemistry, Crown Street, L69 7ZD, United Kingdom.

e-mail: aissa@liverpool.ac.uk

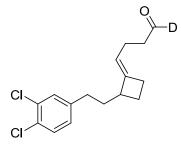
General. Otherwise noted, all reactions were carried out in flame-dried glassware under dry nitrogen atmosphere. The solvents were purified either with the solvent purification system Pure Solv MD-6 (THF, Et₂O, CH₂Cl₂, benzene, toluene, hexane). Dry acetone was purchased from VWR. Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on a Bruker DRX 500 and a Bruker DPX 400 spectrometers in CDCl₃; chemical shifts (δ) are given in ppm relative TMS. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_C = 77.0$ ppm; residual CHCl₃ in CDCl₃: $\delta_H = 7.24$ ppm). IR: PerkinElmer Spectrum 100 FT-IR spectrometer, wavenumbers ($\tilde{\nu}$) in cm⁻¹. HRMS at the University of Liverpool: micromass LCT mass spectrometer (ES+). Melting points: Griffin melting point apparatus (not corrected). Elemental analyses: University of Liverpool. All commercially available compounds were used as received.

Syntheses of compounds 1_D and 2_D	S2
Syntheses of compounds 4 and 6	S4
Syntheses of compounds 8a–8g and 11	S 8
General procedure for Rh-catalyzed reactions	S26
Description of compounds 3 _D , 5, 7, 9a–9g, 10c–10g, 12 and 13	S26
NMR spectra for 1 _D , 2 _D , 4 , 6 , 8a–8g and 11	S 31
NMR spectra for 3 _D , 5, 7, 9a–9g, 10c–10g, 12 and 13	S61


Preparation of compounds 1_D and 2_D

^a LiAlD₄, Et₂O, 0 °C to r.t.; 69% (1b) and 95% (2b). ^b (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 64% (1_D) and 85% (2_D).

Compounds **1a** and **2a** were described previously.¹

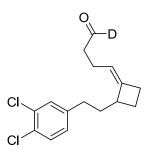

Compound 1b. Ester 1a (49 mg, 0.144 mmol) in Et₂O (0.3 mL) was added under N₂ to a suspension of

LiAlD₄ (3.3 mg, 0.079 mmol) in Et₂O (1 mL) at 0°C (bath temperature). After stirring for 20 minutes at r.t., LiAlD₄ (3.3 mg, 0.079 mmol) was added as solid. After stirring for 15 minutes at r.t., few drops of a saturated solution of Na₂SO₄ was added until a white precipitate appeared. The mixture was then allowed to stir at room temperature before being filtered through a pad of Celite and concentrated. Purification by flash chromatography (petroleum ether/EtOAc, 5/1) afforded **1b** as a colorless oil (30 mg, 69%).¹H NMR (500

MHz, CDCl₃): $\delta = 7.30$ (d, J = 8.2 Hz, 1H), 7.23 (d, J = 1.6 Hz, 1H), 6.97 (dd, J = 8.2, 1.6 Hz, 2H), 5.10 (tq, J = 7.3, 2.3 Hz, 1H), 2.91-2.78 (m, 1H), 2.62-2.46 (m, 4H), 2.07 (dtd, J = 10.7, 9.0, 5.3 Hz, 1H), 1.95 (q, J = 7.3 Hz, 2H), 1.85 (ddt, J = 13.1, 9.6, 6.4 Hz, 1H), 1.64 (dtd, J = 13.5, 9.0, 6.1 Hz, 1H), 1.57 (t, J = 7.2 Hz, 2H), 1.55-1.49 (m, 1H), 1.35 (s, 1H(OH)); ¹³C NMR (125 MHz, CDCl₃): $\delta = 144.6$, 142.8, 132.1, 130.3, 130.1, 129.5, 127.9, 118.8, 61.9 (quint, J = 21.3 Hz), 42.8, 36.0, 32.5, 32.4, 26.4, 24.1, 23.6; IR (neat): $\tilde{\nu} = 3324$ (br), 2926, 2854, 2198, 2092, 1593, 1562, 1473, 1396, 1258, 1206, 1132, 1098, 1031, 965, 890, 871, 847, 817, 703, 684, 663 cm⁻¹; MS (ES+): m/z (rel. intensity): 325 (65), 323 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₈³⁵Cl₂D₂O + Na): 323.0914; found: 323.0915; calcd for (C₁₆H₁₈³⁵Cl³⁷ClD₂O + Na): 325.0885; found: 325.0891.

Compound 1_D. A solution of DMSO (18 µL, 0.259 mmol) in CH₂Cl₂ (0.5 mL) was added to a solution of

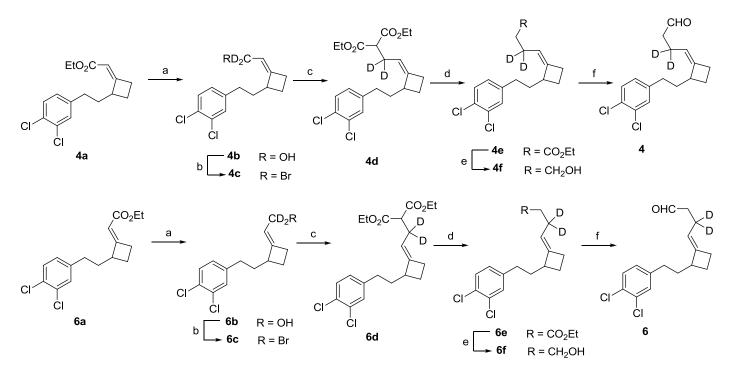
 $(COCl)_2$ (11 µL, 0.130 mmol) in CH₂Cl₂ (1 mL) at -78 °C under N₂. After stirring for 10 minutes at this temperature, a solution of **1b** (30 mg, 0.100 mmol) in CH₂Cl₂ (0.5 mL) was added via canula. After stirring for 15 minutes at -78 °C, Et₃N (69 µL, 0.497 mmol) was added via syringe. After stirring for 30 minutes at r.t., the mixture was quenched with a saturated solution of NH₄Cl (5 mL). The aqueous layer was extracted with CH₂Cl₂ (1 × 10 mL) and the combined organic layers were washed with brine (5 mL), dried over Na₂SO₄,


¹ Crépin, D.; Dawick, J.; Aïssa, C. Angew. Chem. Int. Ed. 2010, 47, 620.

filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 80/1 \rightarrow 60/1 \rightarrow 40/1) gave **1**_D as colorless oil (19 mg, 64%). ¹H NMR (500 MHz, CDCl₃): δ = 7.30 (d, *J* = 8.2 Hz, 1H), 7.23 (d, *J* = 2.0 Hz, 1H), 6.97 (dd, *J* = 8.2, 2.0 Hz, 2H), 5.06 (tq, *J* = 7.3 Hz, *J* = 2.4 Hz, 1H), 2.88–2.78 (m, 1H), 2.58-2.46 (m, 4H), 2.43 (t, *J* = 7.3 Hz, 2H), 2.20 (q, *J* = 7.3 Hz, 2H), 2.07 (dtd, *J* = 10.9, 9.0, 5.4 Hz, 1H), 1.83 (ddt, *J* = 13.2, 9.5, 6.5 Hz, 1H), 1.63 (dtd, *J* = 13.2, 9.3, 5.8 Hz, 1H), 1.58-1.50 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 202.3 (t, *J* = 25.6 Hz), 145.8, 142.7, 132.0, 130.3, 130.1, 129.5, 127.9, 117.1, 43.6 (t, *J* = 3.8 Hz), 42.7, 35.8, 32.5, 26.4, 23.5, 20.7; IR (neat): $\tilde{\nu}$ = 2917, 2855, 2069, 1713, 1596, 1561, 1473, 1397, 1352, 1259, 1207, 1131, 1094, 1030, 870, 816, 706, 684 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 354 (64), 352 (100) [M + MeOH + Na]; HRMS (ES+) calcd for (C₁₆H₁₇³⁵Cl₂DO + MeOH +Na): 352.0957; found: 352.0941; calcd for (C₁₆H₁₇³⁵Cl²⁷ClDO + MeOH +Na): 354.0928; found: 354.0914.

Compound 2b. This compound was obtained from **2a** according to the procedure described for the preparation of **1b**. Colorless oil (38 mg, 95%). ¹H NMR (500 MHz, CDCl₃): δ = 7.31 (d, *J* = 8.2 Hz, 1H), 7.25 (d, *J* = 1.9 Hz, 1H), 6.99 (dd, *J* = 8.2 Hz, *J* = 1.9 Hz, 2H), 5.05 (tq, *J* = 7.2, 2.3 Hz, 1H), 2.99-2.88 (m, 1H), 2.67-2.541 (m, 2H), 2.536-2.42 (m, 2H), 2.08 (dtd, *J* = 11.0, 9.1, 7.0 Hz, 1H), 1.98 (q, *J* = 7.2 Hz, 2H), 1.95-1.87 (m, 1H), 1.74 (dtd, *J* = 13.4, 10.2, 4.9 Hz, 1H), 1.62-1.52 (m, 3H), 1.56 (t, *J* = , 2H), 1.33-1.27 (m, 1H(OH)); ¹³C NMR (125 MHz, CDCl₃): δ = 143.0, 142.7, 132.1, 130.3, 130.2, 129.5, 127.8, 120.9, 61.9 (quint, *J* = 21.3 Hz), 42.1, 35.7, 32.7, 32.5,

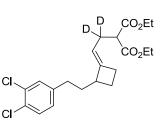
28.0, 24.5, 22.7; IR (neat): $\tilde{\nu} = 3345$ (br), 2922, 2851, 2206, 2100, 1593, 1562, 1473, 1454, 1424, 1374, 1290, 1259, 1206, 1131, 1093, 1030, 965, 871, 851, 816, 686, 660 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 325 (65), 323 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₈³⁵Cl₂D₂O + Na): 323.0914; found: 323.0924; calcd for (C₁₆H₁₈³⁵Cl³⁷ClD₂O + Na): 325.0885; found: 325.0891.


Compound 2_D. This compound was obtained from 2b according to the Swern procedure described for the

preparation of **1**_D. Colorless oil (26 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ = 7.31 (d, *J* = 8.2 Hz, 1H), 7.24 (d, *J* = 2.0 Hz, 1H), 6.99 (dd, *J* = 8.2, 2.0 Hz, 2H), 5.00 (tq, *J* = 7.2 Hz, *J* = 2.4 Hz, 1H), 3.01-2.88 (m, 1H), 2.67-2.55 (m, 2H), 2.54-2.46 (m, 2H), 2.43 (t, *J* = 7.3 Hz, 2H), 2.31-2.17 (m, 2H), 2.09 (dtd, *J* = 11.0, 9.1, 6.9 Hz, 1H), 2.00-1.88 (m, 1H), 1.75 (dtd, *J* = 13.3, 10.1, 5.0 Hz, 1H), 1.63-1.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 201.9 (t, *J* = 26.5 Hz), 144.2, 142.6, 132.1, 130.3, 130.2, 129.6, 127.8, 119.2, 43.9 (t, *J* = 3.5 Hz), 42.1, 35.6, 32.5, 28.0, 22.7, 21.0; IR (neat): \tilde{V} = 2921, 2855, 2070, 1712, 1593, 1562, 1472, 1421, 1397, 1355, 1260,

1208, 1132, 1094, 1030, 948, 872, 850, 819, 706, 686, 659 cm⁻¹; MS (ES+): m/z (rel. intensity): 354 (65), 352 (100) [M + MeOH + Na]; HRMS (ES+) calcd for ($C_{16}H_{17}^{35}Cl_2DO$ + MeOH +Na): 352.0957; found: 352.0954; calcd for ($C_{16}H_{17}^{35}Cl^{37}ClDO$ + MeOH +Na): 354.0928; found: 354.0925.

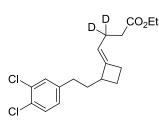
Preparation of compounds 4 and 6


^a LiAlD₄, Et₂O, -20 °C; 61% (**6b**) and 77% (**4b**). ^b PBr₃, Et₂O, 0 °C; quantitative. ^c 1) Diethyl malonate, NaH, THF, -78 °C; 2) **6c** or **4c**, THF, 0 °C to r.t.; 75% (**6d**) and 74% (**4d**). ^d LiCl, H₂O, DMSO, reflux; 79% (**6e**) and 71% (**4e**). ^e LiAlH₄, Et₂O, 0 °C to r.t.; 98% (**6f**) and 61% (**4f**). ^f (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 66% (**6**) and 64% (**4**).

Compounds **6a** and **4a** were prepared as described previously.¹

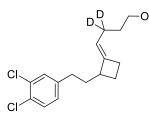
Compound 6b. Ester **6a** (634 mg, 2.02 mmol) in Et₂O (2 mL) was added under N₂ to a suspension of LiAlD₄ (46 mg, 1.11 mmol) in Et₂O (8 mL) at -20°C (bath temperature). After stirring for 20 minutes at -20 °C, LiAlD₄ (46 mg, 1.11 mmol) was added as solid. After stirring for 35 minutes at -20 °C, few drops of a saturated solution of Na₂SO₄ was added until a white precipitate appeared. The mixture was then allowed to stir at room temperature before being filtered through a pad of Celite and concentrated. Purification by flash chromatography (PE/EtOAc, $10/1 \rightarrow 5/1 \rightarrow 5/2$) afforded **6b** as

a colorless oil (333 mg, 61%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.32$ (d, J = 8.5 Hz, 1H), 7.26–7.24 (m, 1H), 7.00 (dd, J = 8.5, 2.0 Hz, 1H), 5.38–5.33 (m, 1H), 2.93–2.84 (m, 1H), 2.68–2.45 (m, 4H), 2.09 (dtd, J = 10.9, 9.1, 5.3 Hz, 1H), 1.88 (ddt, J = 13.4, 9.4, 6.6 Hz, 1H), 1.68 (dtd, J = 13.5, 9.1, 6.1 Hz, 1H), 1.62–1.53 (m, 1H), 1.15–1.05 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 148.8$, 142.5, 132.0, 130.2, 130.1, 129.5, 127.8, 118.1, 58.6 (quint., J = 21.0 Hz), 42.9, 35.4, 32.4, 26.5, 23.6; IR (neat): $\tilde{\nu} = 3312$, 2926, 2857, 2187, 2083, 1693, 1593, 1561, 1472, 1396, 1353, 1312, 1257, 1207, 1131, 1094, 1071, 1030, 953, 905, 870, 816, 704, 684, 661 cm⁻¹; MS (ES+): m/z (rel. intensity): 297 (68), 295 (100) [M + Na]; HRMS (ES+) calcd for (C₁₄H₁₄D₂³⁵Cl₂O + Na): 295.0601; found: 295.0594; calcd for (C₁₄H₁₄D₂³⁵Cl³⁷ClO + Na): 297.0572; found: 297.0572.


Compound 6d. Under N₂, PBr₃ (114 µL, 1.21 mmol) was added to a solution of 6b (330 mg, 1.21 mmol) in

Et₂O at 0 °C. After stirring at this temperature for 2.5 hours, the mixture was quenched with brine, and the aqueous layer was extracted with Et₂O. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. Diethyl malonate (0.25 mL, 1.63 mmol) was added to a suspension of NaH (58 mg, 1.45 mmol (60% in oil)) in THF (9 mL) at 0 °C under N₂. After stirring at r.t. for 30 minutes, this solution was added via canula to a solution of crude **6c** in

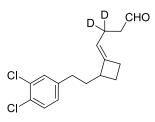
THF (6.5 mL) at 0 °C under N₂. After stirring at r.t. for 90 minutes, the mixture was quenched with a saturated solution of NH₄Cl (10 mL) and diluted with EtOAc (10 mL). The aqueous layer was extracted with EtOAc (2 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 50/1 \rightarrow 30/1) gave **6d** as colourless oil (375 mg, 75% over two steps). ¹H NMR (500 MHz, CDCl₃): δ = 7.30 (d, *J* = 8.2 Hz, 1H), 7.22 (d, *J* = 2.0 Hz, 1H), 6.97 (dd, *J* = 8.2, 2.0 Hz, 1H), 5.08–5.01 (m, 1H), 4.21–4.11 (m, 4H), 3.29 (s, 1H), 2.86–2.76 (m, 1H), 2.63–2.43 (m, 4H), 2.05 (dtd, *J* = 10.9, 9.1, 5.2 Hz, 1H), 1.81 (dtd, *J* = 13.5, 9.5, 6.5 Hz, 1H), 1.61 (dtd, *J* = 13.6, 9.2, 6.0 Hz, 1H), 1.55–1.47 (m, 1H), 1.23 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.1 (2C), 147.5, 142.6, 132.0, 130.2, 130.1, 129.5, 127.8, 114.6, 61.2 (2C), 51.9, 42.7, 35.7, 32.3, 26.6 (quint., *J* = 21.1 Hz) 26.4, 23.4, 14.1 (2C); IR (neat): $\tilde{\nu}$ = 2980, 2937, 2861, 1730, 1590, 1560, 1473, 1394, 1368, 1318, 1210, 1175, 1150, 1131, 1096, 1030, 952, 868, 818, 684, 658 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 439 (63), 437 (100) [M + Na]; HRMS (ES+) calcd for (C₂₁H₂₄D₂³⁵Cl₂O₄ + Na): 437.1231; found: 437.1215; calcd for (C₂₁H₂₄D₂³⁵Cl³⁷ClO₄ + Na): 439.1202; found: 439.1203.


Compound 6e. Lithium chloride (73 mg, 1.727 mmol) was added to a solution of 6d (326 mg, 0.785 mmol)

in DMSO (5 mL). Seven drops of water were added via pipette then the mixture was stirred at 155°C (oil bath temperature) during 16 hours. At room temperature, the mixture was partitioned between brine (5 mL) and EtOAc (5 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were dried over Na₂SO₄, filtered and evaporated. Purification by flash chromatography (PE/EtOAc, $1/0 \rightarrow 90/1$) gave **7e** as colourless oil (212 mg, 79%). ¹H NMR (500

MHz, CDCl₃): $\delta = 7.30$ (d, J = 8.0 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.0, 2.0 Hz, 1H), 5.09– 5.04 (m, 1H), 4.10 (q, J = 7.0 Hz, 2H), 2.87–2.78 (m, 1H), 2.61–2.46 (m, 4H), 2.28 (s, 2H), 2.05 (dtd, J = 10.9, 9.0, 5.3 Hz, 1H), 1.83 (ddt, J = 13.4, 9.5, 6.5 Hz, 1H), 1.62 (dtd, J = 13.5, 9.1, 5.9 Hz, 1H), 1.57–1.49 (m, 1H), 1.23 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 173.2$, 145.5, 142.7, 132.0, 130.2, 130.1, 129.4, 127.8, 117.2, 60.2, 42.7, 35.8, 34.2, 32.4, 26.3, 23.5, 22.8 (quint., J = 19.0 Hz), 14.2; IR (neat): $\tilde{v} = 2972$, 2931, 2851, 2203, 2106, 1732, 1593, 1562, 1473, 1395, 1369, 1339, 1263, 1182, 1131, 1031, 871, 817, 684, 658 cm⁻¹; MS (ES+): m/z (rel. intensity): 367 (63), 365 (100) [M + Na]; HRMS (ES+) calcd for (C₁₈H₂₀D₂³⁵Cl₂O₂ + Na): 365.1020; found: 365.1012; calcd for (C₁₈H₂₀D₂³⁵Cl³⁷ClO₂ + Na): 367.0991; found: 367.0997.

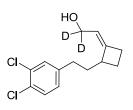
Compound 6f. Ester 6e (250 mg, 0.728 mmol) in Et₂O (1 mL) was added under N₂ to a suspension of



LiAlH₄ (14 mg, 0.364 mmol) in Et₂O (4 mL) at 0 °C (bath temperature). After stirring for 20 minutes at 0 °C, LiAlH₄ (14 mg, 0.364 mmol) was added as solid. After stirring for 35 minutes at r.t., few drops of a saturated solution of Na₂SO₄ were added until a white precipitate appeared. The mixture was then allowed to stir at room temperature before being filtered through a pad of Celite and concentrated. Purification by flash chromatography (PE/EtOAc, 15/1 \rightarrow 10/1 \rightarrow

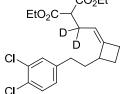
5/1 → 3/1) afforded **6f** as a colourless oil (215 mg, 98%). ¹H NMR (500 MHz, CDCl₃): δ = 7.28 (d, *J* = 8.2 Hz, 1H), 7.22 (d, *J* = 1.6 Hz, 1H), 6.96 (dd, *J* = 8.2, 1.6 Hz, 1H), 5.11–5.05 (m, 1H), 3.59 (t, *J* = 6.6 Hz, 2H),

2.87–2.77 (m, 1H), 2.60–2.44 (m, 4H), 2.06 (dtd, J = 10.9, 9.0, 5.4 Hz, 1H), 1.85 (ddt, J = 13.1, 9.5, 6.5 Hz, 1H), 1.64 (dtd, J = 13.4, 9.1, 5.9 Hz, 1H), 1.59–1.50 (m, 1H), 1.57 (t, J = 6.5 Hz, 2H), 1.31–1.24 (m, 1H(OH)); ¹³C NMR (125 MHz, CDCl₃): $\delta = 144.6, 142.7, 132.0, 130.2, 130.1, 129.4, 127.8, 118.6, 62.5, 42.7, 35.9, 32.5, 32.3, 26.4, 23.5, 23.4$ (quint., J = 18.8 Hz); IR (neat): $\tilde{\nu} = 3323$ (br), 2929, 2859, 2187, 2100, 1593, 1561, 1472, 1396, 1350, 1258, 1207, 1131, 1052, 1030, 906, 870, 816, 684, 658 cm⁻¹; MS (ES+): m/z (rel. intensity): 325 (65), 323 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₈D₂³⁵Cl₂O + Na): 323.0914; found: 323.0902; calcd for (C₁₆H₁₈D₂³⁵Cl³⁷ClO + Na): 325.0885; found: 325.0884.


Compound 6. A solution of DMSO (61 μ L, 0.863 mmol) in CH₂Cl₂ (0.5 mL) was added to a solution of (COCl)₂ (37 μ L, 0.432 mmol) in CH₂Cl₂ (3 mL) at -78 °C under N₂. After stirring for 10 minutes at this

temperature, a solution of **6f** (100 mg, 0.332 mmol) in CH_2Cl_2 (1 mL) was added via canula. After stirring for 15 minutes at -78 °C, Et_3N (0.23 mL, 1.66 mmol) was added via syringe. After stirring for 30 minutes at r.t., the mixture was quenched with a saturated solution of NH_4Cl (10 mL). The aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried over Na_2SO_4 , filtered and concentrated. Purification by flash

chromatography (PE/EtOAc, 70/1 → 30/1 → 15/1) gave **7** as colourless oil (65 mg, 66%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.73$ (t, J = 1.6 Hz, 1H), 7.29 (d, J = 8.2 Hz, 1H), 7.22 (d, J = 1.8 Hz, 1H), 6.97 (dd, J = 8.2, 1.8 Hz, 1H), 5.08–5.03 (m, 1H), 2.89–2.77 (m, 1H), 2.62–2.44 (m, 4H), 2.41 (s, 2H), 2.06 (dtd, J = 10.9, 9.0, 5.4 Hz, 1H), 1.83 (ddt, J = 13.4, 9.5, 6.3 Hz, 1H), 1.62 (dtd, J = 13.5, 9.1, 6.0 Hz, 1H), 1.57–1.50 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.4$, 145.8, 142.7, 132.0, 130.3, 130.1, 129.5, 127.9, 116.9, 43.6, 42.7, 35.8, 32.5, 26.4, 23.5, 20.1 (quint, J = 19.8 Hz); IR (neat): $\tilde{\nu} = 3027$, 2918, 2856, 2820, 2720, 2197, 2111, 1722, 1593, 1561, 1472, 1395, 1350, 1327, 1257, 1208, 1131, 1071, 1030, 872, 817, 705, 684, 660 cm⁻¹; MS (CI): m/z (rel. intensity): 320 (13), 318 (65), 316 (100); HRMS (CI) calcd for (C₁₆H₁₆D₂³⁵Cl₂O + H): 299.0933; found: 299.0937.


Compound 4b. This compound was prepared from 4a (324 mg, 1.034 mmol) according to the procedure

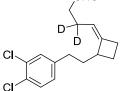
described for the preparation of **6b**. Colourless oil (217 mg, 77%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.29$ (d, J = 8.2 Hz, 1H), 7.22 (d, J = 1.8 Hz, 1H), 6.97 (dd, J = 8.2, 1.8 Hz, 1H), 5.32–5.27 (m, 1H), 3.02–2.93 (m, 1H), 2.70–2.61 (m, 1H), 2.60–2.49 (m, 2H), 2.45 (ddd, J = 13.8 Hz, 10.3, 6.8 Hz, 1H), 2.10 (dtd, J = 11.0, 9.1, 6.9 Hz, 1H), 1.94–1.85 (m, 1H), 1.76 (dtd, J = 13.4, 10.0, 5.0 Hz, 1H), 1.69–1.62 (m, 1H(OH)), 1.62–1.56 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 147.9$, 142.5, 132.1, 130.3,

130.2, 129.7, 127.9, 120.3, 58.6 (quint., J = 21.9 Hz), 42.3, 36.2, 32.5, 28.3, 22.8; IR (neat): $\tilde{v} = 3321$ (br), 2937, 2857, 2187, 2096, 1694, 1593, 1562, 1473, 1396, 1348, 1208, 1131, 1070, 1030, 969, 951, 872, 817, 703, 686, 659 cm⁻¹; MS (ES+): m/z (rel. intensity): 297 (81), 295 (100) [M + Na]; HRMS (ES+) calcd for (C₁₄H₁₄D₂³⁵Cl₂O + Na): 295.0601; found: 295.0601; calcd for (C₁₄H₁₄D₂³⁵Cl³⁷ClO + Na): 297.0572; found: 297.0569.

Compound 4d. Intermediate allylic bromide 4c was prepared from 4b (315 mg, 1.15 mmol) according to

the procedure described for the preparation of **6c**. Compound **4d** was then prepared from 9c according to the procedure described for the preparation of **6d**. Colourless oil (353 mg, 74% over two steps). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.31$ (d, J = 8.0 Hz, 1H), 7.26 (d, J = 2.0 Hz, 1H), 7.01 (dd, J = 8.0, 2.0 Hz, 1H), 5.01–4.96 (m, 1H), 4.16 (q, J = 7.1 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.26 (s, 1H), 3.01–2.91 (m, 1H), 2.66–

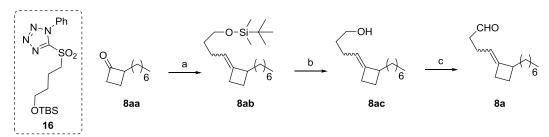
2.54 (m, 2H), 2.52–2.42 (m, 2H), 2.07 (dtd, J = 11.0, 9.1, 7.0 Hz, 1H), 2.01–1.92 (m, 1H), 1.73 (dtd, J = 13.4, 10.4, 4.9 Hz, 1H), 1.61–1.53 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (125)


MHz, CDCl₃): $\delta = 169.0$ (2C), 145.8, 142.5, 131.9, 130.2, 130.1, 129.4, 127.8, 116.6, 61.22, 61.16, 52.1, 42.0, 35.4, 32.4, 28.0, 26.9 (quint., J = 19.4 Hz), 22.5, 14.0 (2C); IR (neat): $\tilde{v} = 2979$, 2938, 2856, 1730, 1590, 1562, 1473, 1393, 1368, 1319, 1209, 1175, 1151, 1131, 1096, 1030, 942, 868, 818, 686, 659 cm⁻¹; MS (ES+): m/z (rel. intensity): 439 (65), 437 (100); HRMS (ES+) calcd for (C₂₁H₂₄D₂³⁵Cl₂O₄ + Na): 437.1231; found: 437.1215; calcd for (C₂₁H₂₄D₂³⁵Cl³⁷ClO₄ + Na): 439.1202; found: 439.1184.

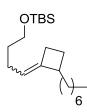
Compound 4e. This compound was prepared from **4d** (353 mg, 0.85 mmol) according to the procedure described for the preparation of **6e**. Colourless oil (242 mg, 71%). Under these conditions, partial isomerisation of the C–C double bond was observed (*E*/Z, 4:96). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.31$ (d, J = 8.2 Hz, 1H), 7.25 (d, J = 2.0 Hz, 1H), 7.00 (dd, J = 8.2, 2.0 Hz, 1H), 5.03–4.98 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 3.01–2.90 (m, 1H), 2.66–2.54 (m, 4H), 2.27 (s, 2H), 2.07 (dtd, J = 11.0, 9.1, 6.9 Hz, 1H), 1.99–1.90 (m, 1H), 1.73 (dtd, J = 13.4, 10.2, 4.9 Hz, 1H), 1.61–1.52 (m, 1H), 1.22 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 173.2$, 143.9, 142.6, 132.0, 130.2, 130.0, 129.5, 127.8, 119.3, 60.2, 42.0, 35.6, 34.5, 32.5, 28.0, 23.1 (quint., J = 19.9 Hz), 22.6, 14.2; IR (neat): $\tilde{\nu} = 2967$, 2937, 2856, 2203, 2106, 1732, 1593, 1563, 1473, 1395, 1369, 1339, 1263, 1182, 1130, 1030, 949, 871, 817, 706, 686, 659 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 367 (67), 365 (100) [M + Na]; HRMS (ES+) calcd for (C₁₈H₂₀D₂³⁵Cl₂O₂ +

Na): 365.1020; found: 365.1019; calcd for $(C_{18}H_{20}D_2^{35}Cl^{37}ClO_2 + Na)$: 367.0991; found: 367.1001.

Compound 4f. This compound was prepared from **4e** (240 mg, 0.699 mmol) according to the procedure described for the preparation of **6f.** Colourless oil (128 mg, 61%, *Z* isomer only). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (d, J = 8.4 Hz, 1H), 7.25 (d, J = 2.0 Hz, 1H), 7.00 (dd, J = 8.4, 2.0 Hz, 1H), 5.07–5.02 (m, 1H), 3.62 (t, J = 6.4 Hz, 2H), 3.01–2.89 (m, 1H), 2.67–2.55 (m, 2H), 2.54–2.42 (m, 2H), 2.08 (dtd, J = 11.1, 9.2, 7.0 Hz, 1H), 2.01–1.90 (m, 1H), 1.74 (dtd, J = 13.5, 10.1, 5.0 Hz, 1H), 1.63–1.51 (m, 3H), 1.28–1.17 (m, 1H(OH)); ¹³C NMR (100 MHz, CDCl₃): $\delta = 143.0$, 142.7, 132.0, 130.2, 130.1, 129.5, 127.8, 120.8, 62.5, 42.1, 35.6, 32.7, 32.5, 28.0, 23.8 (quint., J = 19.0 Hz), 22.7; IR (neat): $\tilde{V} = 3320$ (br), 2933, 2861, 2187, 2106, 1593, 1562, 1473, 1396, 1347, 1259, 1208, 1131, 1051, 1030, 949, 907, 871, 816, 732, 686, 659 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 325 (67), 323 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₈D₂³⁵Cl₂O + Na): 323.0914; found: 323.0916; calcd for (C₁₆H₁₈D₂³⁵Cl³⁷ClO + Na): 325.0885; found:


Compound 4. This compound was prepared from **4f** (54 mg, 0.179 mmol) according to the procedure described for the preparation of **6**. Colourless oil (35 mg, 64%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.74$ (t, J = 1.5 Hz, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.25 (d, J = 2.0 Hz, 1H),

325.0898.


described for the preparation of **6**. Colourless oil (35 mg, 64%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.74$ (t, J = 1.5 Hz, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.25 (d, J = 2.0 Hz, 1H), 6.99 (dd, J = 8.5, 2.0 Hz, 1H), 5.02–4.97 (m, 1H), 3.00–2.90 (m, 1H), 2.65–2.59 (m, 2H), 2.53–2.43 (m, 2H), 2.42 (s, 2H), 2.09 (dtd, J = 11.0, 9.1, 6.9 Hz, 1H), 1.99–1.89 (m, 1H), 1.75 (dtd, J = 13.5, 10.2, 5.0 Hz, 1H), 1.63–1.53 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.3$, 144.2, 142.6, 132.1, 130.3, 130.2, 129.6, 127.8, 119.1, 43.9,

42.1, 35.6, 32.5, 28.1, 22.6, 20.4 (quint., J = 19.7 Hz); IR (neat): $\tilde{v} = 2936$, 2856, 2820, 2719, 2208, 2106, 1724, 1593, 1560, 1473, 1396, 1322, 1257, 1204, 1131, 1077, 1030, 956, 872, 819, 685, 658 cm⁻¹; MS (ES+): m/z (rel. intensity): 355 (60), 353 (100) [M + MeOH + Na]; HRMS (ES+) calcd for (C₁₆H₁₆D₂³⁵Cl₂O + MeOH + Na): 353.1020; found: 353.1022; calcd for (C₁₆H₁₆D₂³⁵Cl³⁷ClO + MeOH + Na): 355.0991; found: 355.0997.

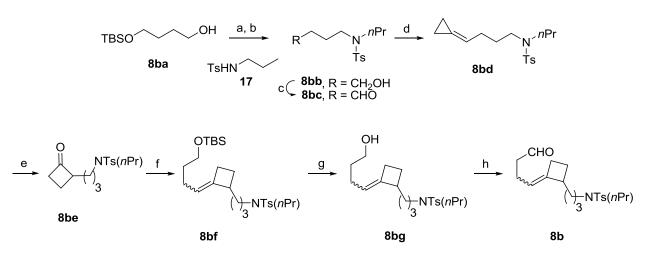
^a **16**, NaHMDS, THF, -78 °C to r.t.; 51%. ^b TBAF, THF; 95%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 84%.

Compound 8ab. Sodium bis(trimethylsilyl)amide (320 mg, 1.8 mmol) was added as solid in one portion

under N₂ to a solution of **16** (653 mg, 1.65 mmol)¹ and **8aa** (252 mg, 1.5 mmol)² in THF (21 mL) at -78 °C. The mixture was slowly allowed to warm to room temperature overnight while stirring by maintaining the flask dipped in the dry ice bath. The mixture was quenched with a saturated solution of NH₄Cl (10 mL) and extracted with EtOAc (3 × 15 mL). The organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (petroleum ether/EtOAc, 150:1) gave **8ab** as a

colorless oil (180 mg, 51%, partially inseparable mixture of *E/Z* isomers, ratio = 7:3). ¹H NMR (500 MHz, CDCl₃):³ δ = 5.09–5.03 (m, 0.7H), [5.03–4.97 (m, 0.3H)], [3.59 (t, *J* = 6.5 Hz, 0.6H)], 3.58 (t, *J* = 6.5 Hz, 1.4H), [2.94–2.86 (m, 0.3H)], 2.85–2.76 (m, 0.7H), <u>2.62–2.40 (m, 2H)</u>, <u>2.07–1.98 (m, 1H)</u>, [1.95 (q, *J* = 7.5 Hz, 0.6H)], 1.90 (q, *J* = 7.5 Hz, 1.4H), <u>1.69–1.38 (m, 5H)</u>, <u>1.37–1.15 (m, 10H)</u>, <u>0.88 (s, 9H)</u>, <u>0.86 (t, *J* = 6.7 Hz, 3H)}, 0.03 (s, 6H)</u>; ¹³C NMR (125 MHz, CDCl₃):³ δ = 145.2, [143.7], [120.4], 118.3, [62.8], 62.7, 43.7, [42.8], 34.7, [34.4], [33.4], 33.0, <u>31.9</u>, [29.75], 29.73, [29.40], 29.35, [28.1], 27.15, [27.11], 26.4, <u>26.0 (3C)</u>, [24.5], 24.0, 23.9, [22.9], <u>22.7</u>, <u>18.3</u>, <u>14.1</u>, <u>-5.3 (2C)</u>; IR (neat): $\tilde{\nu}$ = 2955, 2925, 2855, 1463, 1254, 1099, 834, 773 cm⁻¹; HRMS (ES+) calcd for (C₂₁H₄₂OSi + Na): 361.2903; found: 361.2915.

Compound 8ac. TBAF (1.64 mL, 1.64 mmol (1M in THF)) was added via syringe to a solution of **8ab** (503 mg, 1.49 mmol) in THF (15 mL) at 0 °C under N₂. After stirring for 1h at room temperature, the mixture was quenched with a saturated solution of NH₄Cl (5 mL) and extracted with EtOAc (3 × 15 mL). The organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (petroleum ether/EtOAc, 15:1 \rightarrow 12:1 \rightarrow 10:1 \rightarrow 7:1) gave two fractions of colourless oil (150 mg, *E*/*Z* = 10:1 and 168 mg, *E*/*Z* = 1:1, 95% combined) which enabled the attributions of peaks to each isomers in the NMR spectra. ¹H


NMR (500 MHz, CDCl₃): (isomer *E*) $\delta = 5.08$ (tq, J = 7.3, 2.4 Hz, 1H), 3.68–3.59 (m, 2H), 2.85–2.76 (m, 1H), 2.56–2.42 (m, 2H), 2.03 (ddt, J = 11.0, 5.4, 8.9 Hz, 1H), 1.95 (q, J = 7.3 Hz, 2H), 1.59 (quint, J = 6.9 Hz, 2H), 1.55–1.45 (m, 2H), 1.36–1.12 (m, 11H), 0.86 (t, J = 7.0 Hz, 3H); characteristic signals of *Z* isomer: $\delta = 5.02$ (tq, J = 7.5, 2.2 Hz, 1H), 2.95–2.85 (m, 1H), 2.63–2.50 (m, 2H), 1.99 (q, J = 7.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃):³ $\delta = 145.8$, [144.3], [120.1], 118.0, 62.79, [62.77], 43.6, [42.8], 34.6, [34.4], [33.0], 32.6, <u>31.9</u>, [29.71], 29.68, [29.4], 29.3, [28.1], 27.09, [27.07], 26.4, [24.5], 24.2, <u>23.8</u>, [22.8], 22.7, <u>14.1</u>; IR (neat): $\tilde{V} = 3328$ (br), 2922, 2853, 1456, 1054 cm⁻¹; MS (CI): *m/z* (rel. intensity): 242 (39) [M + NH₄], 225 (25) [M + H], 207 (12), 85 (100); elemental analysis (%) calcd for C₁₅H₂₈O: C 80.29, H 12.58; found: C 80.17, H 12.47.

² Nemoto, H.; Shiraki, M.; Fukumoto, K. J. Org. Chem. 1996, 61, 1347.

³ Underlined chemical shifts are common to the *E* and *Z* isomers. Chemical shifts attributed to the *Z* isomer are given in brackets.

Compound 8a. This compound was obtained from **8ac** (224 mg, 1 mmol) using the Swern procedure followed for the preparation of **6**. (Colourless oil, 186 mg, 84%). ¹H NMR (500 MHz, CDCl₃):³ $\delta = [9.75$ (t, J = 1.7 Hz, 0.4H)], 9.73 (t, J = 1.8 Hz, 0.6H), 5.04 (tq, J = 7.2, 2.4 Hz, 0.6H), [4.97 (tq, J = 7.4, 2.1, 0.4H)], [2.95–2.87 (m, 0.4H)], 2.85–2.76 (m, 0.6H), [2.63–2.44 (m, 1.2H)], 2.56–2.46 (m, 1.2H), 2.45–2.40 (m, 1.2H), [2.30–2.20 (m, 0.8H)], 2.21–2.15 (m, 1.2H), 2.08–1.97 (m, 1H), [1.70–1.59 (m, 0.4H)], 1.55–1.48 (m, 0.6H), [1.47–1.36 (m, 0.4H)], 1.34–1.14 (m, 12H), 0.89–0.82 (m, 3H); ¹³C NMR (125 MHz, CDCl₃):³ $\delta = 202.7$, [202.5], 146.8, [145.4], [118.3], 116.2, [44.2], 43.8, 43.6, [42.7], 34.5, [34.3], [31.9], 31.8, [29.67], 29.64, [29.33], 29.27, 27.0, 26.3, 23.7, [22.7], 22.6, [21.0], 20.8, 14.1; IR (neat): $\tilde{\nu} = 2923, 2853, 2715, 1727, 1465, 1388, 1047, 821, 723$ cm⁻¹; MS (CI): m/z (rel. intensity): 240 (100) [M + NH₄], 223 (74) [M + H], 205 (31), 95 (25); elemental analysis (%) calcd for C₁₅H₂₆O: C 81.02, H 11.79; found: C 81.16, H 12.41.

Preparation of compound 8b

^a PPh₃, **17**, DEAD, THF, 0 °C to r.t.. ^b TBAF, THF; 40% over two steps. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 90%. ^d 1) BrCH₂CH₂CH₂PPH₃,Br, *t*BuONa, THF, reflux; 2) **8bd**, reflux; 45%. ^e 1) mCPBA, CH₂Cl₂, 0 °C to r.t.; 2) LiI, CH₂Cl₂, reflux; 55%. ^f **16**, NaHMDS, THF, -78 °C to r.t.; 50%. ^g TBAF, THF; 93%. ^h (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 93%.

Compound 8bb. A solution of commercially available **8ba** (1.5g, 7.35 mmol) in THF (5 mL) was added via canula to a solution of PPh₃ (2.12 g, 8.09 mmol) and **17** (1.73 g, 8.09 mmol) in THF (70 mL) at 0 °C under

HO_____N____ Ts N₂. Then diethyldiazodicarboxylate (DEAD) (1.27 mL, 8.09 mmol) was added via syringe within 2 minutes. After stirring overnight at r.t., all volatiles were evaporated and purification by flash chromatography (PE/EtOAC, $20/1 \rightarrow 15/1 \rightarrow$

10/1 → 7/1 → 4/1) gave 1.36 g of colourless oil which immediately dissolved in THF (10 mL) and treated at 0 °C with TBAF (3.6 mL). After stirring for 1h, the mixture was quenched with a saturated solution of NH₄Cl (10 mL) and diluted with EtOAc (30 mL). The aqueous layer was extracted with EtOAc (10 mL) and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, $3/1 \rightarrow 2/1 \rightarrow 1/1$) gave **8bb** as a pale yellow oil (828 mg, 40% over two steps). ¹H NMR (500 MHz, CDCl₃): δ = 7.65 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 3.61 (t, *J* = 6.3 Hz, 2H), 3.13–3.08 (m, 2H), 3.06–3.01 (m, 2H), 2.39 (s, 3H), 2.06–1.95 (m, 1H(*OH*)), 1.67 (m, 2H), 1.57–1.47 (m, 4H), 0.84 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 142.9, 136.8, 129.5 (2C), 126.9 (2C), 62.1, 50.0, 48.0, 29.5, 25.2, 21.9, 21.4, 11.1; IR (neat): $\tilde{\nu}$ = 3480 (br), 2935, 2875, 1598, 1494, 1459, 1381, 1331, 1152, 1089, 1002, 845, 727 cm⁻¹; HRMS (ES+) calcd for (C₁₄H₂₃NO₃S + Na): 308.1296; found: 308.1291.

Compound 8bc. This compound was obtained from 8bb (800 mg, 2.81 mmol) using the Swern procedure

followed for the preparation of **6**. Purification by flash chromatography (PE/EtOAc, 3/1) gave **8bc** as a pale yellow oil (717 mg, 90%). ¹H NMR (500 MHz, CDCl₃): $\delta =$ 9.78–9.76 (m, 1H), 7.65 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 3.09 (t, *J* = 7.2 Hz, 2H), 3.06–3.00 (m, 2H), 2.55 (t, *J* = 7.0 Hz, 2H), 2.40 (s, 3H), 1.85 (quint., *J* = 7.1 Hz, 2H), 1.56– 1.47 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 201.4, 143.1, 136.6, 129.6 (2C), 127.0 (2C), 50.5, 47.4, 40.6, 21.9, 21.4, 21.2, 11.1; IR (neat): $\tilde{\nu} =$ 2966, 2935, 2876, 2726, 1721, 1598, 1494, 1459, 1333, 1154, 1089, 980, 815, 731 cm⁻¹; HRMS (ES+) calcd for (C₁₄H₂₁NO₃S + Na): 306.1140; found: 306.1140; elemental analysis (%) calcd for C₁₄H₂₁NO₃S: C 59.34, H 7.47, N 4.94; found: C 58.70, H 7.42, N 5.46.

Compound 8bd. *t*-BuONa (485 mg, 5.05 mmol) was added as solid in 3 portions at room temperature and under N_2 to a solution of 3-(bromopropyl)triphenylphosphonium bromide (1.17 g, 2.53 mmol) in THF (15 mL). Then, the suspension was heated to reflux for 2

 N_{Ts} 2.53 mmol) in THF (15 mL). Then, the suspension was heated to reflux for 2 hours (oil bath temperature = 74 °C), before adding a solution of **8bc** (650 mg, 2.27 mmol) in THF (2 mL) via canula. After 2.5 hours heating, the crude mixture

was quenched at room temperature with H₂O (5 mL). The aqueous layer was extracted with ethyl acetate (2 × 20 mL) and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc: 200/1 \rightarrow 10/1 \rightarrow 3/1) gave compound **8bd** as colorless oil (312 mg, 45%). ¹H NMR (500 MHz, CDCl₃): δ = 7.65 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 5.72–5.66 (m, 1H), 3.12–3.00 (m, 4H), 2.39 (s, 3H), 2.13 (q, *J* = 7.3 Hz, 2H), 1.65 (quint., *J* = 7.7 Hz, 2H), 1.57–1.48 (m, 2H), 1.03–0.94 (m, 4H), 0.85 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 142.8, 137.0, 129.5 (2C), 127.0 (2C), 122.0, 116.8, 50.0, 48.0, 29.0, 28.3, 22.0, 21.4, 11.1, 2.1, 1.8; IR (neat): $\tilde{\nu}$ = 2971, 2934, 2875, 1599, 1494, 1459, 1337, 1154, 1090, 962, 814, 730 cm⁻¹; HRMS (ES+) calcd for (C₁₆H₂₅NO₂S + Na): 330.1504; found: 330.1505.

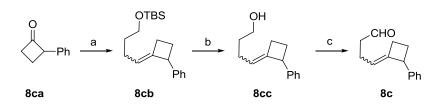
Compound 8be. mCPBA (202 mg, 1.18 mmol) was added as solid in one portion to a solution of **8bd** (300 mg, 0.98 mmol) in CH₂Cl₂ (5 mL) at 0 °C. After stirring at r.t. for 20 hours, the mixture was quenched with a saturated solution of NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. This material was diluted in CH₂Cl₂ (1 mL) and LiI (5 mg, 0.037

mmol) was added under N₂. After heating at reflux for 3h, the mixture was diluted with CH₂Cl₂ (1 mL) and En (5 mg, 0.057 mmol) was added under N₂. After heating at reflux for 3h, the mixture was diluted with CH₂Cl₂, washed with brine and concentrated. Purification by flash chromatography (PE/EtOAc, 4/1) gave **8be** as a colorless oil (172 mg, 54%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.64$ (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 3.29– 3.19 (m, 1H), 3.12–2.95 (m, 5H), 2.92–2.82 (m, 1H), 2.39 (s, 3H), 2.15 (qd, J = 10.6, 5.2 Hz, 1H), 1.67–1.54 (m, 4H), 1.54–1.44 (m, 3H), 0.83 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 211.5$, 143.0, 136.8, 129.6 (2C), 127.0 (2C), 59.7, 50.1, 47.9, 44.4, 26.6, 26.2, 21.9, 21.4, 16.8, 11.1; IR (neat): $\tilde{\nu} = 2967$, 2932, 2875, 1773, 1598, 1494, 1459, 1335, 1154, 1089, 960, 815, 719 cm⁻¹; HRMS (ES+) calcd for (C₁₆H₂₅NO₃S + Na): 346.1453; found: 346.1447.

Compound 8bf. This compound was obtained from **8be** (160 mg, 0.49 mmol), using the procedure described for the preparation of **8ab**. Purification by flash chromatography (PE/EtOAc, 15/1) gave **8bf** as a inseparable mixture of *E* and *Z* isomers (6:4) (Colorless oil, 122 mg, 50%). ¹H NMR (500 MHz, CDCl₃):³ $\delta = \underline{7.66}$ (d, J = 8.1 Hz, 2H), $\underline{7.26}$ (m, 1H), $\underline{3.61-3.53}$ (m, 2H), $\underline{3.10-3.00}$ (m, 4H), [2.91–2.83 (m, 0.4H)], 2.82-2.73 (m, 0.6 H), $\underline{2.60-2.42}$ (m, 2H), $\underline{2.39}$ (s, 3H), $\underline{2.06-1.96}$ (m, 1H), $\underline{10.5}$ (s, 1.25 (s, 2.105 (s,

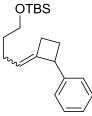
 $\underline{1.95-1.85 (m, 2H)}, \underline{1.63-1.25 (m, 9H)}, 0.871 (s, 5H), [0.865 (s, 4H)], \underline{0.85 (t, J = 7.3 Hz, 3H)}, \underline{0.02 (s, 6H)};$

¹³C NMR (125 MHz, CDCl₃):³ δ = 144.3, <u>142.8</u>, [142.7], <u>137.1</u>, <u>129.5 (2C)</u>, <u>127.1 (2C)</u>, [120.9], 118.8, [62.7], 62.6, [50.0], 49.9, [48.34], 48.25, 43.0, [42.1], [33.2], 32.9, 31.6, [31.3], [28.0], 26.33, [26.30], 26.2, <u>25.9 (3C)</u>, [24.4], 24.0, 23.6, [22.7], [21.99], 21.95, <u>21.4</u>, [18.30], 18.28, <u>11.2</u>, <u>-5.3 (2C)</u>; IR (neat): $\tilde{\nu}$ = 2929, 2856, 1599, 1495, 1463, 1341, 1253, 1157, 1091, 1040, 1020, 1005, 959, 834, 814, 774, 724 cm⁻¹; HRMS (ES+) calcd for (C₂₇H₄₇NO₃SSi + Na): 516.2944; found: 516.2956.


Compound 8bg. This compound was obtained from 11bf (144 mg, 0.292 mmol) using the procedure described for the preparation of **8ac**. Purification by flash chromatography (PE/EtOAc, $4/1 \rightarrow 3/1$) gave **8bg** as an inseparable mixture of *E* and *Z* isomers (6:4) (colorless oil, 103 mg, 93%). ¹H NMR (500 MHz, CDCl₃):³ $\delta = 7.65$ (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 5.08–4.98 (m, 1H), 3.66–3.54 (m, 2H), 3.15–2.98 (m, 4H), [2.95–2.86 (m, 0.4H)], 2.83–2.73 (m, 0.6 H), 2.61–2.40 (m, 2H), 2.38 (s, 3H), 2.06–1.85 (m, 4H), [1.70–1.61 (m, 0.4H)], 1.60–1.39 (m, 8H), 1.34–1.25 (m, 0.6H),

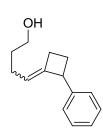
<u>0.89–0.78 (m, 3H)</u>; ¹³C NMR (125 MHz, CDCl₃):³ δ = 144.6, [143.03], [142.85], 142.8, 136.93, [136.89], [129.46 (2C)], 129.44 (2C), 126.94 (2C), [126.92 (2C)], [120.7], 118.5, [62.4], 62.3, [49.9], 49.8, [48.3], 48.2, 42.9, [42.1], [32.9], 32.5, 31.4, [31.3], [27.9], 26.3, 26.1, [26.0], [24.4], 24.0, 23.5, [22.5], <u>21.9</u>, <u>21.3</u>, <u>11.1</u>; IR (neat): $\tilde{\nu}$ = 3403 (br), 2932, 2874, 1598, 1494, 1457, 1379, 1334, 1305, 1153, 1090, 1042, 1020, 960, 814, 724 cm⁻¹; HRMS (ES+) calcd for (C₂₁H₃₃NO₃S + Na): 402.2079; found: 402.2075.

Compound 8b. This compound was obtained from **8bg** (100 mg, 0.263 mmol) using the Swern procedure followed for the preparation of **6**. Purification by flash chromatography (PE/EtOAc, 10/1) gave **8b** as an

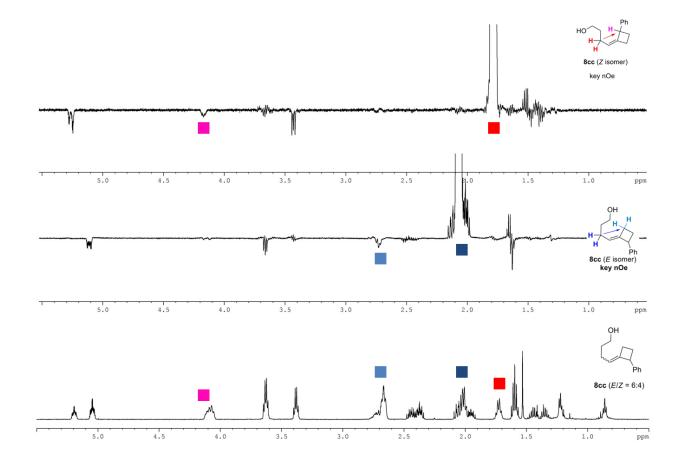

CHO inseparable mixture of *E* and *Z* isomers (6:4) (colorless oil, 92 mg, 93%). ¹H NMR (500 MHz, CDCl₃):³ $\delta = [9.73-9.71 \text{ (m, 0.4H)}]$, 9.71–9.69 (m, 0.6H), <u>7.66–7.60 (m, 2H)</u>, <u>7.24 (d, *J* = 7.5 Hz, 2H), 5.03–4.93 (m, 1H), 3.12–2.97 (m, 4H)</u>, [2.93–2.83 (m, 0.4H)], 2.71–2.59 (m, 0.6H), <u>2.59–2.34 (m, 4H), 2.37 (s, 3H), 2.25–2.11 (m, 2H), 2.06–1.94 (m, 2H)</u>, 2.71–2.59 (m, 0.6H), <u>1.56–1.36 (m, 6H)</u>, 1.34–1.23 (m, 0.6H), <u>0.83 (t, *J* = 7.3 Hz, 3H)</u>; ¹³C NMR (125 MHz, CDCl₃):³ $\delta = 202.45$, [202.38], 145.8, [144.4], [142.84], 142.81, <u>136.9</u>, [129.47 (2C)], 129.45 (2C), <u>127.0 (2C)</u>, [118.9], 116.8, [50.0], 49.9, [48.3], 48.2, [44.0], 43.7, 42.8, [42.0], 31.3, [31.1], [27.9], 26.3, [26.2], 26.1, 23.4, [22.5], [21.93], 21.89, <u>21.4</u>, [20.9], 20.6, <u>11.1</u>; IR (neat): $\tilde{\nu} = 2934$, 2875, 2722, 1722, 1599, 1494, 1459, 1381, 1336, 1154, 1090, 1041, 1020, 993, 960, 815, 724 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 432 (54) [M + MeOH +Na], 400 (100) [M + Na]; HRMS (ES+) calcd for (C₂₁H₃₁NO₃S + Na): 400.1905.

Preparation of compound 8c

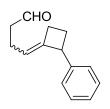
^a **16**, LiHMDS, toluene, -78 °C to r.t.; 66%. ^b TBAF, THF; 90%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 55–63%.


Compound 8cb. Lithium bis(trimethylsilyl)amide (327 mg, 2.01 mmol) was added as solid in one portion under N₂ to a solution of **16** (650 mg, 1.64 mmol)¹ and commercially available **8ca** (184 mg, 1.26 mmol) in

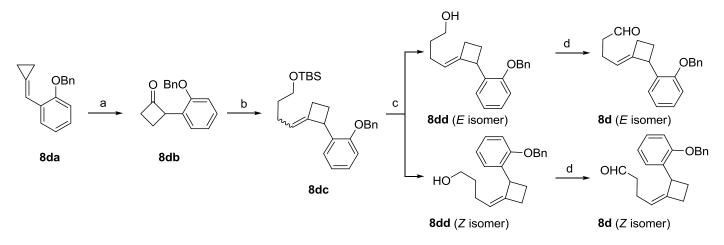
solution of **16** (650 mg, 1.64 mmol)² and commercially available **8ca** (184 mg, 1.26 mmol) in toluene (12 mL) at -78 °C. The mixture was slowly allowed to warm to room temperature overnight while stirring by maintaining the flask dipped in the dry ice bath. The mixture was quenched with a saturated solution of NH₄Cl (10 mL) and extracted with EtOAc (3 × 15 mL). The organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (petroleum ether/EtOAc, 50:1) gave **8cb** as an inseparable mixture of *E* and *Z* isomers (1:1) (Colorless oil, 265 mg, 66%). ¹H


NMR (500 MHz, CDCl₃):³ $\delta = 7.31-7.23$ (m, 4H), 7.19–7.14 (m, 1H), [5.20 (tq, J = 7.4, 2.3 Hz, 0.5H], 5.03 (tq, J = 7.4, 2.5 Hz, 0.5H), 4.13-4.02 (m, 1H), 3.58 (t, J = 6.6 Hz, 1H), [3.41 (dt, J = 10.2, 6.8 Hz, 0.5H)], [3.35 (dt, J = 10.1, 6.6 Hz, 0.5H)], [2.77–2.61 (m, 1H)], 2.68–2.62 (m, 1H), [2.43 (dtd, J = 11.3, 9.4, 6.4 Hz, 0.5H)], 2.37 (ddt, J = 10.8, 9.3, 6.9 Hz, 0.5H), 2.08–1.93 (m, 1.5H), [1.91 (ddt, J = 11.2, 10.1, 6.1 Hz, 0.5H)], [1.76–1.68 (m, 0.5H)], [1.66–1.58 (m, 0.5H)], 1.53 (quint., J = 7.0 Hz, 1H), 1.43–1.32 (m, 0.5H), 0.87 (s, 4.5H), [0.82 (s, 4.5H)], 0.02 (s, 3H), [-0.04 (s, 1.5H)], [-0.05 (s, 1.5H)]; ¹³C NMR (125 MHz, CDCl₃):³ $\delta = [144.5], 143.8, 143.3, [141.7], [128.3 (2C)], 128.2 (2C), 127.4 (2C), [127.2 (2C)], 126.0, [125.9], [122.4], 120.7, [62.8], 62.6, 48.6, [47.7], 32.8, [32.6], [28.3], [27.1], 26.8, 26.4, 26.0 (3C), [25.9 (3C)], [24.1], 24.0, 18.32, [18.28], -5.28 (2C), [-5.33 (2C)]; IR (neat): <math>\tilde{\nu} = 3062, 3027, 2950, 2929, 2856, 1603, 1494, 1472, 1463, 1388, 1361, 1254, 1097, 1031, 1006, 963, 939, 833, 773, 697, 661, 597, 542, 531, 522 cm⁻¹; MS (ES+): <math>m/z$ (rel. intensity): 339 (100); HRMS (ES+) calcd for (C₂₀H₃₂OSi + Na): 339.2120; found: 339.2117.

Compound 8cc. This compound was obtained from 8cb (348 mg, 1.1 mmol) using the procedure followed


for the preparation of **8ac**. Partial separation by flash chromatography (petroleum ether/Et₂O, $10/1 \rightarrow 3/1$) and purification by preparative TLC (petroleum ether/EtOAc, 3/1) gave two fractions of **8cc**, both as colorless oil: 1) E/Z = 3:1 (147 mg, 66%), 2) Z isomer only (54 mg, 24%). This enabled the attribution of NMR signals for E and Z isomers for **8cc** and the mixture of isomers of **8cb**. ¹H NMR (500 MHz, CDCl₃): (E isomer) $\delta = 7.25-7.21$ (m, 4H), 7.20–7.15 (m, 1H), 5.05 (tq, J = 7.4, 2.5 Hz, 1H), 4.10–4.03 (m, 1H), 3.63 (q, J = 6.2 Hz, 2H), 2.76–2.62 (m, 2H), 2.37 (ddt, J = 11.0, 9.3, 6.9 Hz,

1H), 2.10–1.98 (m, 3H), 1.60 (quint., J = 6.9 Hz, 2H), 1.22 (t, J = 5.4 Hz, 1H(OH)); (Z isomer) $\delta = 7.31-7.26$ (m, 4H), 7.20–7.15 (m, 1H), 5.19 (tq, J = 7.5, 2.3 Hz, 1H), 4.14–4.08 (m, 1H), 3.38 (q, J = 6.0 Hz, 2H), 2.80–2.62 (m, 2H), 2.44 (dtd, J = 11.3, 9.4, 6.3 Hz, 1H), 1.95 (ddt, J = 11.3, 10.1, 6.7 Hz, 1H), 1.77–1.68 (m, 2H), 1.49–1.40 (m, 1H), 1.39–1.30 (m, 1H), 0.86 (t, J = 5.9 Hz, 1H(OH)); ¹³C NMR (125 MHz, CDCl₃): (*E* isomer) $\delta = 143.9$, 143.5, 128.2 (2C), 127.3 (2C), 126.0, 120.3, 62.5, 48.6, 32.4, 26.7, 26.2, 24.1; (Z isomer) $\delta = 144.5$, 142.6, 128.4 (2C), 127.2 (2C), 126.0, 122.1, 62.3, 47.8, 32.2, 28.3, 26.9, 23.8; IR (neat): $\tilde{\nu} = 3343$ (br), 3061, 3026, 2938, 2876, 1699, 1602, 1492, 1452, 1047, 1031, 917, 868, 837, 758, 744, 698 cm⁻¹; MS (CI): *m*/*z* (rel. intensity): 220 (100) [M + NH₄], 203 (15) [M + H], 85 (23); elemental analysis (%) calcd for C₁₄H₁₈O: C 83.12, H 8.97; found: C 83.57, H 9.11.


The geometry of the olefin in **8cc** was confirmed on a E/Z (6:4) mixture by nOe experiments.

Compound 8c. Two batches of this compound were obtained by Swern oxidation of alcohol 8cb: 1) a E/Z

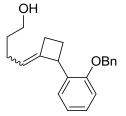
(3:1) mixture (pale yellow oil, 81 mg, 55%), 2) the pure Z isomer (colourless oil, 28 mg, 63%). ¹H NMR (500 MHz, CDCl₃): (*E* isomer) δ = 9.74 (t, *J* = 1.7 Hz, 1H), 7.24–7.21 (m, 4H), 7.20–7.15 (m, 1H), 5.01 (tq, *J* = 7.3, 2.5 Hz, 1H), 4.10–4.03 (m, 1H), 2.76–2.62 (m, 2H), 2.44 (td, *J* = 7.2, 1.8 Hz, 2H), 2.38 (ddt, *J* = 11.0, 9.3, 6.9 Hz, 1H), 2.29–2.23 (m, 2H), 2.06 (dtd, *J* = 10.8, 8.9, 8.0 Hz, 1H); (*Z* isomer) δ = 9.49 (t, *J* = 1.9 Hz, 1H), 7.31–7.24 (m, 4H), 7.20–7.15 (m, 1H), 5.18 (tq, *J* = 7.5, 2.2 Hz, 1H), 4.15–4.08 (m, 1H), 2.78–

2.62 (m, 2H), 2.44 (dtd, J = 11.2, 9.4, 6.4 Hz, 1H), 2.29–2.12 (m, 2H), 2.04–1.89 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): (*E* isomer) $\delta = 202.3$, 145.2, 143.2, 128.3 (2C), 127.3 (2C), 126.1, 118.6, 48.6, 43.6, 26.7, 26.1, 20.7; (*Z* isomer) $\delta = 202.4$, 144.2, 143.9, 128.5 (2C), 127.2 (2C), 126.2, 120.3, 47.8, 43.4, 28.3, 26.9, 20.6; IR (neat): $\tilde{\nu} = 3058$, 3026, 2947, 2916, 2851, 2825, 2719, 1724, 1601, 1493, 1454, 1408, 1389, 1078, 1031, 838, 747, 700 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 255 (100) [M + MeOH + Na]; HRMS (ES+) calcd for (C₁₄H₁₇O + MeOH + Na): 255.1361; found: 255.1357.

^a mCPBA, CH₂Cl₂, r.t.; 45%. ^b **16**, NaHMDS, THF, -78 °C to r.t.; 39%. ^c TBAF, THF, then separation by preparative TLC; 22% (*E*) + 16% (*Z*). ^d (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 47% (*E*); 56% (*Z*).

Compound 8db. mCPBA (3.35g, 14.7 mmol, 75% w/w) was added in one portion to $8da^4$ (2.89 g, 12.3 mmol) in CH₂Cl₂ (45 mL). After stirring for 2h at r.t., the mixture was quenched carefully with a saturated solution of NaHCO₃ (30 mL) and diluted with CH₂Cl₂ (15 mL). The aqueous layer was extracted with CH₂Cl₂ (15 mL). The combined organic layers were washed with brine (10 mL), dired over Na₂SO₄, filtered and concentrated. Purification by

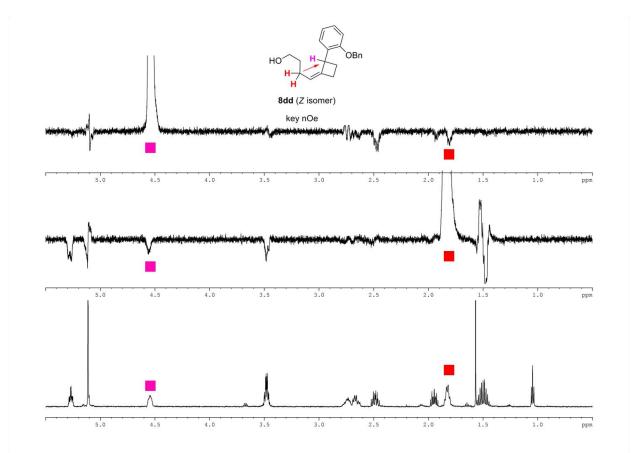
flash chromatography after solid deposition (petroleum ether/EtOAc, $15/1 \rightarrow 10/1$) gave **8db** as a white solid (1.38 g, 45%). m.p.: 56–59 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.43-7.35$ (m, 4H), 7.34–7.30 (m, 1H), 7.23–7.18 (m, 1H), 7.12 (dd, J = 7.6, 1.7 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.89 (td, J = 7.4, 1.0 Hz, 1H), 5.02 (s, 2H), 4.46 (ddt, J = 10.6, 8.1, 2.5 Hz, 1H), 3.01 (dddd, J = 18.1, 10.3, 7.9, 2.3 Hz, 1H), 2.80 (dddd, J = 17.6, 9.7, 4.8, 2.8 Hz, 1H), 2.34 (qd, J = 10.7, 4.9 Hz, 1H), 2.21 (ddt, J = 10.8, 9.7, 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 209.3, 156.5, 136.5, 129.5, 128.6, 128.5$ (2C), 128.1, 127.8 (2C), 126.1, 120.8, 111.7, 70.3, 62.0, 44.9, 18.1; IR (neat): $\tilde{\nu} = 3058, 3028, 2997, 2952, 2920, 2886, 1779, 1597, 1583, 1491, 1467, 1454, 1381, 1336, 1295, 1264, 1233, 1211, 1180, 1158, 1117, 1078, 1034, 1009, 960, 918, 882, 854, 811, 765, 747, 730, 695 cm⁻¹; MS (CI): <math>m/z$ (rel. intensity): 270 (100), 253 (9); HRMS (CI) calcd for (C₁₇H₁₆O₂ + NH₄): 270.1489; found: 270.1488; elemental analysis (%) calcd for C₁₇H₁₆O₂: C 80.93, H 6.39; found: C 80.73, H 6.41.

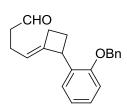

Compound 8dc. This compound was obtained from **8db** (504 mg, 2 mmol) according the procedure described for **8ab**. Colorless oil (316 mg, 39%, mixture of *E* and *Z* isomers (7:3)). ¹H NMR (500 MHz, CDCl₃):³ $\delta = 7.47-7.42$ (m, 2H), 7.41–7.36 (m, 3H), 7.35–7.29 (m, 1H), 7.14 (t, *J* = 7.2 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), [5.27 (tq, *J* = 7.4, 2.3 Hz, 0.3H)], 5.12 (tq, *J* = 7.5, 2.3 Hz, 0.7H), 5.07 (s, 2H), 4.59–4.45 (m, 1H), 3.62 (t, *J* = 6.6 Hz, 1.4H), [3.50–3.42 (m, 0.6H)], [2.77–2.57 (m, 0.6H)], 2.69–2.62 (m, 1.4H), [2.53–2.44 (m, 0.3H)], 2.46–2.35 (m, 0.7H), 2.06–1.94 (m, 2.1H), [1.90–1.82 (m, 0.3H)], [1.81–1.70 (m, 0.6H)], 1.57 (quint., *J* = 7.0 Hz, 1.4H), [1.46

(quint., J = 7.0 Hz, 0.6H)], 0.90 (s, 6.3H), [0.84 (s, 2.7H)], 0.052 (s, 2.1H), 0.051 (s, 2.1H), [-0.02 (s, 0.9H)], [-0.03 (s, 0.9H)]; ¹³C NMR (125 MHz, CDCl₃): $\delta = 156.3$, [155.9], 142.5, [141.1], <u>137.5</u>, [132.7], 132.6, <u>128.5 (2C)</u>, <u>127.7</u>, 127.67, [127.62], 127.4, <u>127.1 (2C)</u>, <u>127.0</u>, [122.5], 121.1, <u>120.7</u>, 111.6, [111.5], 69.9, [69.8], [62.9], 62.8, 42.5, [41.7], 32.9, [32.7], [28.1], 26.6, [26.2], 26.0 (3C), [25.9 (3C)], 25.7, [24.3],

⁴ Shi, M.; Liu, L. P.; Tang, J. J. Am. Chem. Soc. 2006, 128, 7430.

24.1, [18.4], 18.3, -5.25 (2C), [-5.31 (2C)]; IR (neat): $\tilde{\nu} = 3064$, 3028, 2942, 2929, 2857, 1599, 1583, 1490, 1469, 1451, 1382, 1360, 1285, 1241, 1100, 1052, 1026, 963, 835, 812, 775, 750, 696 cm⁻¹; HRMS (ES+) calcd for (C₂₇H₃₈O₂Si + Na): 445.2539; found: 445.2522; elemental analysis (%) calcd for C₂₇H₃₈O₂Si: C 76.72, H 9.06; found: C 76.51, H 9.11.

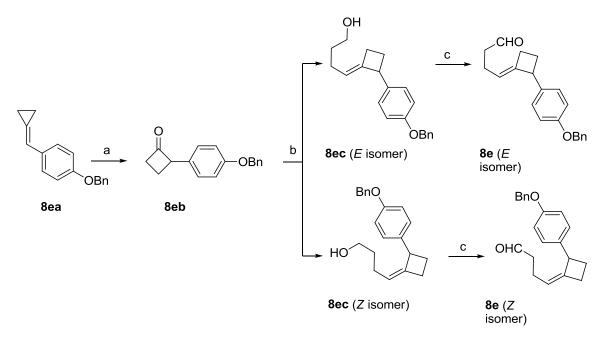

Compound 8dd. This compound was prepared from **8dc** (475 mg, 1.16 mmol) according to the procedure described for the preparation of **8ac**. Purification by flash chromatography (petroleum ether/EtOAc, 5.5/1)


followed by preparative TLC (petroleum ether/EtOAc, 4:1 (2 migrations)) gave 2 fractions (77 mg, 22%, E/Z = 20:1) and (56 mg, 16%, E/Z = 1:14), both obtained as colorless oils. ¹H NMR (500 MHz, CDCl₃): (*E* isomer) $\delta = 7.42-7.39$ (m, 2H), 7.38–7.34 (m, 3H), 7.32–7.27 (m, 1H), 7.18–7.12 (m, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 5.11 (tq, J = 7.5, 2.5 Hz, 1H), 5.06 (s, 2H), 4.53–4.45 (m, 1H), 3.62 (q, J = 6.1 Hz, 2H), 2.69–2.58 (m, 2H), 2.38 (ddt, J = 10.7, 9.7, 7.2, 1H), 2.06–1.97 (m, 3H),

1.60 (quint., J = 6.9 Hz, 2H), 1.21 (t, J = 5.1 Hz, 1H(OH)); (Z isomer) $\delta = 7.44$ (d, J = 7.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.36–7.29 (m, 2H), 7.18 (td, J = 7.8, 1.7 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 5.24 (tq, J = 7.4, 2.3 Hz, 1H), 5.08 (s, 2H), 4.56–4.48 (m, 1H), 3.44 (td, J = 6.4, 2.4 Hz, 2H), 2.77–2.67 (m, 1H), 2.67–2.59 (m, 1H), 2.46 (dtd, J = 11.1, 9.5, 6.8 Hz, 1H), 1.92 (tt, J = 10.9, 6.0 Hz, 1H), 1.85–1.74 (m, 2H), 1.55–1.39 (m, 2H), 1.37–1.21 (m, 1H(OH)); ¹³C NMR (125 MHz, CDCl₃): (E isomer) $\delta = 156.2$, 143.1, 137.3, 132.3, 128.4 (2C), 127.6, 127.4, 127.04 (2C), 127.01, 120.7, 120.6, 111.5, 69.8, 62.6, 42.6, 32.4, 26.6, 25.4, 24.2; (Z isomer) $\delta = 155.8$, 142.1, 137.3, 132.6, 128.5 (2C), 127.73, 127.66, 127.13 (2C), 127.10, 122.0, 120.8, 111.6, 69.9, 62.5, 41.5, 32.4, 28.1, 25.9, 24.1; IR (neat): $\tilde{\nu} = 3334$ (br), 3063, 3033, 2934, 2866, 1598, 1585, 1489, 1449, 1380, 1330, 1288, 1237, 1161, 1110, 1049, 1024, 914, 848, 813, 749, 695 cm⁻¹; HRMS (ES+) calcd for ($C_{21}H_{24}O_2 + Na$): 331.1674; found: 331.1679; elemental analysis (%) calcd for $C_{21}H_{24}O_2$: C 81.78, H 7.84; found: C 81.45, H 7.85.

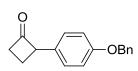
The geometry of the olefin in 8dd was confirmed on the Z isomer by nOe experiments.

Compound 8d (E isomer). This compound was obtained from the E isomer of 8dd (77 mg, 0.25 mmol)



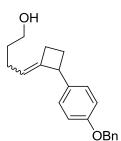
using the Swern procedure followed for the preparation of **6**. Colorless oil (36 mg, 47%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.74$ (s, 1H), 7.40 (d, J = 7.6 Hz, 2H), 7.39–7.35 (m, 2H), 7.34–7.27 (m, 2H), 7.15 (td, J = 7.8, 1.8 Hz, 1H), 6.92 (td, J = 7.5, 1.0 Hz, 1H), 6.89 (dd, J = 8.2, 0.8 Hz, 1H), 5.07 (tq, J = 7.3, 2.5 Hz, 1H), 5.05 (s, 2H), 4.53–4.45 (m, 1H), 2.69–2.61 (m, 2H), 2.43 (td, J = 7.1, 1.7 Hz, 2H), 2.38 (ddt, J = 10.9, 9.5, 7.1 Hz, 1H), 2.30–2.23 (m, 2H), 2.07–1.97 (m, 1H); ¹³C NMR (125 MHz, 12)

CDCl₃): $\delta = 202.4$, 156.2, 144.3, 137.3, 131.9, 128.4 (2C), 127.6, 127.4, 127.1, 127.0 (2C), 120.6, 118.8, 111.5, 69.8, 43.6, 42.6, 26.6, 25.3, 20.8; IR (neat): $\tilde{v} = 3063$, 3033, 2941, 2917, 2856, 2825, 2721, 1721, 1598, 1585, 1489, 1450, 1382, 1330, 1289, 1237, 1161, 1110, 1050, 1024, 912, 852, 750, 696 cm⁻¹; elemental analysis (%) calcd for C₂₁H₂₂O₂: C 82.32, H 7.24; found: C 81.65, H 7.18.


Compound 8d (Z isomer). This compound was obtained from the Z isomer of **8dd** (56 mg, 0.18 mmol) using the Swern procedure followed for the preparation of **6**. Colorless oil (31 mg, 56%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.53$ (t, J = 1.8 Hz, 1H), 7.44 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 7.35–7.29 (m, 2H), 7.17 (dt, J = 7.8 Hz, J = 1.6 Hz, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 5.22 (tq, J = 7.4, 2.3 Hz, 1H), 5.07 (s, 2H), 4.58–4.46 (m, 1H), 2.77–2.672 (m, 1H), 2.667–2.57 (m, 1H), 2.46 (dtd, J = 11.5, 9.6, 6.8 Hz, 1H), 2.35–2.18 (m, 2H), 2.09–2.01 (m, 2H), 1.92 (t, J = 10.8, 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.6$, 155.8, 143.5, 137.3, 132.3, 128.5 (2C), 127.8, 127.6, 127.21, 127.15 (2C), 120.8, 120.1, 111.7, 69.9, 43.5, 41.5, 28.1, 25.9, 20.8; IR (neat): $\tilde{\nu} = 3064$, 3032, 2942, 2918, 2856, 2721, 1722, 1598, 1585, 1489, 1450, 1407, 1381, 1319, 1288, 1236, 1178, 1161, 1108, 1050, 1024, 935, 915, 853, 751, 696

cm⁻¹; MS (ES+): m/z (rel. intensity): 361 (100) [M + MeOH + Na], 329 (33) [M + Na]; HRMS (ES+) calcd for (C₂₁H₂₂O₂ + Na): 329.1517; found: 329.1531; HRMS (ES+) calcd for (C₂₁H₂₂O₂ + MeOH + Na): 361.1780; found: 361.1778.

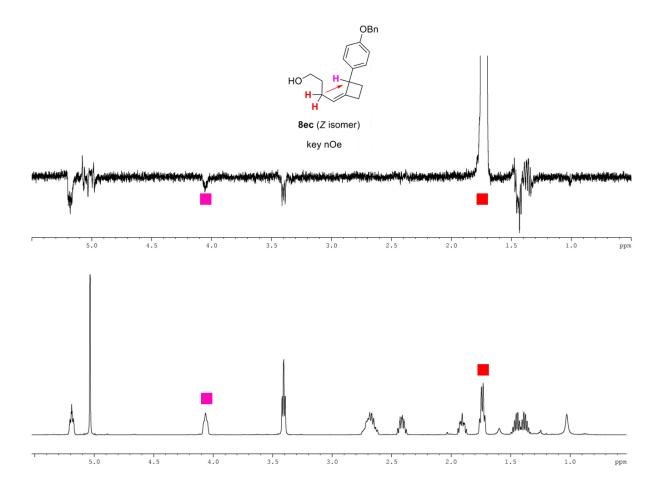
^a mCPBA, CH₂Cl₂, r.t.; 65%. ^b 1) **16**, NaHMDS, THF, -78 °C to r.t.; 2) TBAF, THF, then separation; 43% over two steps. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 71% (*E*); 74% (*Z*).


Compound 8eb. This compound was obtained from 8ea⁵ (2.75 g, 11.65 mmol) according to the procedure

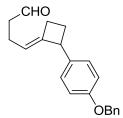
described for the preparation of **8db**. White solid (1.9 g, 65%). m.p.: 40–43 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.41 (d, *J* = 7.1 Hz, 2H), 7.39–7.34 (m, 2H), 7.33–7.31 (m, 1H), 7.14 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 2H), 5.03 (s, 2H), 4.45 (ddt, *J* = 10.6, 8.2, 2.5 Hz, 1H), 3.19 (dddd, *J* = 18.8, 10.7, 8.3, 2.4 Hz, 1H), 3.00 (dddd, *J* =

17.5, 9.8, 4.9, 2.6 Hz, 1H), 2.50 (qd, J = 10.7, 4.9 Hz, 1H), 2.16 (ddt, J = 11.2, 9.8, 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 208.2$, 157.7, 136.9, 128.9, 128.5 (2C), 128.0, (2C), 127.8, 127.3 (2C), 114.9 (2C), 69.9, 63.8, 44.6, 17.9; IR (neat): $\tilde{\nu} = 3057$, 3035, 2984, 2904, 2864, 1762, 1610, 1580, 1509, 1469, 1455, 1400, 1378, 1335, 1298, 1243, 1225, 1210, 1175, 1112, 1072, 1014, 993, 970, 929, 916, 906, 857, 821, 759, 743, 695 cm⁻¹; HRMS (ES+) calcd for (C₁₇H₁₆O₂ + Na): 275.1048; found: 275.1049; elemental analysis (%) calcd for C₁₇H₁₆O₂: C 80.93, H 6.39; found: C 80.76, H 6.42.

Compound Sec. This compound was obtained from Seb (400 mg, 1.58 mmol) according the procedures


described for **8ab** and **8ac**. *E* (90 mg, 18%) and *Z* (72 mg, 14%) isomers of **8ec** could be separated by flash chromatography (petroleum ether/EtOAc, 4:1) and were both obtained as white solids. A fraction of mixture of *E* and *Z* isomers was also obtained (57 mg, 11%). *E* isomer, m.p.: 29–31 °C; *Z* isomer, m.p.: 31–34 °C; ¹H NMR (500 MHz, CDCl₃): (*E* isomer) δ = 7.43 (d, *J* = 7.9 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.33–7.29 (m, 1H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 2H), 5.08–5.00 (m, 1H), 5.04 (s, 2H), 4.07–4.01 (m, 1H), 3.63 (t, *J* = 6.5 Hz, 2H), 2.72–2.60 (m, 2H), 2.42–2.31 (m, 1H),

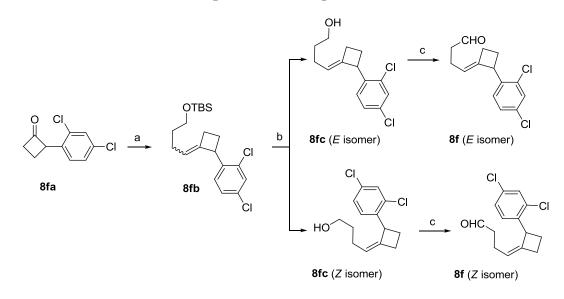
2.08–1.95 (m, 3H), 1.60 (quint., J = 6.8 Hz, 2H), 1.50–1.34 (m, 1H(OH)); (Z isomer) $\delta = 7.42$ (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.33–7.29 (m, 1H), 7.19 (d, J = 9.1 Hz, 2H), 6.91 (d, J = 9.1 Hz, 2H), 5.16 (tq, J = 7.5, 2.3 Hz, 1H), 5.03 (s, 2H), 4.10–4.03 (m, 1H), 3.41 (t, J = 6.4 Hz, 2H), 2.76–2.60 (m, 2H), 2.46–2.37 (m, 1H), 1.95–1.86 (m, 1H), 1.74 (q, J = 7.3 Hz, 2H), 1.45 (dquint., J = 13.7, 6.8 Hz, 1H), 1.37 (dquint., J = 13.8, 6.9 Hz, 1H), 1.10–0.95 (m, 1H (OH)); ¹³C NMR (125 MHz, CDCl₃): (*E* isomer) $\delta = 157.2$, 144.6,


⁵ Fürstner, A.; Aïssa, C. J. Am. Chem. Soc. 2006, 128, 6306.

137.2, 136.1, 128.5 (2C), 128.3 (2C), 127.9, 127.4 (2C), 120.0, 114.6 (2C), 70.0, 48.0, 32.5, 26.7, 26.5, 24.1; (*Z* isomer) $\delta = 157.1$, 143.1, 137.2, 137.0, 128.5 (2C), 128.2 (2C), 127.9, 127.5 (2C), 121.9, 114.8 (2C), 70.0, 62.5, 47.1, 32.4, 28.3, 27.1, 23.8; IR (neat): $\tilde{\nu} = 3340$ (br), 3032, 2936, 1609, 1581, 1508, 1454, 1380, 1300, 1278, 1236, 1174, 1110, 1039, 1024, 914, 858, 825, 734, 695 cm⁻¹; HRMS (ES+) calcd for (C₂₁H₂₄O₂ + Na): 331.1674; found: 331.1683; elemental analysis (%) calcd for C₂₁H₂₄O₂: C 81.78, H 7.84; found: C 80.64, H 7.68.

The geometry of the olefin in **8ec** was confirmed on the Z isomer by nOe experiments.

Compound 8e (*E* isomer). This compound was obtained from the *E* isomer of **8ec** (126 mg, 0.43 mmol) using the Swern procedure followed for the preparation of **6**. Colorless oil (94 mg, 71%). ¹H NMR (500



MHz, CDCl₃): $\delta = 9.74$ (t, J = 1.8 Hz, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.39–7.34 (m, 2H), 7.33–7.31 (m, 1H), 7.14 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 5.03 (s, 2H), 4.99 (tq, J = 7.4, 2.5 Hz, 1H), 4.04–3.97 (m, 1H), 2.68–2.61 (m, 2H), 2.44 (td, J = 7.3, 1.7 Hz, 2H), 2.35 (ddt, J = 10.9, 9.2, 6.8 Hz, 1H), 2.31–2.25 (m, 2H), 2.10–1.92 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.3$, 157.2, 145.7, 137.2, 135.7, 128.5 (2C), 128.3 (2C), 127.8, 127.4 (2C), 118.3, 114.6 (2C), 70.0, 47.9, 43.6, 26.7, 26.4, 20.7; IR (neat):

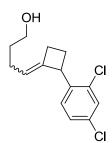
 $\tilde{v} = 3043, 2942, 2721, 1721, 1609, 1581, 1508, 1454, 1382, 1301, 1282, 1236, 1174, 1110, 1016, 913, 857, 826, 735, 696 cm⁻¹; MS (ES+):$ *m/z*(rel. intensity): 361 (100) [M + MeOH + Na], 329 (57) [M + Na]; HRMS (ES+) calcd for (C₂₁H₂₂O₂ + Na): 329.1517; found: 329.1530.

127.9, 127.4 (2C), 120.0, 114.8 (2C), 70.0, 47.1, 43.4, 28.2, 27.1, 20.5; IR (neat): $\tilde{\nu} = 3032$, 2945, 2721, 1721, 1609, 1580, 1508, 1454, 1382, 1299, 1272, 1233, 1174, 1110, 1023, 915, 858, 826, 734, 695 cm⁻¹; MS (ES+): m/z (rel. intensity): 361 (100) [M + MeOH + Na], 329 (40) [M + Na]; HRMS (ES+) calcd for (C₂₁H₂₂O₂ + Na): 329.1517; found: 329.1503.

Preparation of compound 8f

^a **16**, LiHMDS, toluene, -78 °C to r.t.; 75%. ^b TBAF, THF; then separation: *E* isomer (48%) + *Z* isomer (34%). ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; *E* isomer (71%), *Z* isomer (79%).

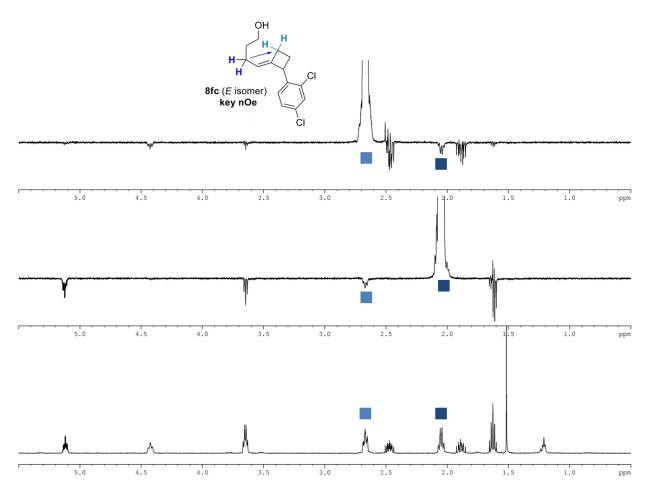
Compound 8fb. This compound was prepared from $8fa^6$ (271 mg, 1.26 mmol) according to the procedure described for the preparation of **8cb**. Purification by flash chromatography (petroleum ether/EtOAc, 200/1

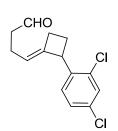

→ 150/1 → 50/1 → 15/1) gave **8fb** as an equimolar mixture of *E* and *Z* isomers (360 mg, 75%). Colorless oil. ¹H NMR (500 MHz, CDCl₃):³ δ = 7.39 (d, *J* = 8.4 Hz, 0.55H), <u>7.33</u> (d, *J* = 2.4 Hz, 1H), [7.31 (d, *J* = 8.4 Hz, 0.45H)], <u>7.19–7.15 (m, 1H)</u>, [5.32 (tq, *J* = 7.4, 2.3 Hz, 0.45H)], 5.11 (tq, *J* = 7.4, 2.5 Hz, 0.55H), <u>4.45–4.36 (m, 1H)</u>, 3.60 (t, *J* = 6.6 Hz, 1.1H), [3.47 (t, *J* = 6.6 Hz, 0.9H)], <u>2.76–2.59 (m, 2H)</u>, [2.57–2.49 (m, 0.45H)], 2.51–2.42 (m, 0.55H), 2.06–1.95 (m, 1.1H), 1.91–1.81 (m, 0.55H), [1.78–1.65 (m, 1.35H)], 1.56 (quint., *J* = 6.9 Hz, 1.1H), [1.44 (quint., *J* = 7.1 Hz, 0.9H)], 0.88 (s, 5H), [0.82 (s, 4H)],

0.03 (s, 3.3H), [-0.03 (s, 1.4H)],[-0.04 (s, 1.4H)]; ¹³C NMR (125 MHz, CDCl₃);³ δ = 140.7, [140.0], [139.9], 139.3, 134.4, [134.0], <u>132.1</u>, [129.04], 129.01, [128.9], 128.8, [127.0], 126.9, [123.8], 122.6, [62.7], 62.6, 44.9, [43.9], 32.7, [32.5], [27.8], 26.4, [26.2], 26.0 (3C), [25.9 (3C)], [24.6], 24.2, 18.33, [18.27], -5.3 (2C), [-5.4 (2C)]; IR (neat): $\tilde{\nu}$ = 2952, 2928, 2856, 1588, 1558, 1470, 1384, 1361, 1254, 1098, 1049, 1006, 964, 939, 865, 833, 810, 773 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 409 (72), 407 (100) [M + Na], 387 (36), 385 (51) [M + H]; HRMS (ES+) calcd for (C₂₀H₃₀³⁵Cl₂SiO+ Na): 407.1341; found: 407.1326.

OTBS

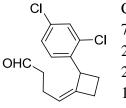
⁶ Schweinitz, A.; Chtchemelimine, A.; Orellana, A. Org. Lett. 2011, 13, 232.


Compound 8fc. This compound was obtained from 8fb (360 mg, 0.94 mmol) according the procedure


described **8ac**. Purification by flash chromatography (petroleum ether/EtOAc, $10/1 \rightarrow 5/1$) enabled partial separation of *E* (123 mg, 48%) and *Z* (87 mg, 34%) isomers of **8fc**, both obtained as colorless oils. ¹H NMR (500 MHz, CDCl₃): (*E* isomer) $\delta = 7.37$ (d, J = 8.4 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.18 (dd, J = 8.3, 2.2 Hz, 1H), 5.12 (tq, J = 7.4, 2.5 Hz, 1H), 4.46–4.39 (m, 1H), 3.65 (q, J = 6.0 Hz, 2H), 2.71–2.62 (m, 2H), 2.51–2.43 (m, 1H), 2.09–2.01 (m, 2H), 1.89 (dtd, J = 11.1, 8.8, 7.5 Hz, 1H), 1.63 (quint., J = 7.0 Hz, 2H), 1.21 (t, J = 5.6 Hz, 1H(OH)); (*Z* isomer) $\delta = 7.35$ (d, J = 2.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.18 (dd, J = 8.4, 2.3 Hz, 1H), 5.32 (tq, J = 7.4, 2.3 Hz, 1H), 4.46–4.37 (m,

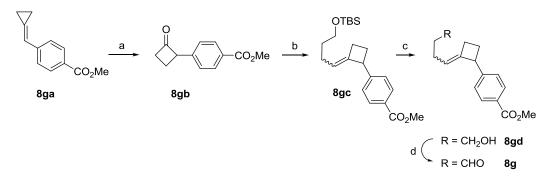
1H), 3.52 (q, J = 6.1 Hz, 2H), 2.77–2.61 (m, 2H), 2.54 (dtd, J = 11.3, 9.3, 7.1 Hz, 1H), 1.81–1.72 (m, 3H), 1.57–1.45 (m, 2H), 1.10 (t, J = 5.3 Hz, 1H(OH)); ¹³C NMR (125 MHz, CDCl₃): (*E* isomer) $\delta = 141.3$, 139.7, 134.3, 132.1, 129.0, 128.7, 122.1, 62.5, 44.8, 32.4, 26.4, 25.7, 24.2; (*Z* isomer) $\delta = 140.0$, 134.1, 132.2, 129.1, 128.9, 127.0, 123.4, 62.5, 43.9, 32.3, 27.8, 26.1, 24.4; IR (neat): $\tilde{\nu} = 3318$ (br), 2936, 1586, 1557, 1468, 1426, 1381, 1333, 1100, 1048, 916, 865, 841, 819, 809 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 295 (67), 293 (100) [M + Na]; HRMS (ES+) calcd for (C₁₄H₁₆³⁵Cl₂O+ Na): 293.0476; found: 293.0463.

The geometry of the olefin in **8fc** was confirmed on the *E* isomer by nOe experiments.

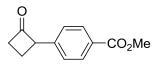

Compound 8f (E isomer). This compound was obtained from the E isomer of 8fc (123 mg, 0.46 mmol)

using the Swern procedure followed for the preparation of **6**. Colorless oil (88 mg, 71%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.76$ (t, J = 1.6 Hz, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.18 (dd, J = 8.4, 2.2 Hz, 1H), 5.08 (tq, J = 7.2, 2.6 Hz, 1H), 4.45– 4.38 (m, 1H), 2.73–2.64 (m, 1H), 2.52–2.44 (m, 3H), 2.33–2.24 (m, 2H), 1.90 (dtd, J =11.1, 8.7, 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.0$, 142.5, 139.4, 134.3, 132.2, 129.0, 128.7, 127.0, 120.4, 44.8, 43.6, 26.5, 25.6, 20.8; IR (neat): $\tilde{\nu} = 2949$, 2822, 2720, 1723, 1587, 1557, 1468, 1443, 1407, 1382, 1194, 1141, 1100, 1048, 865, 803 cm⁻¹;

MS (ES+): m/z (rel. intensity): 325 (66), 323 (100) [M + MeOH +Na], 293 (5), 291 (8) [M + Na]; HRMS (ES+) calcd for ($C_{14}H_{14}^{35}Cl_2O+$ Na): 291.0319; found: 291.0313.


Compound 8f (*Z* isomer). This compound was obtained from the *Z* isomer of **8fc** (85 mg, 0.31 mmol) using the Swern procedure followed for the preparation of **6**. Colorless oil (66 mg, 79%). ¹H NMR (500 MHz,

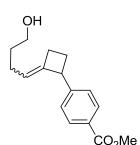
CDCl₃): $\delta = 9.63$ (t, J = 1.7 Hz, 1H), 7.36 (d, J = 2.2 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.19 (dd, J = 8.3, 2.2 Hz, 1H), 5.28 (tq, J = 7.4, 2.3 Hz, 1H), 4.46–4.40 (m, 1H), 2.77– 2.60 (m, 2H), 2.54 (dtd, J = 11.2, 9.3, 7.1 Hz, 1H), 2.38–2.31 (m, 2H), 2.07–1.95 (m, 2H), 1.78 (ddt, J = 11.3, 10.1, 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 201.9$, 141.3, 139.6, 134.0, 132.3, 129.2, 128.8, 127.1, 121.6, 43.8, 43.3, 27.8, 26.1, 20.1; IR (neat): $\tilde{V} = 2949$, 2824, 2720, 1724, 1586, 1557, 1468, 1440, 1407, 1382, 1194, 1143,


1100, 1048, 865, 819, 803 cm⁻¹; MS (ES+): m/z (rel. intensity): 325 (61), 323 (100) [M + MeOH +Na], 293 (5), 291 (8) [M + Na]; HRMS (ES+) calcd for (C₁₄H₁₄³⁵Cl₂O + MeOH + Na): 323.0582; found: 323.0569.

Preparation of compound 8g

^a mCPBA, CH₂Cl₂, r.t.; 66%. ^b **16**, LiHMDS, toluene, -78 °C to r.t.; 37%. ^c TBAF, THF; 78%. ^d (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 69%.

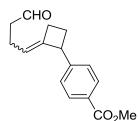
Compound 8gb. This compound was obtained from 8ga⁵ (0.90 g, 4.78 mmol) according to the procedure


described for the preparation of **8db**. Pale yellow solid (0.65 g, 66%). m.p.: 78–80 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.98 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 4.58 (ddt, *J* = 10.5, 8.2, 2.3 Hz, 1H), 3.88 (s, 3H), 3.30–3.21 (m, 1H), 3.05 (dddd, *J* = 17.3, 9.7, 4.8, 2.4 Hz, 1H), 2.56 (qd, *J* = 10.8, 4.9 Hz, 1H), 2.26 (ddt, *J* =

11.0, 9.8, 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 206.6, 166.8, 141.4, 129.9 (2C), 128.7, 126.8 (2C), 64.2, 52.1, 44.9, 17.3; IR (neat): \tilde{v} = 3000, 2954, 1780, 1717, 1610, 1572, 1509, 1435, 1010, 1313, 1275, 1180, 1108, 1069, 1019, 962, 851, 826, 769, 748, 724, 699 cm⁻¹; MS (CI): *m/z* (rel. intensity): 222 (100) [M + NH₄], 205 (10) [M + H], 162 (19), 131 (14); elemental analysis (%) calcd for C₁₂H₁₂O₃: C 70.57, H 5.92; found: C 69.29, H 6.00.

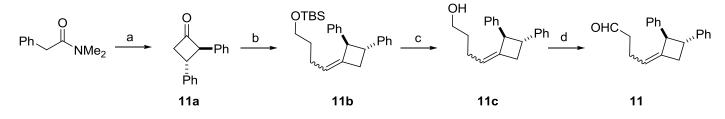
Compound 8gc. This compound was prepared from 8gb (350 mg, 1.71 mmol) according to the procedure described for the preparation of 8cb. Purification by flash chromatography (petroleum ether/Et₂O, 100/1 → 50/1) gave 8gb as an equimolar mixture of *E* and *Z* isomers (242 mg, 37%). Colorless oil. ¹H NMR (500 MHz, CDCl₃):³ $\delta = \underline{7.96-7.93}$ (m, 2H), $\underline{7.33-7.29}$ (m, 2H), [5.22 (tq, J = 7.4, 2.4 Hz, 0.5H)], 5.01 (tq, J = 7.6, 2.4 Hz, 0.5H), $\underline{4.17-4.09}$ (m, 1H), $\underline{3.89}$ (s, 3H), 3.57 (t, J = 6.5 Hz, 1H), [3.43–3.32 (m, 1H)], $\underline{2.78-2.64}$ (m, 2H), [2.46 (dtd, J = 11.3, 9.4, 6.5 Hz, 0.5H)], 2.39 (ddt, J = 10.9, 9.3, 7.0 Hz, 0.5H), 2.08-2.00 (m, 0.5H), 1.97 (q, J = 7.3 Hz, 1H), [1.91 (ddt, J = 11.2, 10.1, 6.6 Hz, 0.5H)], [1.72–1.55 (m, 1H)], 1.55-1.49 (m, 1H), [1.40–1.30 (m, 1H)], 0.87 (s, 4.5H), [0.80 (s, 4.5H)], 0.02 (s, 3H), [-0.05 (s, 1.5H)], [-0.06 (s, 1.5H)]; ¹³C NMR (125 MHz, CDCl₃):³ $\delta = 167.13, [167.10], [150.0], 149.2, 142.6, [140.8], [129.8 (2C)], 129.7 (2C), 127.9, [127.8], 127.4 (2C), [127.3 (2C)], [123.1], 121.4, 62.7, [62.6], 51.95, [51.92], 48.5, [47.6], 32.7, [32.4], [28.3], [27.0], 26.8, 26.1, 26.0 (3C), [32.7], [32.4], [32.8], [32.8], [32.8], [$

[25.9 (3C)], 24.2, [24.0], 18.31, [18.25], -5.3 (2C), [-5.4 (2C)]; IR (neat): $\tilde{v} = 2951$, 2929, 2856, 1724, 1610, 1472, 1463, 1435, 1415, 1388, 1361, 1310, 1277, 1255, 1192, 1177, 1101, 1020, 1006, 965, 940, 835, 774, 705 cm⁻¹; MS (ES+): m/z (rel. intensity): 397 (100) [M + Na]; HRMS (ES+) calcd for (C₂₂H₃₄O₃+ Na): 397.2175; found: 397.2186.


Compound 8gd. This compound was obtained from 8gc (242 mg, 0.65 mmol) according the procedure

described **8ac**. After purification by flash chromatography (petroleum ether/Et₂O, 3/1 \rightarrow 2/1 \rightarrow 1/1), a first batch of **8gd** (131 mg, 78%) was obtained as colourless oil (*E*/*Z* = 1:1.3). However, further attempts to separate the isomers led to partial decomposition and contamination by an unidentified compound. The data given below was obtained for a mixture of *E*/*Z* = 1:4, and this material was also used in the next step. ¹H NMR (500 MHz, CDCl₃): (*Z* isomer) δ = 7.94 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 5.23 (tq, *J* = 7.6, 2.3 Hz, 1H), 4.18–4.13 (m, 1H), 3.87 (s, 3H),

3.40 (t, J = 6.1 Hz, 2H), 2.79–2.64 (m, 2H), 2.50–2.42 (m, 1H), 1.92 (ddt, J = 11.2, 10.2, 6.6 Hz, 1H), 1.74– 1.63 (m, 2H), 1.47–1.32 (m, 2H); characteristic signals of E isomer: $\delta = 7.30$ (d, J = 8.6 Hz, 2H), 5.02 (tq, J = 7.4, 2.5 Hz, 1H), 4.15–4.09 (m, 1H), 3.61 (t, J = 6.1 Hz, 2H), 2.11–2.03 (m, 1H), 2.01 (q, J = 7.2 Hz, 2H), 1.62–1.53 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): (only Z isomer described for clarity) $\delta = 167.0$, 149.9, 141.5, 129.8 (2C), 127.9, 127.2 (2C), 122.6, 62.4, 51.9, 47.5, 32.2, 28.3, 26.8, 24.0; IR (neat): $\tilde{v} = 3357$ (br), 2947, 1719, 1608, 1571, 1434, 1415, 1309, 1276, 1191, 1177, 1104, 1048, 1019, 965, 918, 851, 826, 771 and 705 cm⁻¹; MS (CI): m/z (rel. intensity): 278 (100) [M + NH₄], 261 (43) [M + H], 229 (39), 85 (42).

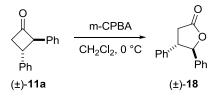

Compound 8g. This compound was obtained from a E/Z = 1:4 mixture of **8gd** (27 mg, 0.10 mmol) using

the Swern procedure followed for the preparation of **6**. Colorless oil (20 mg, 69% (E/Z = 1:4)). This reaction was repeated on similar scale with similar results using several batches of **8gd** (E/Z = 1:2 to 1:5). ¹H NMR (500 MHz, CDCl₃): (Z isomer) δ = 9.53–9.51 (m, 1H), 7.95 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 5.19 (tq, J = 7.4, 2.3 Hz, 1H), 4.19–4.13 (m, 1H), 3.88 (s, 3H), 2.79–2.64 (m, 2H), 2.51–2.42 (m, 1H), 2.29–2.15 (m, 2H), 2.00–1.85 (m, 3H); characteristic signals of E isomer: δ =

9.74–9.72 (m, 1H), 7.29 (d, J = 8.6 Hz, 2H), 4.98 (tq, J = 7.3, 2.5 Hz, 1H), 4.13–4.08 (m, 1H), 2.11–2.01 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 202.1, [202.0], 167.04, [166.98], [149.5], 148.6, 144.3, [142.8], [129.9 (2C)], 129.7 (2C), [128.1], 127.3 (2C), [127.2 (2C)], 125.3, [120.9], 119.3, <u>52.0</u>, 48.4, [47.6], 43.5, [43.2], [28.3], [26.83], 26.79, 25.9, 20.6, [20.5]; IR (neat): $\tilde{\nu}$ = 2950, 2846, 2720, 1718, 1609, 1572, 1435, 1415, 1310, 1277, 1177, 1104, 1019, 965, 852, 825, 773, 705 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 281 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₈O₃+ Na): 281.1154; found: 281.1154.

Preparation of compound (±)-11

^a *N*,*N*-Dimethyl-2-phenyl-acetamide, *sym*-collidine, styrene, Tf₂O, CHCl₃, reflux, 52%. ^b **16**, LiHMDS, toluene, -78 °C to r.t.; 49%. ^c TBAF, THF; 53%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; 79–84%.

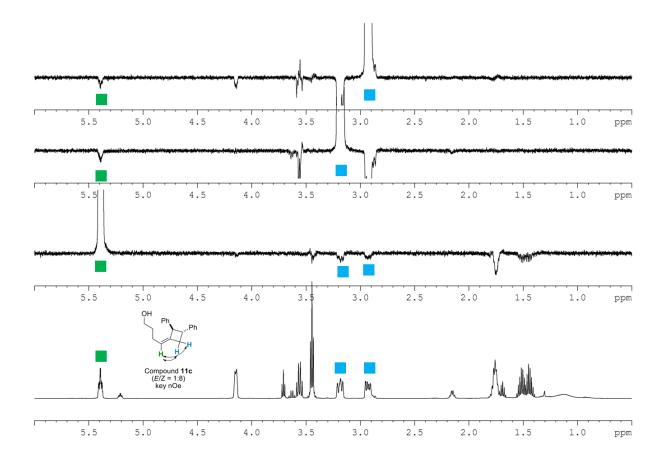

Compound 11a. This compound was prepared by slightly modifying the original procedure.⁷ To a refluxing

mixture of *N*,*N*-Dimethyl-2-phenyl-acetamide⁸ (0.485 g, 2.98 mmol), *sym*-collidine (0.47 mL, 3.55 mmol) and styrene (3.42 mL, 29.8 mmol) in CHCl₃ (10 mL) under argon was added Tf₂O (0.59 mL, 3.55 mmol) in CHCl₃ (20 mL) dropwise over 16 hours (*via* addition funnel). The reaction mixture was cooled to room temperature diluted with CH₂Cl₂ (50 mL) and water (50 mL). The biphasic mixture was stirred for 30 minutes, separated and the aqueous layer extracted with CH₂Cl₂ (2 × 50 mL). The combined organic layers were dried

(Na₂SO₄) and the solvent removed under reduced pressure. Purification by flash column chromatography (petroleum ether/Et₂O, 40:1 → 10:1) gave racemic **11a** as a colourless oil (0.34 g, 52%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37-7.34$ (m, 4H), 7.33 (d, J = 7.5 Hz, 2H), 7.29-7.25 (m, 4H), 4.58 (d, J = 8.8 Hz, 1H), 3.82 (q, J = 8.9 Hz, 1H), 3.44 (ddd, J = 17.2, 8.8, 1.8 Hz, 1H), 3.37 (ddd, J = 17.2, 9.1, 2.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 205.1$, 142.4, 135.6, 128.8 (2C), 128.7 (2C), 127.3, 127.0 (2C), 126.9, 126.6 (2C), 71.5, 51.4, 36.8; IR (neat): $\tilde{\nu} = 3028$, 2923, 1779, 1670, 1601, 1495, 1448, 1397, 1207, 1170, 1114, 1074, 1030, 953, 747, 697 cm⁻¹; MS (CI): m/z (rel. intensity): 240 (100) [M + NH₄], 223 (9) [M + H].

The relative configuration of the stereogenic centres in (±)-**11a** was established unambiguously after its Baeyer-Villiger oxidation into β , γ -Diphenylbutyrolactone (±)-**18** and by comparison to literature ¹H NMR data⁹ {¹H-NMR (500 MHz, CDCl₃): δ = 7.35–7.26 (m, 6H), 7.19–7.13 (m, 4H), 5.41 (d, *J* = 8.5 Hz, 1H), 3.61–3.54 (m, 1H), 3.05 (dd, *J* = 17.5, 8.5 Hz, 1H) and 2.91 (dd, *J* = 17.5, 10.7 Hz, 1H)}.

⁷ Falmagne, V. J-B.; Escudero, J.; Taleb-Sahraoui, S.; Ghosez, L. Angew. Chem. **1981**, 93, 926.


⁸ Prepared according to Pintori, D.G.; Greaney, M.F. Org. Lett. 2011, 13, 5713.

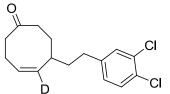
⁹ Pippel, D.J.; Curtis, M.D.; Du, H.; Beak, P. J. Org. Chem. **1998**, 63, 2. For ¹H NMR data of the other diastereomer, see: Katritzky, A. R.; Feng, D.; Lang, H. J. Org. Chem. **1997**, 62, 706.

Compound 11b. This compound was prepared from 11a (0.27 g, 1.21 mmol) according to the procedure described for the preparation of **8cb**. Purification by flash chromatography (petroleum OTBS Ph ether/Et₂O, 100:1 \rightarrow 50:1) gave (±)-11b as an inseparable mixture of E and Z isomers "Ph (232 mg, 49%, E/Z = 45:55). Colorless oil. ¹H NMR (500 MHz, CDCl₃):³ $\delta = 7.32-7.25$ (m, 6H), 7.24–7.15 (m, 4H), [5.34 (tq, J = 7.5, 2.0 Hz, 0.55H)], 5.14 (tq, J = 7.4, 2.5 Hz, 0.45H), 4.13-4.03 (m, 1H), 3.62 (t, J = 6.6 Hz, 0.9H), 3.55 (q, J = 8.7 Hz, 0.45H), [3.45 (q, J = 8.4 Hz, 0.55H)], [3.43-3.33 (m, 1.1H)], <u>3.16-3.06 (m, 1H)</u>, <u>2.89-2.77 (m, 1H)</u>, 2.12-1.98 (m, 0.9H), [1.73-1.59 (m, 1.1H)], 1.58 (quint., J = 7.0 Hz, 0.9H), [1.42–1.34 (m, 1.1H)], 0.89 (s, 4H), [0.82 (s, 5H)], 0.04 (s, 2.7H), [-0.04 (s, 1.65H)], [-0.05 (s, 1.65H)]; ¹³C NMR (125 MHz, CDCl₃):³ δ = [144.9], 144.4, [142.9], 142.1, 139.5, [137.9], [128.5 (2C)], 128.41 (2C), 128.35 (2C), 127.8 (2C), [127.6 (2C)], 126.6 (2C), [126.5 (2C)], 126.4, [126.3], 126.2, [126.1], [123.1], 120.8, 62.8, [62.7], 57.3, [56.9], [45.7], 44.9, [35.3], 34.0, 32.8, [32.6], 25.99 (3C), [25.97 (3C)], 24.4, [24.3], 18.4, [18.3], -5.2 (2C), [-5.3 (2C)]; IR (neat): $\tilde{v} = 3061, 3027, 2951,$ 2927, 2855, 1602, 1494, 1471, 1462, 1452, 1387, 1360, 1254, 1099, 1030, 1005, 960, 938, 909, 835, 774, 734, 697, 662 cm⁻¹; MS (ES+) m/z (rel. intensity) 415 (100) [M+Na]; HRMS (ES+) calcd for (C₂₆H₃₆OSiNa): 415.2433; found: 415.2433.

Compound 11c. This compound was obtained from (±)-**11b** (219 mg, 0.55 mmol) according the procedure described **8ac**. Purification by flash chromatography (petroleum ether/Et₂O, 3:1 \rightarrow 2:1 \rightarrow 1:1) enabled partial separation of *E* and *Z* isomers, giving two fractions (43 mg, 28%, *E*:*Z* = 1:8) and (39 mg, 25%, *E*:*Z* = 3.3:1), both as colorless oils. ¹H NMR (500 MHz, CDCl₃): (*E* isomer) δ = 7.32–7.25 (m, 6H), 7.24–7.15 (m, 4H), 5.14 (tq, *J* = 7.4, 2.4 Hz,

1H), 4.11–4.15 (m, 1H), 3.66 (t, J = 6.6 Hz, 2H), 3.56 (q, J = 8.8 Hz, 1H), 3.15–3.08 (m, 1H), 2.88–2.78 (m, 1H), 2.09 (q, J = 7.4 Hz, 2H), 1.63 (quint., J = 6.9 Hz, 2H), 1.58–1.47 (m, 1H(OH)); (Z isomer): $\delta = 7.40-7.32$ (m, 6H), 7.31–7.22 (m, 4H), 5.40 (tq, J = 7.5, 2.3 Hz, 1H), 4.18–4.13 (m, 1H), 3.44 (t, J = 6.6 Hz, 2H), 3.23–3.16 (m, 1H), 2.97–2.90 (m, 1H), 1.83–1.72 (m, 2H), 1.60–1.47 (m, 1H), 1.55–1.39 (m, 1H), 1.25–0.93 (m, 1H(OH)); ¹³C NMR (125 MHz, CDCl₃): (*E* isomer) $\delta = 144.2$, 141.8, 140.0, 128.4 (2C), 128.3 (2C), 127.7 (2C), 126.5 (2C), 126.4, 126.1, 120.3, 62.5, 57.2, 44.7, 33.9, 32.4, 24.3; (Z isomer): $\delta = 144.6$, 142.9, 138.8, 128.5 (2C), 128.3 (2C), 127.6 (2C), 126.4 (2C + 1C), 126.1, 122.6, 62.4, 56.9, 45.4, 35.3, 32.3, 24.0; IR (neat): $\tilde{\nu} = 3340$ (br), 3059, 3025, 2932, 1601, 1493, 1451, 1180, 1049, 1030, 924, 844, 746, 698 cm⁻¹; MS (ES+) *m*/*z* (rel. intensity) 301 (100), [M + Na]; HRMS calcd for (C₂₀H₂₂ONa): 301.1568, found: 301.1570.

The geometry of the olefin in (\pm) -11c was confirmed on the Z isomer by nOe experiments

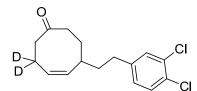

Compound 11. Two batches of this compound were obtained by Swern oxidation of alcohol (±)-11c: 1) a OHC Ph E/Z (3.3:1) mixture (colorless oil, 33 mg, 84%), 2) a E/Z (1:8) mixture (colorless oil, 39 mg, 79%).¹H NMR (500 MHz, CDCl₃): (*E* isomer) $\delta = 9.78$ (t, J = 1.6 Hz, 1H), 7.34–7.26 (m, 6H), 7.25–7.18 (m, 4H), 5.12 (tq, J = 7.3, 2.5 Hz, 1H), 4.15–4.05 (m,

1H), 3.59 (q, J = 8.9 Hz, 1H), 3.19–3.12 (m, 1H), 2.88–2.81 (m, 1H), 2.50 (td, J = 7.2, 1.5 Hz, 2H), 2.35 (q, J = 7.2 Hz, 2H); (Z isomer): $\delta = 9.55$ (t, J = 2.0 Hz, 1H), 7.37-7.34 (m, 4H), 7.39-7.30 (m, 2H), 7.29-7.21 (m, 4H), 5.36 (tq, J = 7.6 and 2.3 Hz, 1H), 4.16-4.12 (m, 1H), 3.55 (q, J = 8.4 Hz, 1H), 3.20-3.13 (m, 1H), 2.95-2.88 (m, 1H), 2.32 (dtd, $J_{ABX} = 17.0$, 7.5 and 2.0 Hz, 1H), 2.25 (dtd, $J_{ABX} = 17.1$, 7.1 and 2.0 Hz, 1H) and 2.06-1.95 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): (*E* isomer) $\delta = 202.2$, 144.0, 141.6, 141.3, 128.44 (2C), 128.35 (2C), 127.7 (2C), 126.5 (2C + 1C), 126.2, 118.7, 57.2, 44.6, 43.7, 33.9, 20.9; (Z isomer): $\delta = 202.3$, 144.4, 142.5, 140.1, 128.6 (2C), 128.3 (2C), 127.6 (2C), 126.6, 126.4 (2C), 126.2, 120.8, 56.8, 45.4, 43.3, 35.2, 20.7; IR (neat): $\tilde{\nu} = 3059$, 3026, 2913, 2823, 2720, 1721, 1601, 1493, 1451, 1407, 1388, 1358, 1191, 1155, 1070, 1048, 1029, 993, 902, 843, 748, 697 cm⁻¹; MS (ES+) *m/z* (rel. intensity) 331 (100) [M + MeOH + Na], 299 (20) [M + Na]; HRMS calcd for (C₂₁H₂₄O₂Na): 331.1674, found: 331.1682; HRMS calcd for (C₂₀H₂₀ONa): 299.1412, found: 299.1413.

General procedure for rhodium-catalysed hydroacylations

At room temperature, hydrogen gas (2.2 mL, 0.09 mmol) was added slowly (within 10 min) via syringe to a solution [Rh(nbd)(BINAP)]BF₄¹⁰ (10.2 mg, 0.0113 mmol) in dry acetone (1.65 mL) in a Schlenk flask equipped with a J-Young key. The flask was then closed. After stirring for 1h, volatiles were evaporated until dryness under high vacuum. Under N₂, a solution of **8c** (E/Z = 3:1) (15.5 mg, 0.075 mmol) in acetone (1.5 mL) was added via canula to the dry active catalyst thus prepared, and the mixture was heated in a oil bath set a 60 °C. After 44h, the solvent was evaporated and purification by flash chromatography (petroleum ether/EtOAc: $30/1 \rightarrow 20/1 \rightarrow 10/1$) gave **9c** (11.6 mg, 75%) and **10c** (2.7 mg, 17%), both as colorless oils. See below for analytical data.

Compound 3_D . This compound was obtained using the standard from aldehyde 1_D (17 mg, 0.057 mmol)


procedure {15.8 mg, 93%} or from aldehyde 2_D (10 mg, 0.0335 mmol) {3 mg, 30% + 4.6 mg, 46% of recovered 2_D }. ¹H NMR (500 MHz, CDCl₃): δ = 7.30 (d, J = 8.2 Hz, 1H), 7.20 (d, J = 2.0 Hz, 1H), 6.94 (dd, J = 8.2, 2.0 Hz, 1H), 5.81 (t, J = 7.8 Hz, 1H), 2.58–2.54 (m, 1H), 2.55–2.50 (m, 1H), 2.50–2.36 (m, 5H), 2.27–2.14 (m, 2H), 1.67 (ddt, J = 13.1, 8.9, 4.0 Hz, 1H), 1.63–1.54 (m, 2H), 1.30–1.20

(m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 214.4$, 142.3, 135.4 (t, J = 23.5 Hz), 132.1, 130.3, 130.2, 129.7, 129.6, 127.8, 47.4, 39.8, 37.8, 36.4, 32.9, 30.1, 22.8; IR (neat): $\tilde{\nu} = 2934$, 2910, 2865, 2848, 1690, 1593, 1561, 1468, 1456, 1433, 1417, 1400, 1368, 1342, 1260, 1238, 1210, 1190, 1176, 1158, 1141, 1132, 1076, 1028, 984, 959, 937, 917, 903, 893, 866, 815, 715, 675 cm⁻¹; MS (ES+):m/z (rel. intensity): 323 (70), 321 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₇D³⁵Cl₂O + Na): 320.0695; found: 320.0692; calcd for (C₁₆H₁₇D³⁵Cl³⁷ClO + Na): 322.0666; found: 322.0672.

Compound 5. This compound was obtained from aldehyde **4** (23 mg, 0.0769 mmol) using the standard procedure, except that the reaction was carried out for 96h. White solid (15.2 mg, 66%). m.p.: 41–43 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.30 (d, *J* = 8.2 Hz, 1H), 7.20 (d, *J* = 1.9 Hz, 1H), 6.94 (dd, *J* = 8.2, 1.9 Hz, 1H), 5.86–5.78 (m, 1H), 5.35 (ddd, *J* = 10.2, 8.8, 1.3 Hz, 1H), 2.58 (ddd, *J* = 14.0, 8.7, 5.5 Hz, 1H), 2.52–2.36 (m, 4H), 2.29–2.20 (m, 1H), 2.17 (dd, *J* = 13.7, 7.1 Hz,

1H), 1.68 (ddt, J = 13.0, 8.6, 4.3 Hz, 1H), 1.64–1.50 (m, 2H), 1.30–1.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 214.6$, 142.3, 135.8, 132.1, 130.3, 130.2, 129.7, 129.7, 127.8, 46.8 (quint., J = 20.3 Hz), 39.8, 37.8, 36.5, 32.9, 30.1, 22.7; IR (neat): $\tilde{v} = 3053$, 3010, 2926, 2854, 2218, 1703, 1593, 1561, 1472, 1456, 1397, 1346, 1317, 1261, 1198, 1132, 1097, 1030, 893, 874, 820, 726, 688, 664 cm⁻¹; MS (ES+):m/z (rel. intensity): 323 (70), 321 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₆D₂³⁵Cl₂O + Na): 321.0758; found: 321.0772; calcd for (C₁₆H₁₆D₂³⁵Cl³⁷ClO + Na): 323.0728; found: 323.0716.

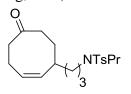
Compound 7. This compound was obtained from aldehyde 6 (16.4 mg, 0.0548 mmol) using the standard

and was obtained from aldenyde **6** (18.4 mg, 0.0548 mmol) using the standard procedure, except that the reaction was carried out for 24h. White solid (14.7 mg, 90%). m.p.: 42–44 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (d, *J* = 8.2 Hz, 1H), 7.20 (d, *J* = 1.8 Hz, 1H), 6.94 (dd, *J* = 8.2, 1.8 Hz, 1H), 5.81 (d, *J* = 10.6 Hz, 1H), 5.34 (dd, *J* = 10.6, 8.8 Hz, 1H), 2.57 (ddd, *J* = 14.2, 9.0, 5.4 Hz, 1H), 2.51 (d, *J* = 12.3 Hz, 1H), 2.49–2.35 (m, 4H), 2.30–2.17 (m, 1H),

1.67 (ddt, J = 13.3, 8.3, 4.1 Hz, 1H), 1.64–1.53 (m, 2H), 1.32–1.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 214.5, 142.3, 135.7, 132.1, 130.3, 130.2, 129.63, 129.59, 127.8, 47.3, 39.8, 37.8, 36.5, 32.8, 30.1, 22.1$

¹⁰ This compound was prepared according to Itooka, R.; Iguchi, Y.; Miyaura, N. J. Org. Chem. 2003, 68, 6000.

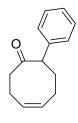
(quint., J = 20.0 Hz); IR (neat): $\tilde{v} = 3053$, 3011, 2932, 2910, 2861, 2850, 2216, 2106, 1692, 1593, 1560, 1470, 1456, 1439, 1417, 1399, 1350, 1291, 1259, 1193, 1142, 1129, 1098, 1079, 1027, 1001, 966, 952, 916, 902, 879, 854, 815, 805, 761, 728, 688, 664 cm⁻¹; MS (ES+):m/z (rel. intensity): 323 (68), 321 (100) [M + Na]; HRMS (ES+) calcd for ($C_{16}H_{16}D_2^{35}Cl_2O$ + Na): 321.0758; found: 321.0762; calcd for ($C_{16}H_{16}D_2^{35}Cl^{37}ClO$ + Na): 323.0728; found: 323.0731.


Compound 9a. This compound was obtained from 8a (8.9 mg, 0.041 mmol) using the general procedure

(5.4 mg, 61%). Colorless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 5.76-5.68$ (m, 1H), 5.34– 5.27 (m, 1H), 2.65–2.50 (m, 2H), 2.49–2.43 (m, 1H), 2.42–2.35 (m, 1H), 2.31–2.21 (m, 1H), 2.19–2.11 (m, 1H), 1.69 (ddt, J = 13.1, 9.1, 3.9 Hz, 1H), 1.38–1.13 (m, 14H), 0.85 (t, J = 6.8Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 215.1, 136.9, 128.6, 47.6, 40.0, 37.3, 36.6, 31.8,$ $30.3, 29.6, 29.3, 27.5, 22.8, 22.6, 14.1; IR (neat): <math>\tilde{v} = 3010, 2923, 2853, 1705, 1457, 1345,$

1201, 1167, 1109, 874, 738 cm⁻¹; MS (CI): m/z (rel. intensity): 240 (100) [M+ NH₄]; elemental analysis (%) calcd for C₁₅H₂₆O: C 81.02, H 11.79; found: C 81.08, H 11.85.

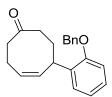
Compound 9b. This compound was obtained from **8b** (13 mg, 0.0345 mmol) using the general procedure (9 mg, 69%). Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ = 7.65 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H),


5.78–5.70 (m, 1H), 5.28–5.21 (m, 1H), 3.10–2.98 (m, 3H), 2.60–2.50 (m, 2H), 2.48–2.35 (m, 3H), 2.40 (s, 3H), 2.30–2.21 (m, 1H), 2.20–2.12 (m, 1H), 1.66 (ddt, J = 13.2, 9.0, 4.1 Hz, 1H), 1.54–1.39 (m, 4H), 1.36–1.13 (m, 3H), 0.84 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 214.5$, 142.9, 137.1, 136.0, 129.5 (2C), 129.2, 127.1 (2C), 50.0, 48.1, 47.5, 39.8, 36.9, 33.4, 30.2, 26.7, 22.8, 21.9, 21.4, 11.2; IR (neat): $\tilde{\nu} = 1.2$

2930, 2874, 1702, 1598, 1494, 1457, 1335, 1305, 1154, 1090, 1042, 976, 874, 815, 736 cm⁻¹; HRMS (ES+) calcd for ($C_{21}H_{31}NO_3S+Na$): 400.1922; found: 400.1924.

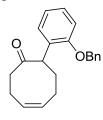
Compound 9c. This compound was obtained from **8c** (E/Z = 3:1) (15.5 mg, 0.075 mmol) using the general procedure (11.6 mg, 75%). It was also obtained in lower yield (2.1 mg, 13%) from **8c** (E/Z <1:20) (16 mg, 0.079 mmol). Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ = 7.32–7.26 (m, 2H), 7.22–7.16 (m, 3H), 5.81–5.74 (m, 1H), 5.69 (ddd, J = 10.6, 8.6, 1.3 Hz, 1H), 3.59 (ddd, J = 12.1, 8.5, 3.3 Hz, 1H), 2.77 (tddd, J = 13.5, 9.3, 4.1, 1.0 Hz, 1H), 2.68–2.60 (m, 2H), 2.55–2.46 (m, 2H), 2.26 (ddt, J = 13.6, 7.0, 4.2 Hz, 1H), 1.95 (ddt, J = 13.1, 8.8, 3.7 Hz, 1H), 1.77 (tdd, J = 12.5, 8.7, 3.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ =

214.1, 145.2, 135.7, 128.6 (2C), 128.4, 127.0 (2C), 126.4, 47.6, 43.7, 40.0, 31.4, 22.5; IR (neat): $\tilde{v} = 3063$, 3026, 2924, 2854, 1703, 1602, 1492, 1454, 1342, 1164, 1062, 885, 874, 760, 737, 701 cm⁻¹; MS (CI): *m/z* (rel. intensity): 218 (100) [M+ NH₄], 183 (14); elemental analysis (%) calcd for C₁₄H₁₆O: C 83.96, H 8.05; found: C 84.61, H 8.50.


Compound 10c. This compound was obtained from 8c (E/Z = 3:1) (15.5 mg, 0.075 mmol) using the general

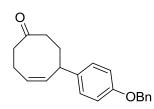
procedure (2.7 mg, 17%). It was also obtained (2.1 mg, 13%) from **8c** (*E*/*Z* <1:20) (16 mg, 0.079 mmol) after difficult separation from the recovered starting material (2.1 mg, 13%) by preparative TLC (petroleum ether/EtOAc = 20:1, two elutions) (6.1 mg, 38%). White solid. m.p.: 27–30 °C.¹H NMR (500 MHz, CDCl₃): δ = 7.36–7.32 (m, 2H), 7.30–7.25 (m, 2H), 7.23–7.18 (m, 1H), 5.85 (td, *J* = 9.7, 7.1 Hz, 1H), 5.75 (td, *J* = 10.2, 7.6 Hz, 1H), 3.97 (dd, *J* = 12.2, 3.5 Hz, 1H), 2.76–2.70 (m, 1H), 2.67 (ddd, *J* = 13.6, 9.2, 4.5 Hz, 1H), 2.39–2.24 (m, 3H), 2.17

(dtd, J = 13.6, 9.2, 3.8 Hz, 1H), 1.94 (tdd, J = 12.5, 8.4, 3.9 Hz, 1H), 1.63 (ddt, J = 12.9, 9.2, 3.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 213.5, 140.1, 130.7, 129.8, 128.4$ (2C), 128.1 (2C), 126.9, 55.6, 46.7, 31.7, 25.9, 22.4; IR (neat): $\tilde{\nu} = 3061, 3021, 2855, 2926, 1708, 1650, 1600, 1496, 1464, 1453, 1360, 1328,$ 1210, 1184, 1152, 1097, 1032, 974, 892, 734, 699 cm⁻¹; elemental analysis (%) calcd for $C_{14}H_{16}O$: C 83.96, H 8.05; found: C 83.75, H 8.15.


Compound 9d. This compound was obtained from **8d** (E/Z = 19:1) (15mg, 0.049 mmol) using the general

procedure (14 mg, 93%). It was also obtained in lower yield (8 mg, 27%) from **8d** (*E*/Z <1:20) (30 mg, 0.098 mmol). Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ = 7.43–7.35 (m, 4H), 7.33–7.28 (m, 1H), 7.23 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.16 (td, *J* = 7.8, 1.6 Hz, 1H), 6.94 (td, *J* = 7.5, 1.1 Hz, 1H), 6.90 (dd, *J* = 8.3, 0.8 Hz, 1H), 5.78–5.63 (m, 2H), 5.05 (s, 2H), 4.25 (ddd, *J* = 11.4, 8.3, 4.0 Hz, 1H), 2.81 (tdd, *J* = 13.7, 9.2, 4.4 Hz, 1H), 2.71–2.59 (m, 2H), 2.51–2.41 (m, 2H), 2.18 (ddt, *J* = 13.7, 6.7, 4.2 Hz, 1H), 1.95–1.80 (m, 2H); ¹³C

NMR (125 MHz, CDCl₃): δ = 214.3, 155.8, 137.3, 135.5, 133.9, 128.47 (2C), 128.45, 127.7, 127.3, 127.14, 127.06 (2C), 121.2, 112.2, 70.2, 47.7, 40.3, 37.0, 30.3, 22.3; IR (neat): \tilde{v} = 3062, 3031, 2923, 1702, 1599, 1583, 1490, 1450, 1380, 1343, 1291, 1239, 1163, 1105, 1047, 1024, 972, 875, 849, 800, 751, 735, 697 cm⁻¹; HRMS (ES+) calcd for (C₂₁H₂₂O₂ + Na)⁺: 329.1517; found: 329.1509.

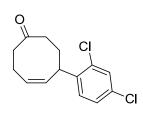

Compound 10d. This compound was obtained from **8d** (E/Z < 1:20) (30 mg, 0.098 mmol) using the general procedure. Initially a mixture of **8d/9d/10d** = 1:1:5.75 (18.6 mg, 62%) was obtained and an analytically pure

sample was then obtained by preparative TLC (petroleum ether/EtOAc: 4/1). Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ = 7.43–7.36 (m, 5H), 7.35–7.31 (m, 1H), 7.16 (td, *J* = 7.8, 1.7 Hz, 1H), 6.96 (td, *J* = 7.6, 1.1 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.0 Hz, 1H), 5.82–5.68 (m, 2H), 5.04 (d, *J* = 11.6 Hz, 1H), 5.01 (d, *J* = 11.5 Hz, 1H), 4.46 (dd, *J* = 12.3, 3.5 Hz, 1H), 2.69 (ddd, *J* = 11.7, 7.6, 4.0 Hz, 1H), 2.56 (dtd, *J* = 13.9, 9.1, 4.4 Hz, 1H), 2.31 (dtd, *J* = 14.3, 7.3, 3.7 Hz, 1H), 2.24–2.10 (m, 3H), 1.92 (tdd, *J* = 12.4, 8.4, 3.9 Hz, 1H), 1.73 (ddt, *J* = 14.3, 7.3, 3.7 Hz, 1H), 2.24–2.10 (m, 3H), 1.92 (tdd, *J* = 12.4, 8.4, 3.9 Hz, 1H), 1.73 (ddt, *J* = 14.3, 7.3, 3.7 Hz, 1H), 2.24–2.10 (m, 3H), 1.92 (tdd, *J* = 12.4, 8.4, 3.9 Hz, 1H), 1.73 (ddt, *J* = 14.3, 7.3, 3.7 Hz, 1H), 2.24–2.10 (m, 3H), 1.92 (tdd, *J* = 12.4, 8.4, 3.9 Hz, 1H), 1.73 (ddt, *J* = 14.3, 7.3, 3.7 Hz, 1H), 2.24–2.10 (m, 3H), 1.92 (tdd, *J* = 12.4, 8.4, 3.9 Hz, 1H), 1.73 (ddt, *J* = 14.3, 7.4, 14.4, 14.3, 7.4, 14.4, 14.3, 14.4, 14

J = 12.8, 9.3, 3.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 214.9, 155.5, 136.8, 130.4, 130.2, 129.6, 128.6$ (2C), 128.10, 128.07, 127.6 (2C), 127.5, 121.1, 111.1, 70.2, 47.5, 46.7, 28.7, 25.5, 22.3; IR (neat): $\tilde{\nu} = 3064, 3018, 2932, 2861, 1707, 1599, 1586, 1489, 1451, 1380, 1322, 1290, 1236, 1189, 1152, 1118, 1100, 1082, 1051, 1012, 895, 855, 747, 732, 696 cm⁻¹; HRMS (ES+) calcd for (C₂₁H₂₂O₂ + Na): 329.1517; found: 329.1510.$

Compound 9e. This compound was obtained from **8e** (E/Z > 20:1) (21 mg, 0.0686 mmol) using the standard

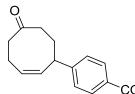
procedure. White solid (19 mg, 90%). m.p.: 53–55 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.41$ (d, J = 7.6 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.12 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 5.80–5.72 (m, 1H), 5.66 (dd, J = 10.4, 8.9 Hz, 1H), 5.03 (s, 2H), 3.54 (ddd, J = 12.2, 9.0, 3.1 Hz, 1H), 2.75 (tdd, J = 13.4, 9.4, 4.1 Hz, 1H), 2.67–2.59 (m, 2H), 2.55–2.45 (m, 2H), 2.25 (ddt, J = 13.6, 7.0, 4.2 Hz, 1H), 1.93 (ddt, J = 13.0, 9.1, 3.9 Hz, 1H), 1.73 (tdd, J = 12.6,


8.6, 3.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 214.1$, 157.3, 137.6, 137.1, 136.0, 128.5 (2C), 128.1, 127.93 (2C), 127.89, 127.4 (2C), 114.9 (2C), 70.1, 47.6, 42.8, 40.0, 31.5, 22.5; IR (neat): $\tilde{\nu} = 3066$, 3026, 2925, 2876, 1694, 1609, 1583, 1511, 1452, 1417, 1386, 1347, 1242, 1225, 1182, 1165, 1109, 1065, 1025, 871, 881, 832, 819, 735, 695 cm⁻¹; HRMS (ES+) calcd for (C₂₁H₂₂O₂+ Na): 329.1517; found: 329.1528.

Compound 10e. This compound was obtained from 8e (E/Z <20:1) (7 mg, 0.0229 mmol) using the standard

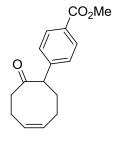
OBn procedure. Colorless oil (4.2 mg, 60%). ¹H NMR (500 MHz, CDCl₃): δ = 7.42–7.40 (m, 2H), 7.38–7.33 (m, 2H), 7.32–7.27 (m, 1H), 7.27–7.24 (m, 2H), 6.92–6.85 (m, 2H), 5.83 (td, *J* = 10.3, 7.2 Hz, 1H), 5.73 (td, *J* = 9.9, 7.4 Hz, 1H), 5.01 (s, 2H), 3.91 (dd, *J* = 12.2, 3.5 Hz, 1H), 2.74–2.60 (m, 2H), 2.97–2.27 (m, 3H), 2.15 (dtd, *J* = 13.1, 9.1, 3.3 Hz, 1H), 1.90 (tdd, *J* = 12.4, 8.1, 3.6 Hz, 1H), 1.60 (ddt, *J* = 12.9, 9.2, 3.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 214.0, 157.9, 137.1, 132.5, 130.7, 129.8, 129.0 (2C), 128.6 (2C), 127.9, 127.4

(2C), 114.8 (2C), 70.0, 54.6, 46.6, 31.8, 25.9, 22.3; IR (neat): $\tilde{v} = 3016$, 2972, 2936, 2918, 2895, 1707, 1068, 1581, 1508, 1460, 1452, 1436, 1385, 1363, 1331, 1303, 1272, 1235, 1195, 1180, 1119, 1106, 1080, 1069, 1040, 1030, 1007, 976, 923, 892, 847, 820, 800, 754, 736, 702 cm⁻¹; HRMS (ES+) calcd for (C₂₁H₂₂O₂ + Na): 329.1517; found: 329.1511.


Compound 9f. This compound was obtained from 8f (E/Z > 20:1) (15 mg, 0.056 mmol) using the standard

procedure. Colorless oil (14 mg, 93%). ¹H NMR (500 MHz, CDCl₃): δ = 7.36–7.33 (m, 1H), 7.23–7.20 (m, 2H), 5.85–5.76 (m, 1H), 5.49 (ddd, *J* = 10.2, 8.5, 1.2 Hz, 1H), 4.12–4.03 (m, 1H), 2.91 (tddd, *J* = 13.7, 9.7, 4.2, 1.2 Hz, 1H), 2.86–2.75 (m, 2H), 2.65–2.44 (m, 2H), 2.29 (ddt, *J* = 13.6, 7.0, 4.2 Hz, 1H), 1.88–7.74 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 213.5, 140.9, 134.1, 133.4, 132.6, 129.9, 129.3, 128.3, 127.5, 47.6, 39.9, 39.6, 30.4, 22.5; IR (neat): \tilde{v} = 3020, 2928, 2869, 1702, 1587,

1560, 1473, 1439, 1383, 1343, 1191, 1165, 1145, 1103, 1070, 1046, 969, 867, 846, 812, 774, 728 cm⁻¹; MS (ES+): m/z (rel. intensity): 293 (60), 291 (100) [M + Na]; HRMS (ES+) calcd for (C₁₄H₁₄³⁵Cl₂O+ Na): 291.0319; found: 291.0319.

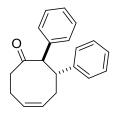

Compound 9g. This compound was obtained from 8g (E/Z = 1:3) (28 mg, 0.11 mmol) using the standard

procedure except that the reaction was stopped after 90h. White solid (8 mg, 29%). m.p.: 52–55 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 5.85–5.77 (m, 1H), 5.65 (ddd, *J* = 10.4, 8.9, 1.3 Hz 1H), 3.88 (s, 3H), 3.64 (ddd, *J* = 12.1, 8.8, 3.2 Hz, 1H), 2.76 (tddd, *J* = 13.6, 9.5, CO₂Me 4.0, 0.9 Hz, 1H), 2.69–2.62 (m, 2H), 2.56–2.47 (m, 2H), 2.28 (ddt, *J* = 13.6, 7.2,

4.1 Hz, 1H), 1.95 (ddt, J = 13.0, 9.0, 3.8 Hz, 1H), 1.77 (tdd, J = 12.7, 8.8, 3.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 213.9, 166.9, 150.3, 134.6, 130$ (2C), 129.1, 128.4, 127.1 (2C), 52.0, 47.5, 43.7, 39.9, 31.0, 22.6; IR (neat): $\tilde{\nu} = 2954, 2863, 1710, 1693, 1608, 1436, 1418, 1396, 1338, 1311, 1279, 1251, 1192, 1179, 1165, 1107, 1070, 1018, 968, 957, 895, 878, 855, 815, 771, 746, 710 cm⁻¹; MS (ES+): <math>m/z$ (rel. intensity): 281 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₈O₃+ Na): 281.1154; found: 281.1153.

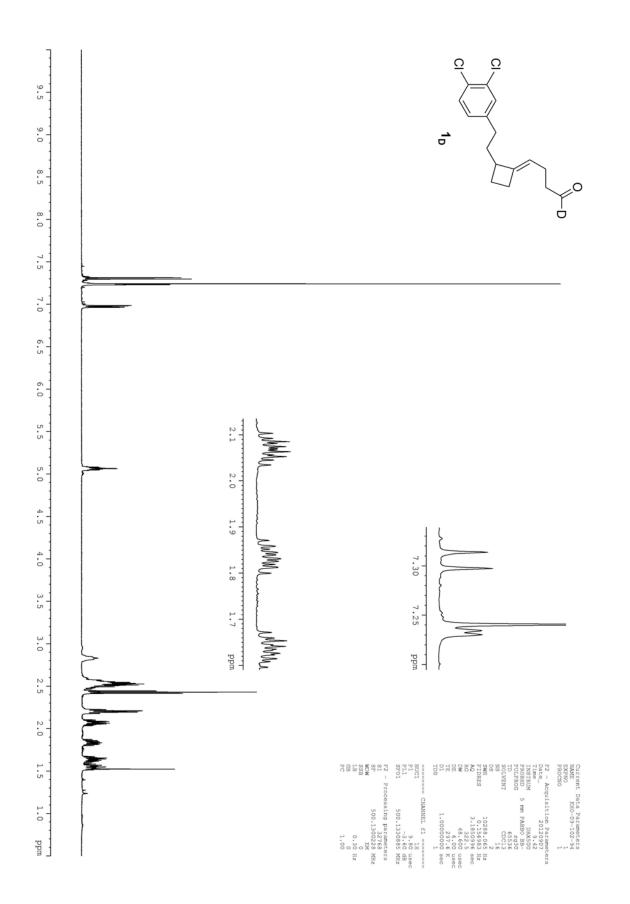
Compound 10g. This compound was obtained from 8g (E/Z = 1:3.3) (28 mg, 0.11 mmol) using the standard

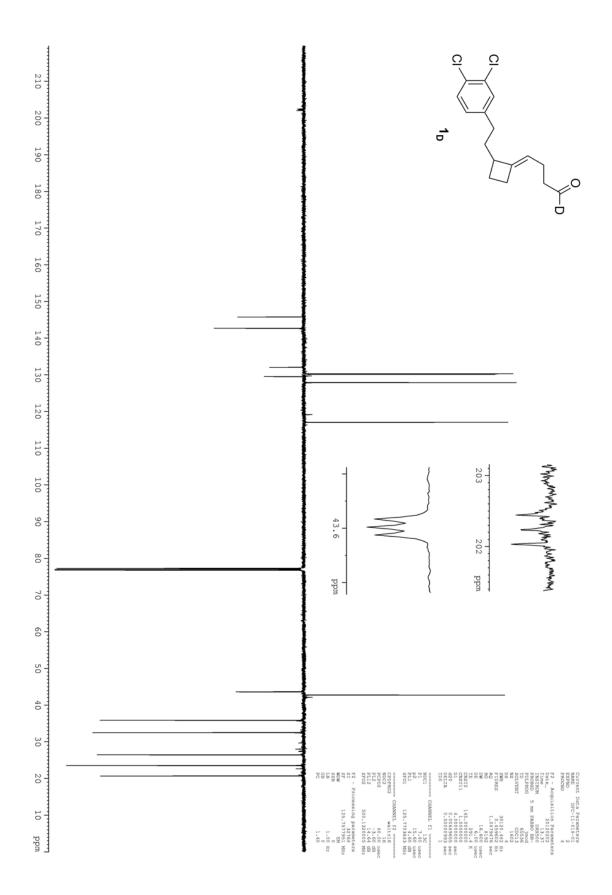
procedure except that the reaction was stopped after 90h. Colorless oil (12 mg, 38%). This sample was obtained as an inseparable **8g/10g** = 1:7.3 mixture and the indicated yield reflects this ratio. Further purification by preparative TLC (petroleum ether/EtOAc = 6:1) gave a sample of **8g/10g** = 1:20 which was used for characterization. ¹H NMR (500 MHz, CDCl₃): δ = 7.94 (d, *J* = 8.2 Hz, 2H), 7.41 (*J* = 8.2 Hz, 2H), 5.86 (td, *J* = 9.8, 7.3 Hz, 1H), 5.75 (td, *J* = 9.7, 7.7 Hz, 1H), 4.04 (dd, *J* = 12.1, 3.4 Hz, 1H), 3.87 (s, 3H), 2.77–2.63 (m, 2H), 2.42–2.34 (m, 1H), 2.34–2.25 (m, 2H), 2.18 (dtd, *J* = 13.3, 9.3, 3.7

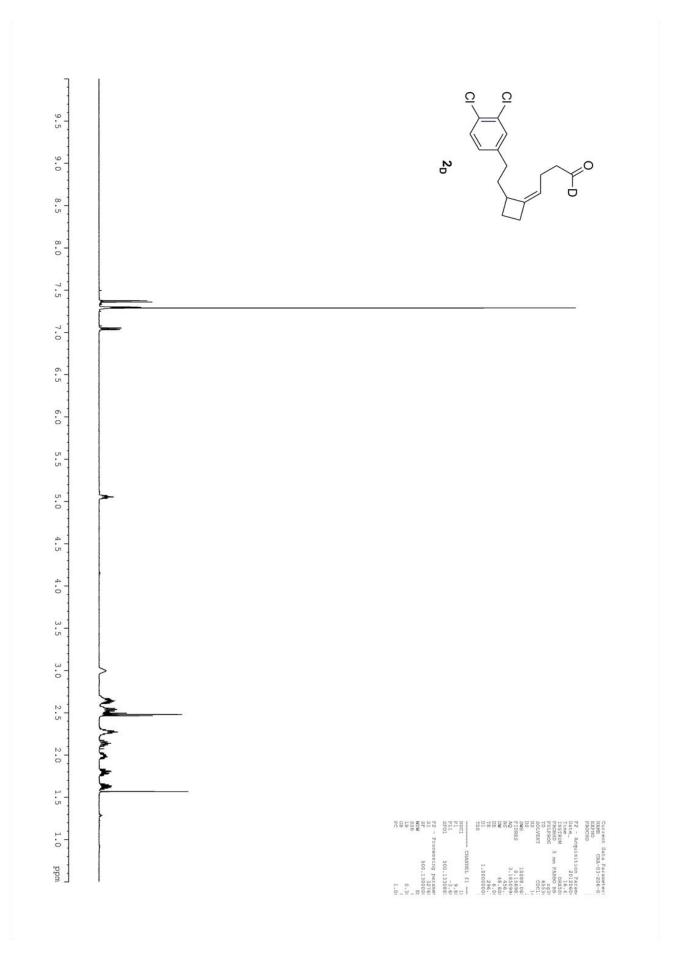

Hz, 1H), 1.93 (tdd, J = 12.4, 8.3, 3.7 Hz, 1H), 1.63 (ddt, J = 12.9, 9.1, 3.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 212.8$, 167.0, 145.1, 130.6, 129.9, 129.7 (2C), 128.8, 128.1 (2C), 55.5, 52.0, 46.8, 31.8, 25.8, 22.2; IR (neat): $\tilde{v} = 3026$, 2951, 2909, 2849, 1720, 1700, 1608, 1573, 1437, 1420, 1349, 1323, 1310, 1280, 1265, 1246, 1185, 1171, 1063, 1017, 977, 968, 898, 874, 855, 839, 813, 779, 752, 736, 709 cm⁻¹; MS (ES+):

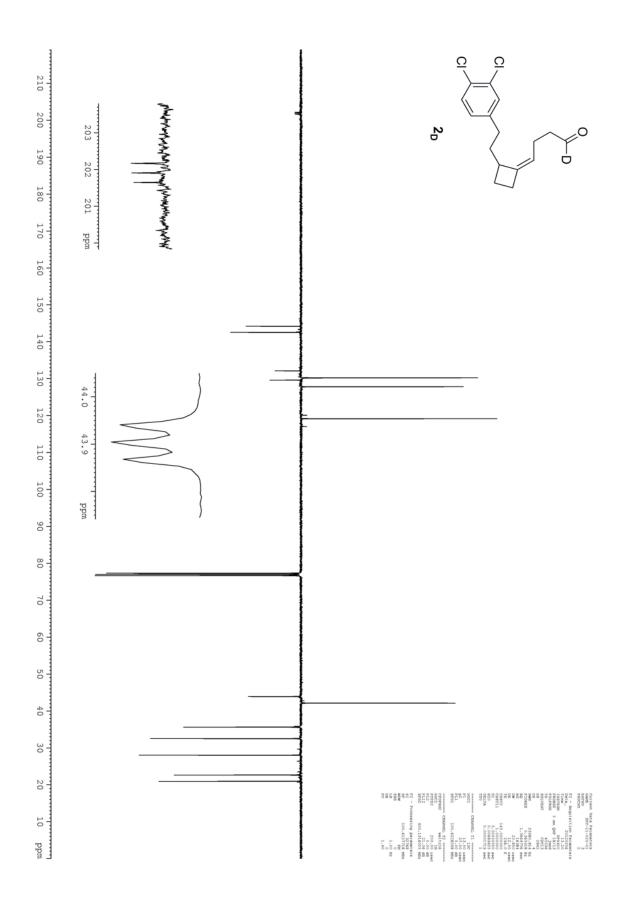
m/z (rel. intensity): 281 (100) [M + Na]; HRMS (ES+) calcd for (C₁₆H₁₈O₃+ Na): 281.1154; found: 281.1153.

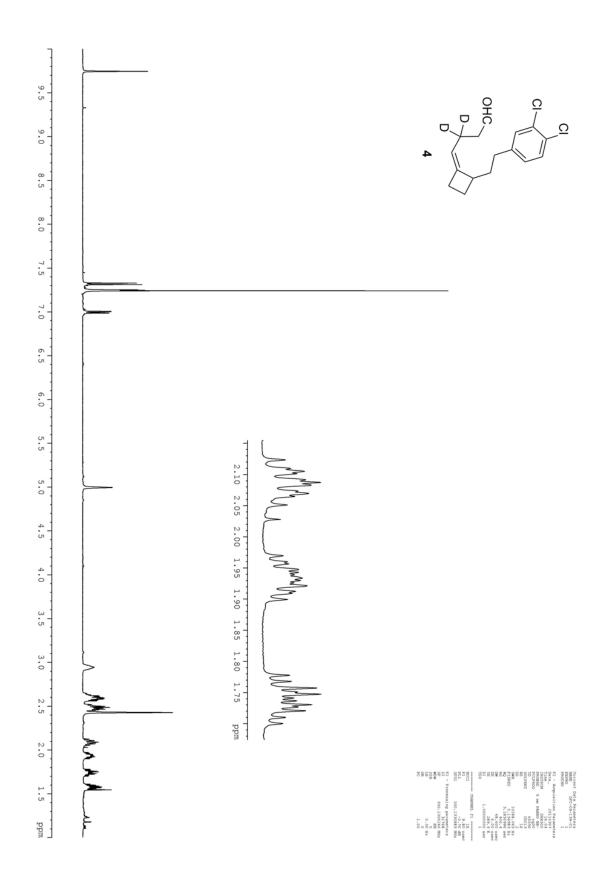
Compound 12. This compound was obtained from **11** (E/Z = 3.3:1) (15 mg, 0.0543 mmol) using the standard procedure. White solid (11.2 mg, 75%). m.p.: 127–130 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.09-6.89$ (m, 10H), 5.74 (td, J = 10.8, 7.4 Hz, 1H), 5.70 (tdd, J = 10.7, 6.3, 1.1 Hz, 1H), 4.02 (dd, J = 10.6, 7.2 Hz, 1H), 3.27–3.14 (m, 3H), 2.79 (ddd, J = 13.0, 5.0, 3.1 Hz, 1H), 2.54–2.48 (m, 1H), 2.46 (td, J = 13.3, 4.9 Hz, 1H), 2.38–2.30 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 211.7, 143.8, 143.6, 136.4, 129.2, 128.1 (4C), 128.1 (2C), 127.7 (2C), 125.9, 125.8, 50.7, 48.7, 47.9, 47.2, 22.2; IR (neat): <math>\tilde{v} = 3030, 2937, 1698, 1602, 1494, 1454, 1421, 1331, 1221, 1184, 1164, 1123, 1103, 1075, 1022, 787, 765, 754, 732, 702 cm⁻¹; MS (ES+): <math>m/z$ (rel.

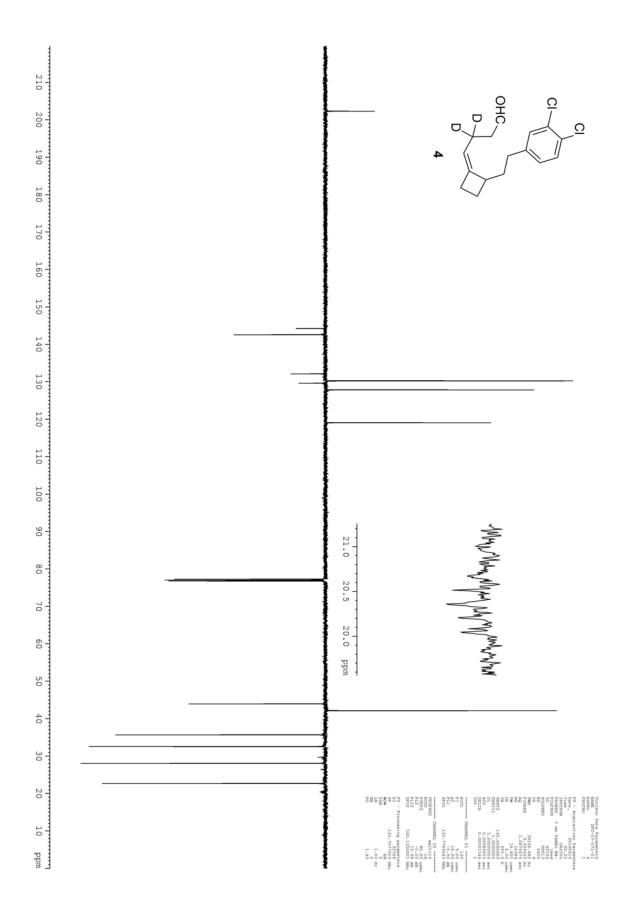

intensity): 299 (100) [M + Na]; HRMS (ES+) calcd for (C₂₀H₂₀O+ Na): 299.1412; found: 299.1414.

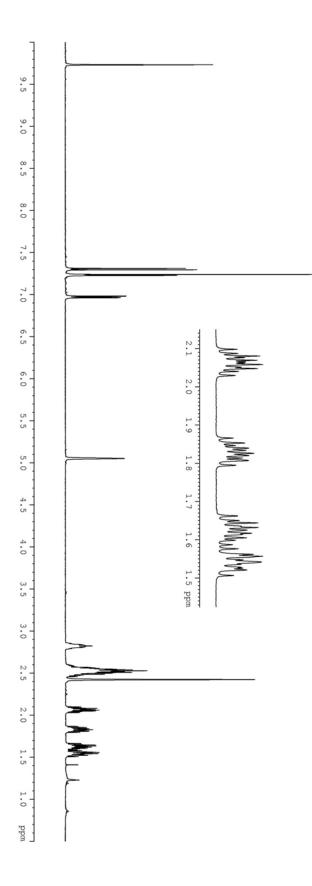

Compound 13. This compound was obtained from 11 (E/Z = 1:8) (18 mg, 0.0652 mmol) using the standard

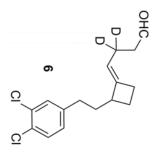


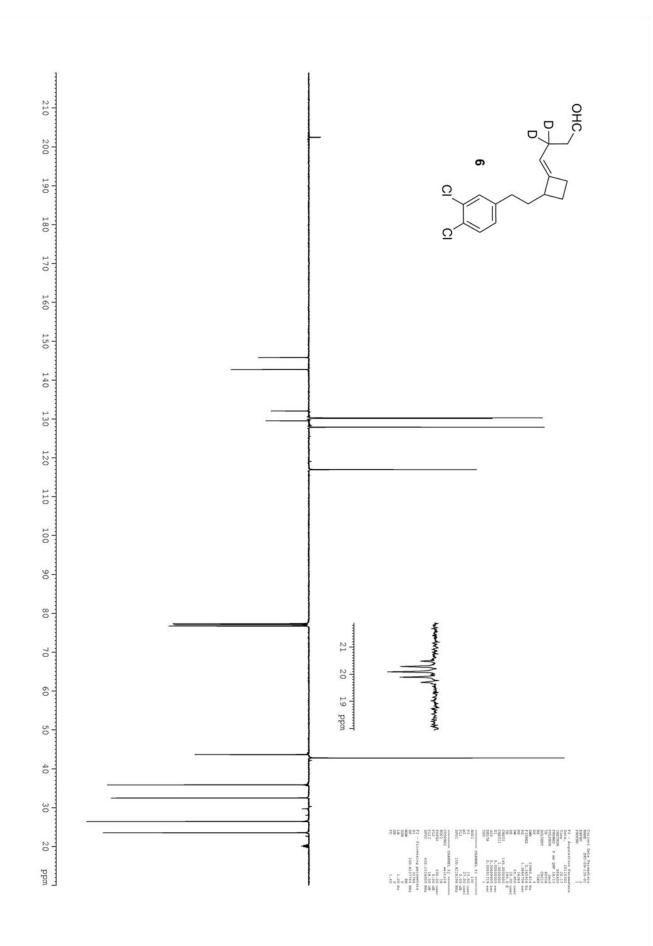

procedure. White solid (6 mg, 33%). m.p.: 124–126 °C; ¹H NMR (500 MHz, CDCl₃): δ =7.24–7.21 (m, 2H), 7.12–6.97 (m, 8H), 6.11–6.01 (m, 1H), 5.80 (td, J = 10.2, 7.3 Hz, 1H), 4.34 (d, J = 11.6 Hz, 1H), 3.32 (dt, J = 11.5, 5.1 Hz, 1H), 2.86 (td, J = 10.9, 4.3 Hz, 1H), 2.71–2.60 (m, 1H), 2.49 (ddd, J = 14.1, 9.7, 4.5 Hz, 1H), 2.45–2.34 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 213.1, 142.7, 137.3, 130.8, 129.1, 129.0 (2C), 128.10 (2C), 128.05 (2C), 127.9 (2C), 126.7, 126.1, 60.2, 47.3, 46.0, 33.9, 23.4; IR (neat): $\tilde{\nu} = 3060$,

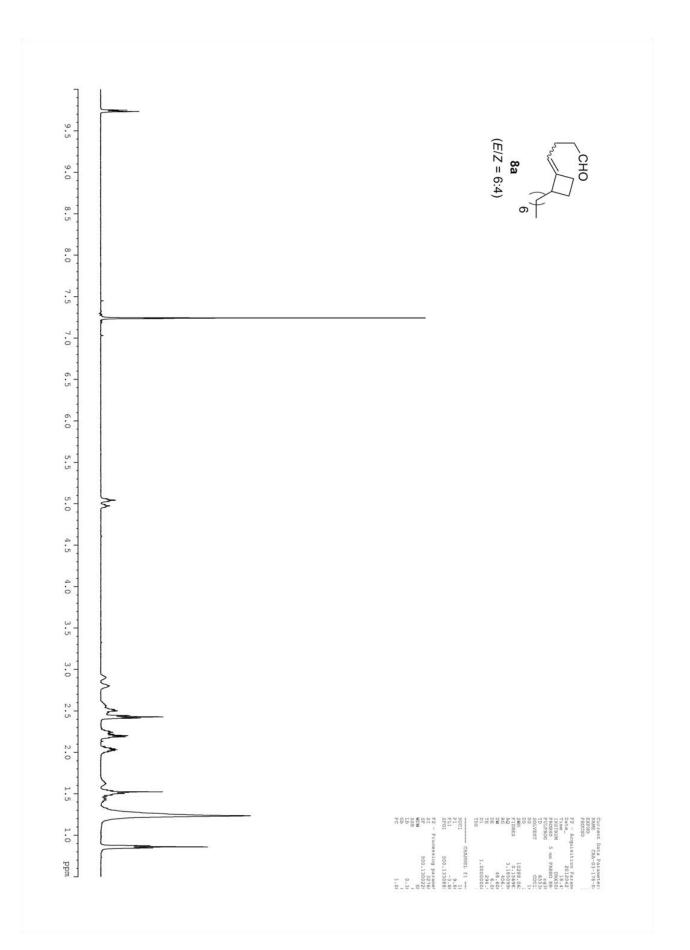

3028, 2970, 2934, 2859, 1701, 1601, 1493, 1454, 1434, 1342, 1318, 1292, 1227, 1193, 1164, 1099, 1071, 1030, 1015, 846, 770, 736, 722, 707, 695 cm⁻¹; MS (ES+): m/z (rel. intensity): 299 (100) [M + Na]; HRMS (ES+) calcd for (C₂₀H₂₀O+ Na): 299.1412; found: 299.1414.

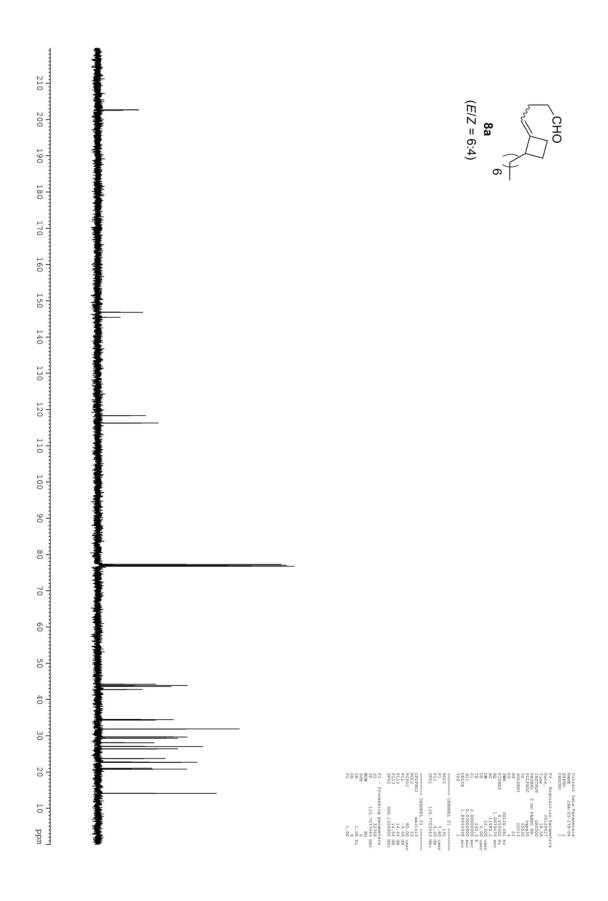




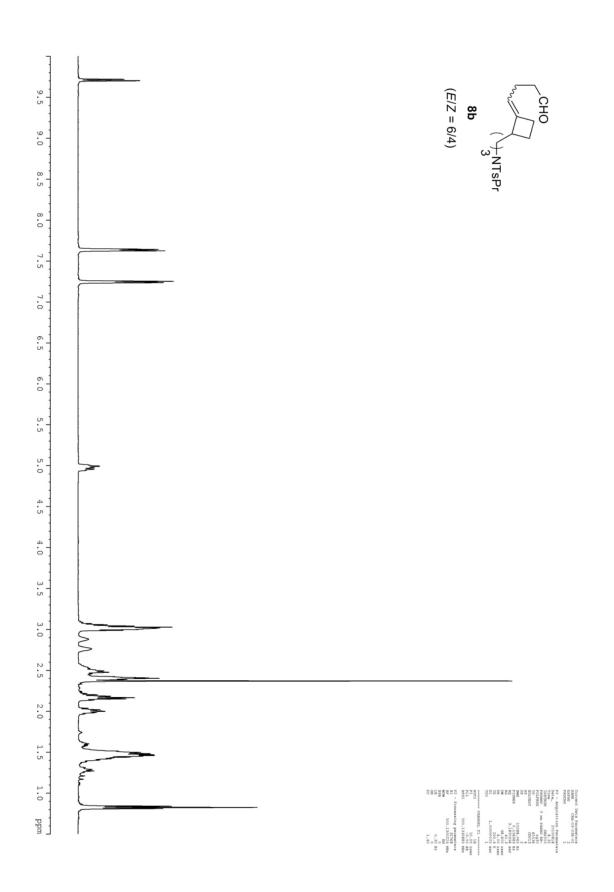


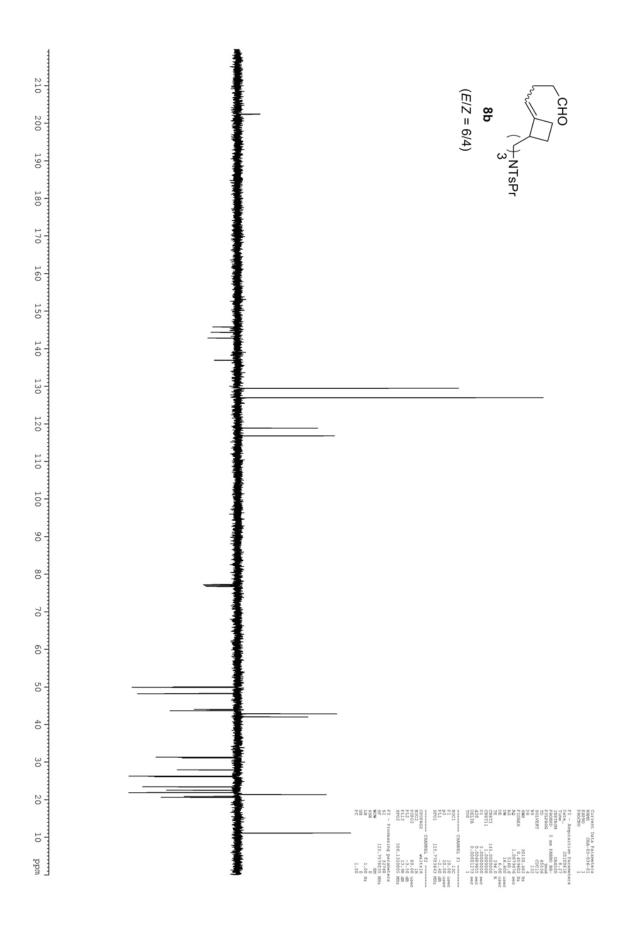


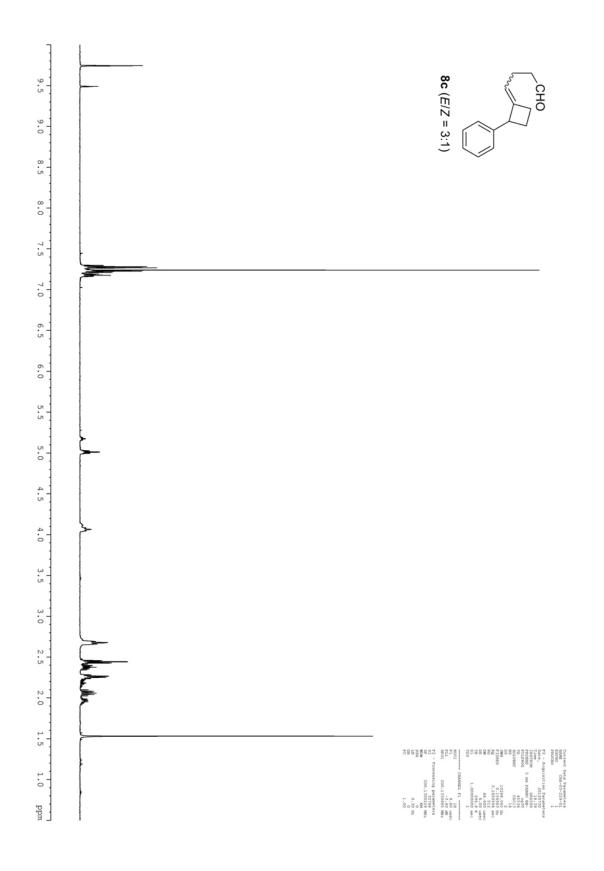


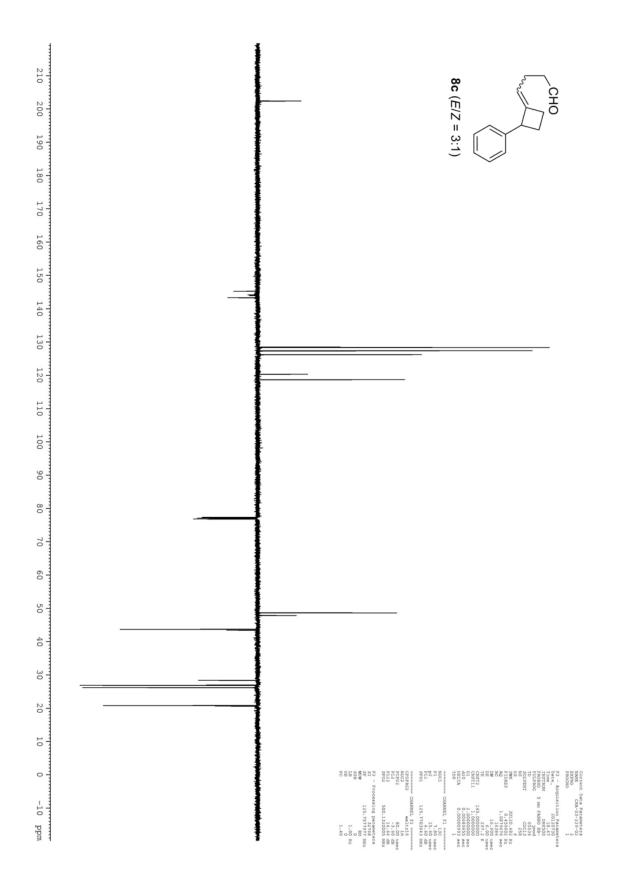


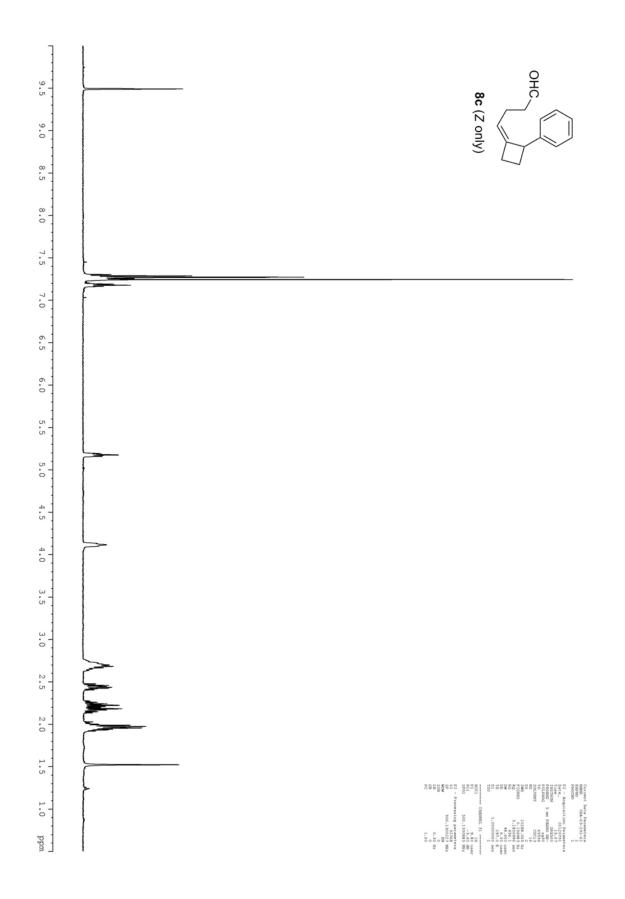
78	1.8	NOW	SP	ISI	F2 - Pro	SF01	P11	P1	NUC1	TDO	DI	TE	DE	DW	25	N	FIDRES	SNI	DS	SN	SOLVENT	TD	PULPROG	PROBED	INSTRUM	T1m0	Date	82 - Acq	PROCNO	EXPNO	NAME
1.00	0.30	E M	500.1300246	32768	cessing paramete	500.1330885	-2.70		CHANNEL 21		1.00000000	289.3	6.00	48.600	256	3.1850996	0.156983	10288.065	12	16	CDC13	65536	2030	5 mm PABBO BB-	DRX500	10.45	20110302	lisition Paramet			DEC-09-135-01
	102		NOT N		010	MHz	8	0.000			38C	×	Dean	1000		38C	102	10.2										073			

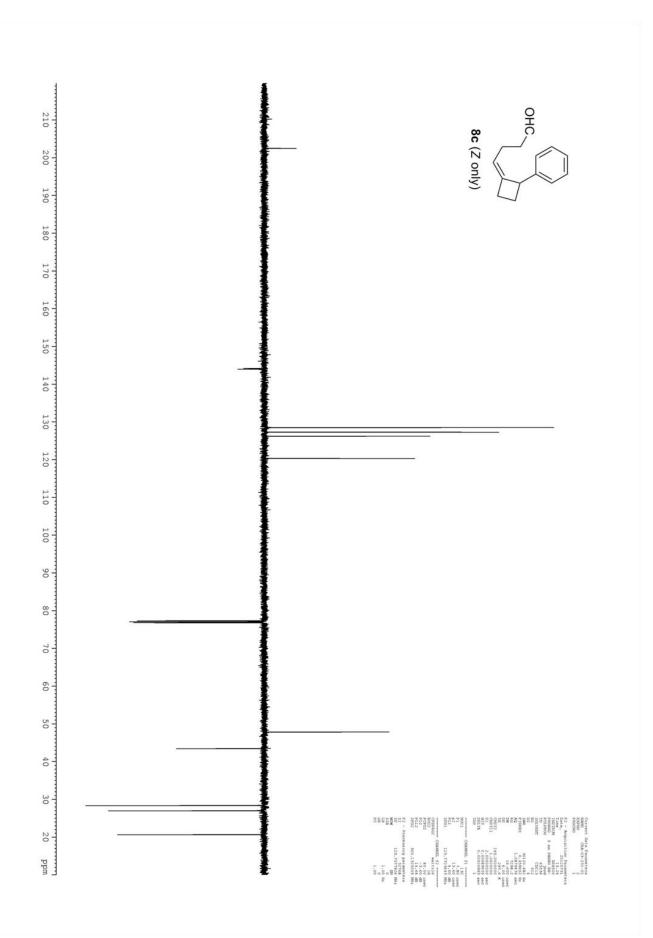




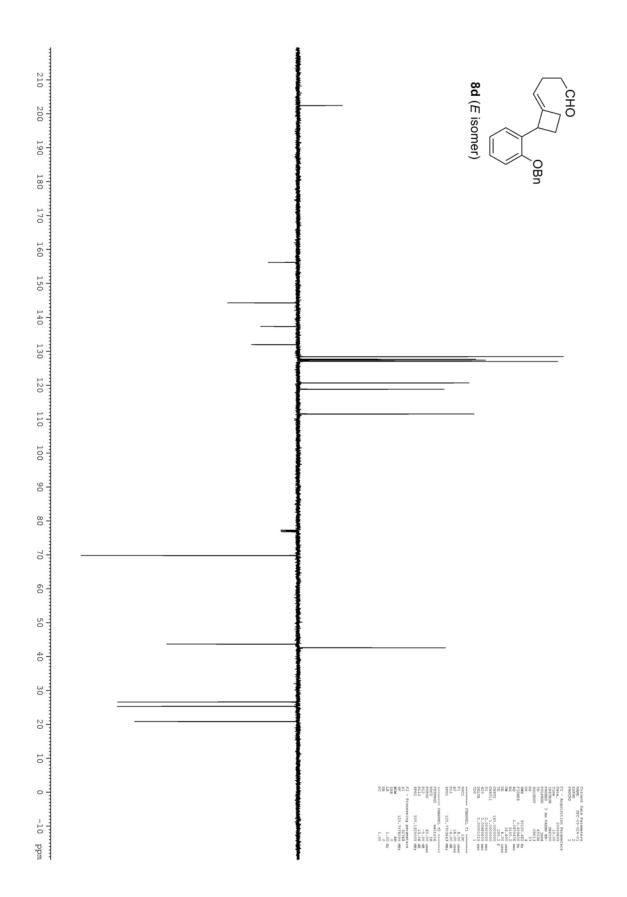


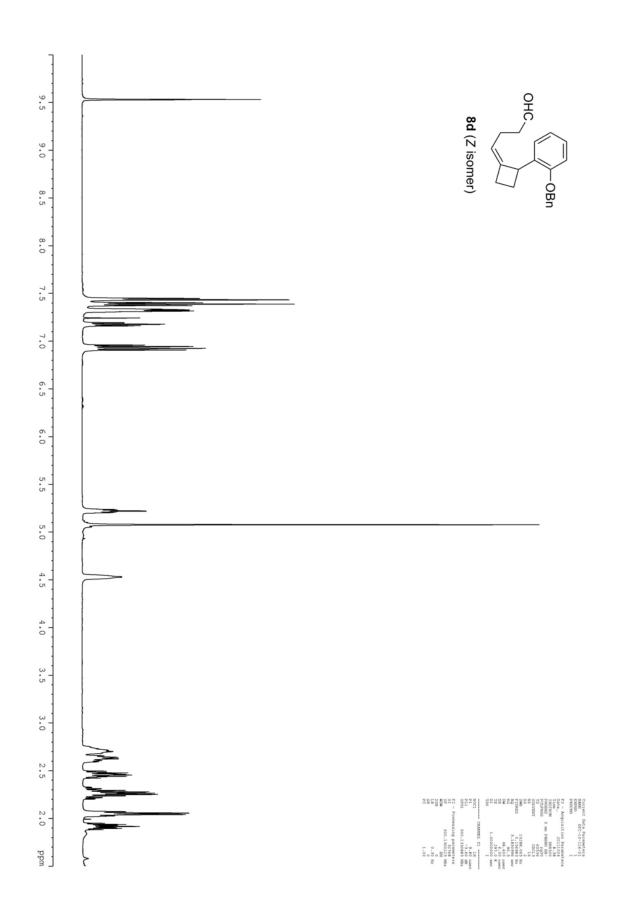


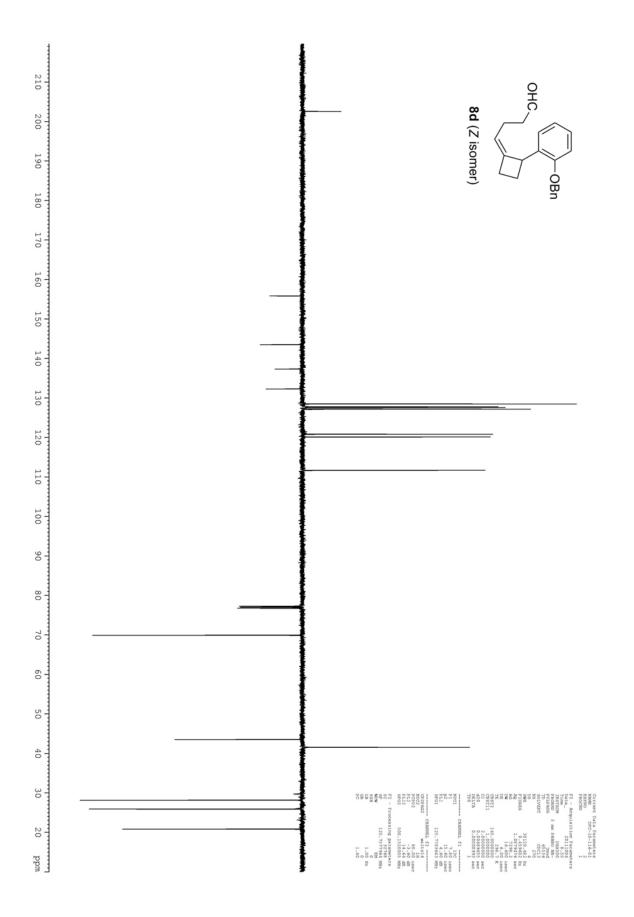


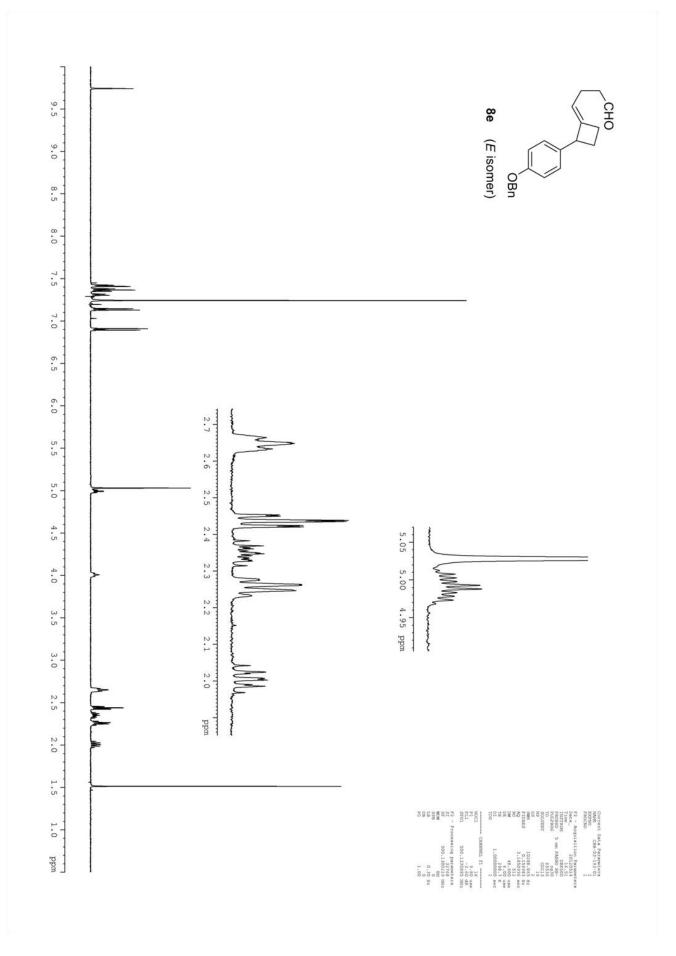


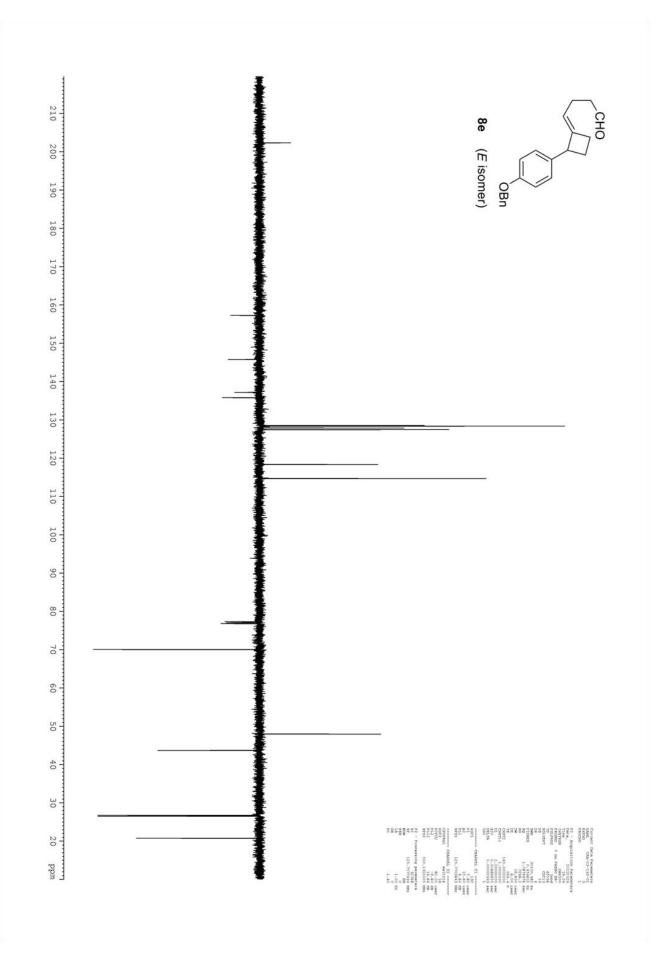


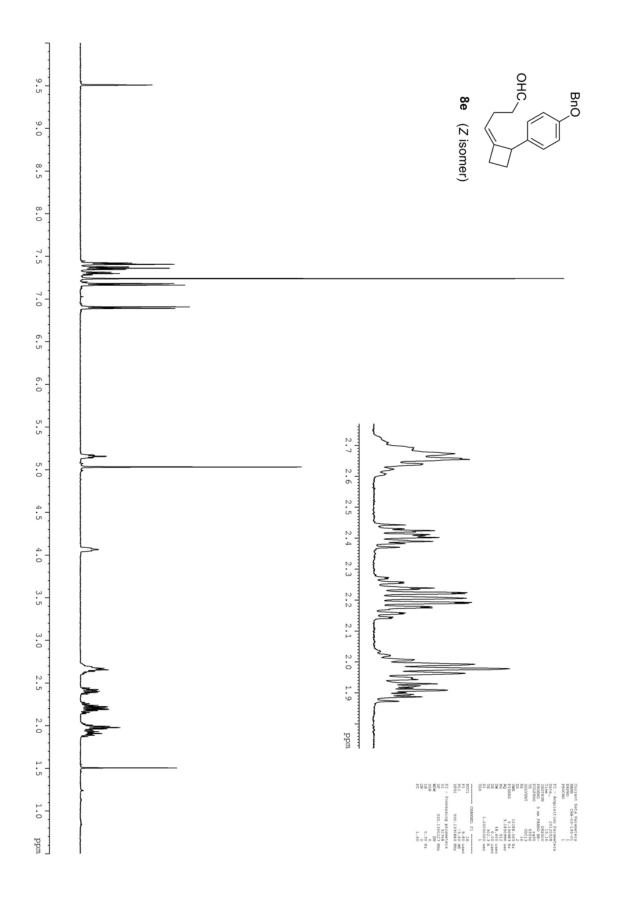


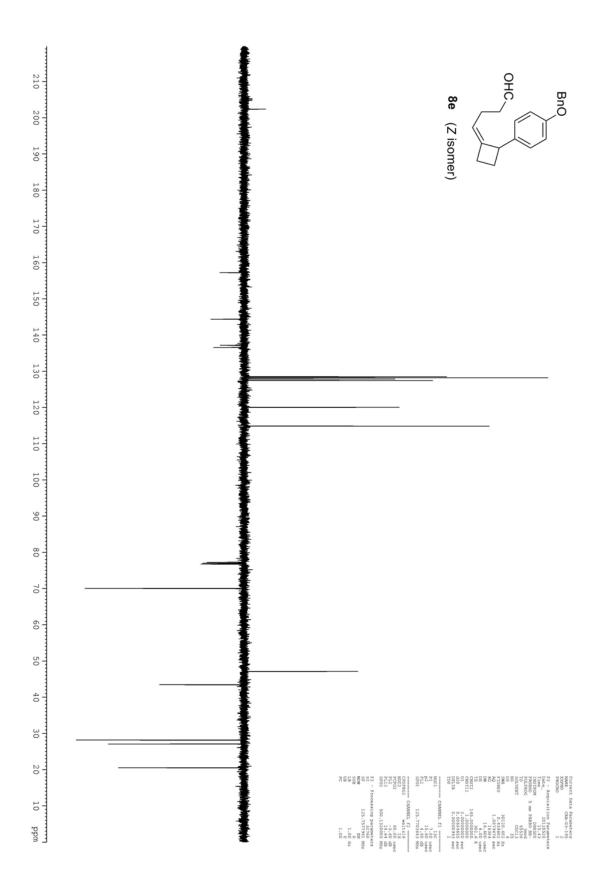


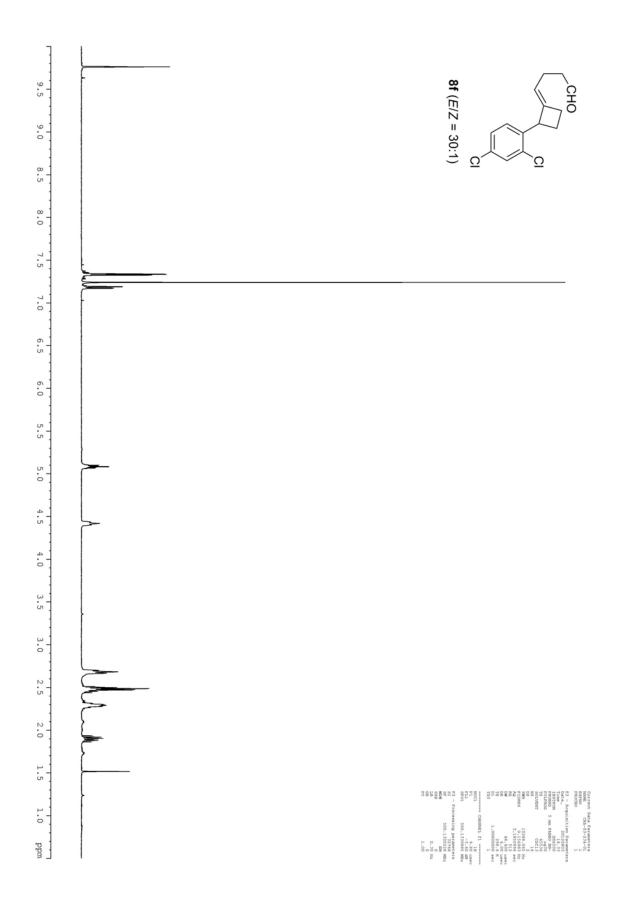


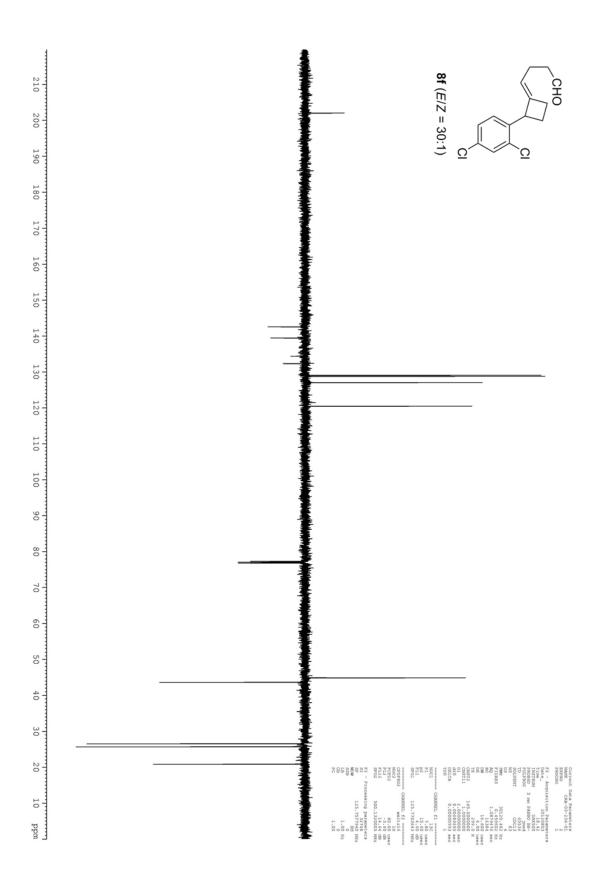


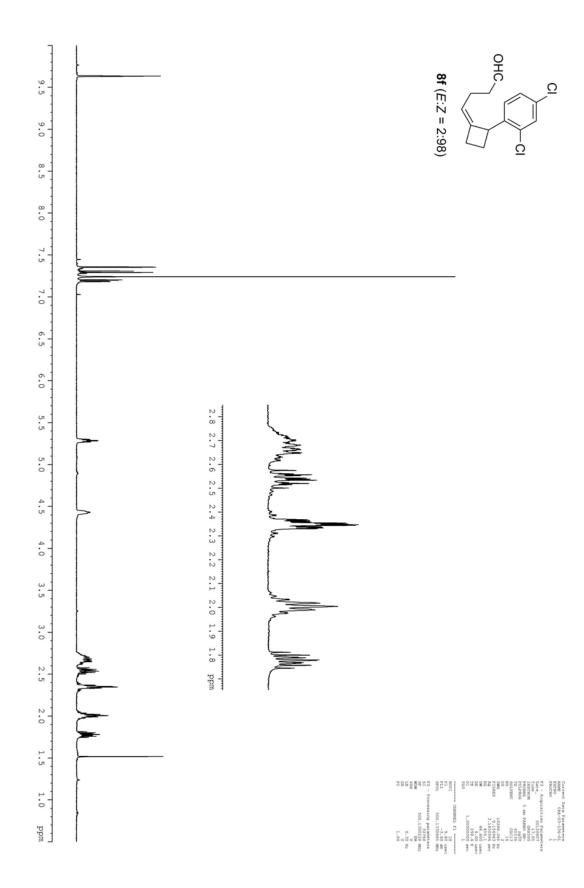


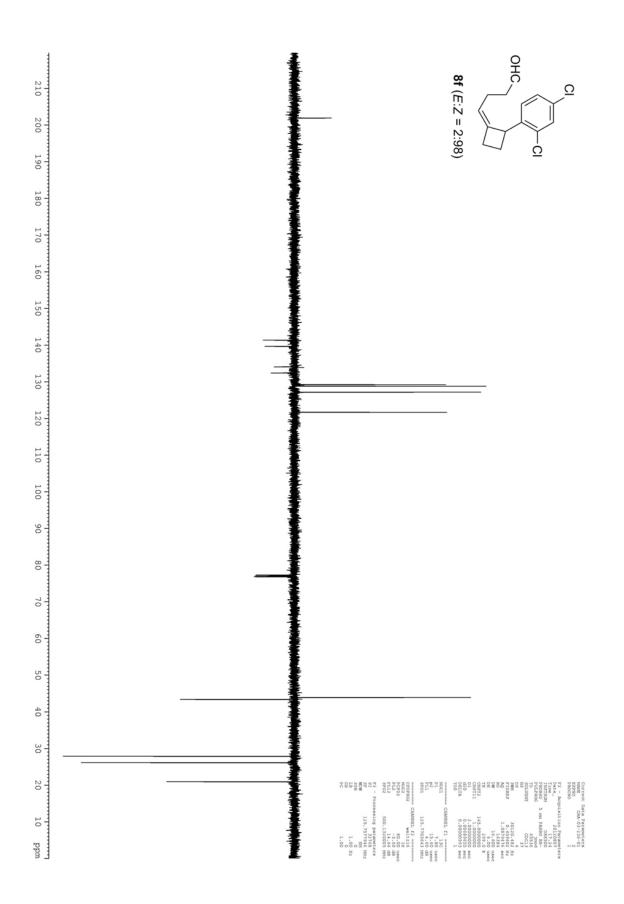


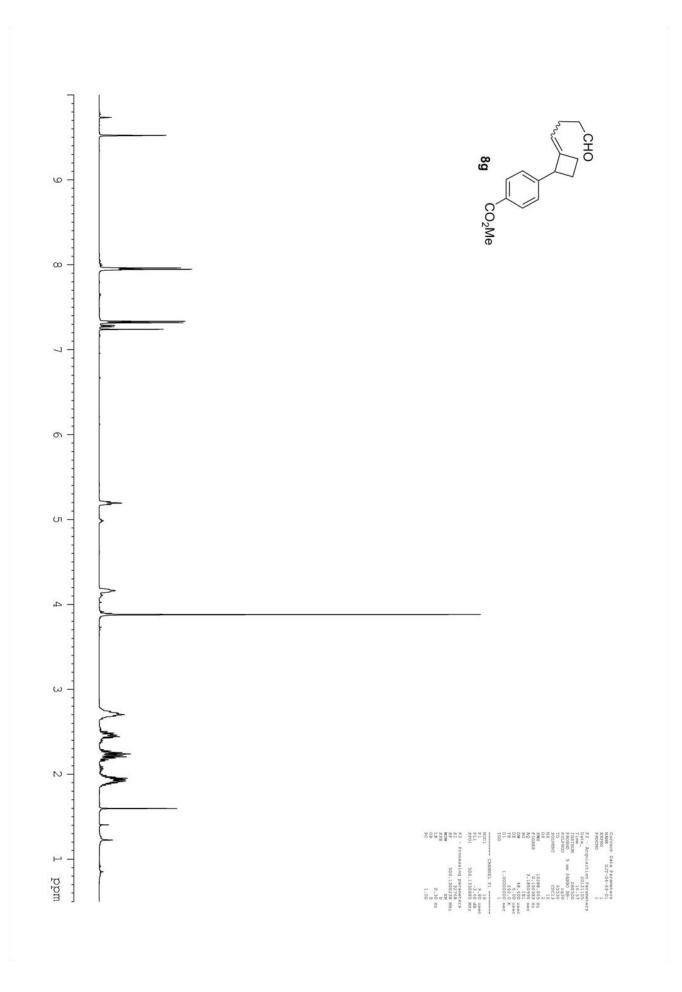


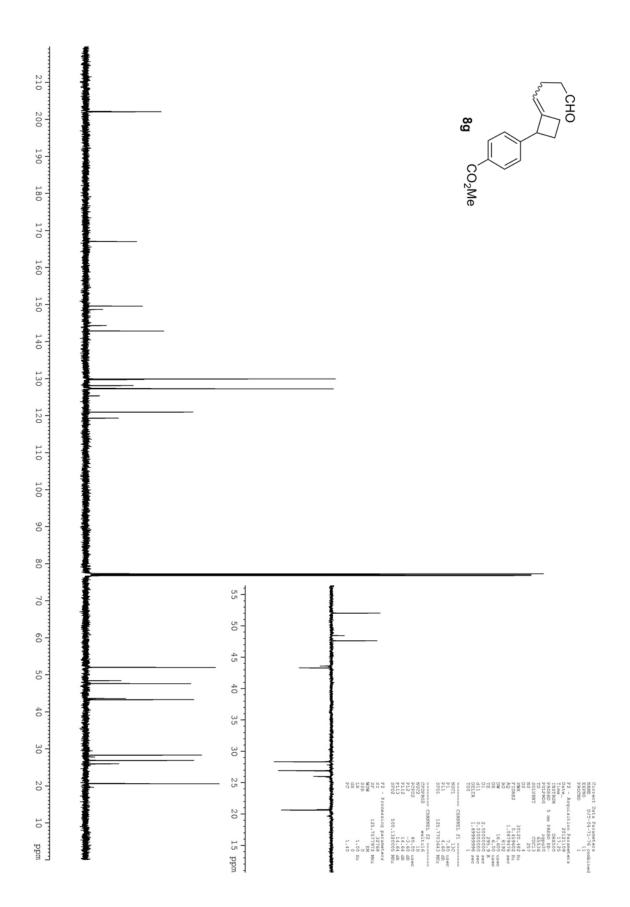


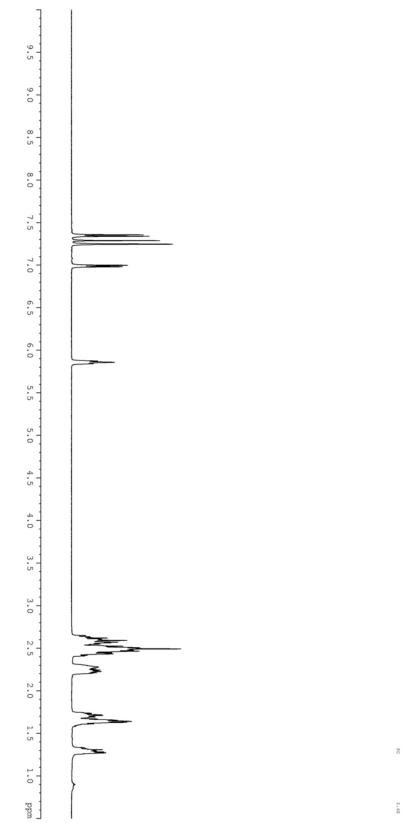


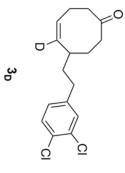


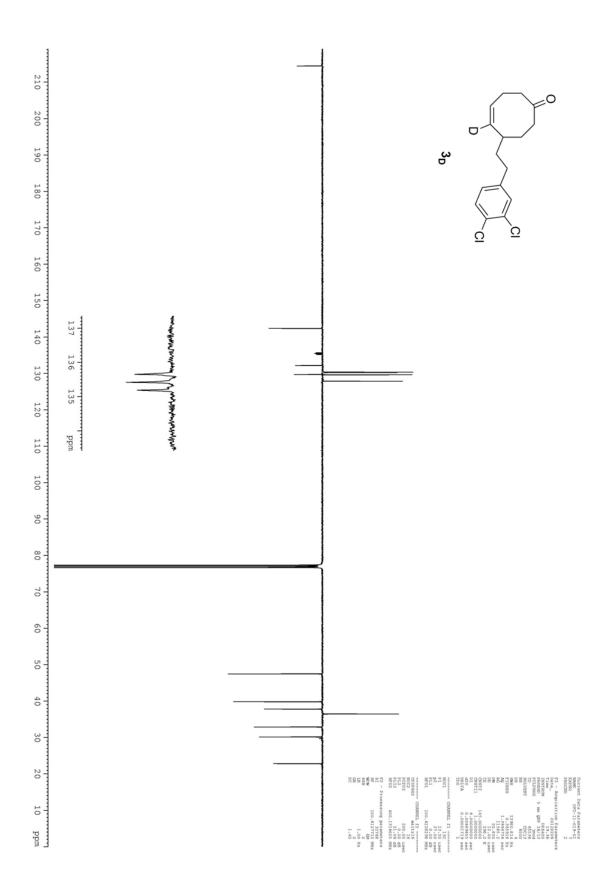


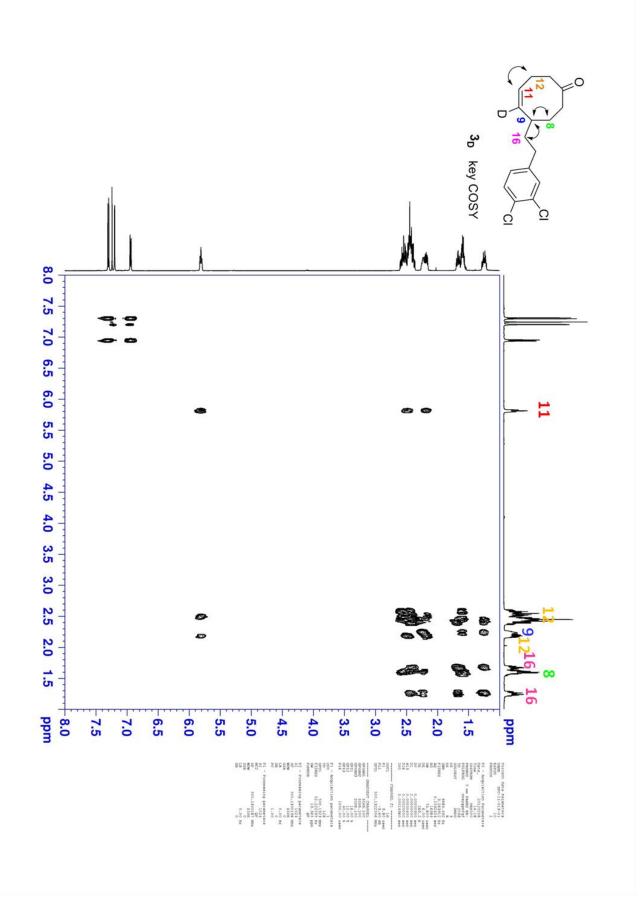


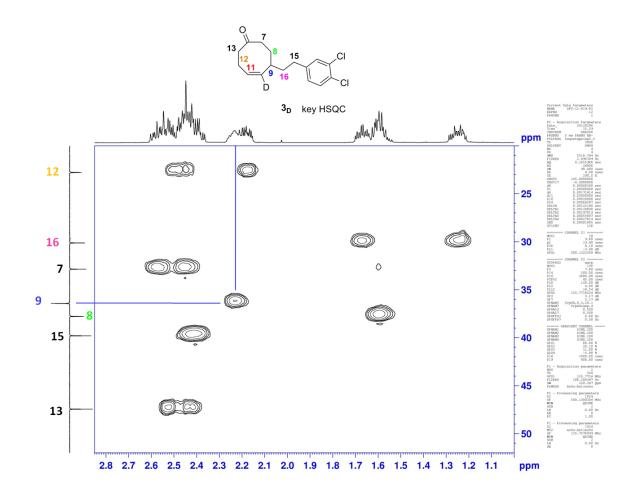


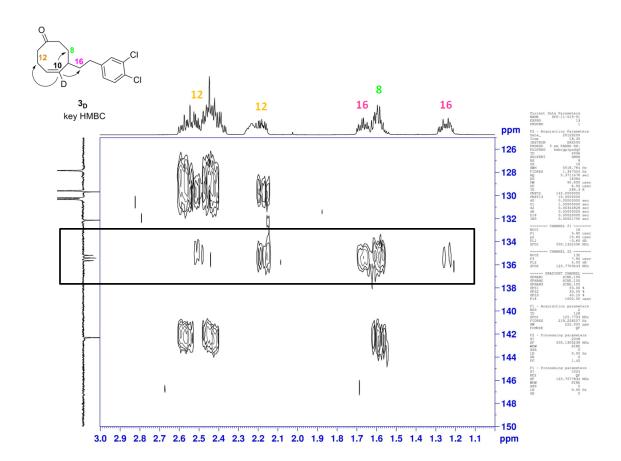


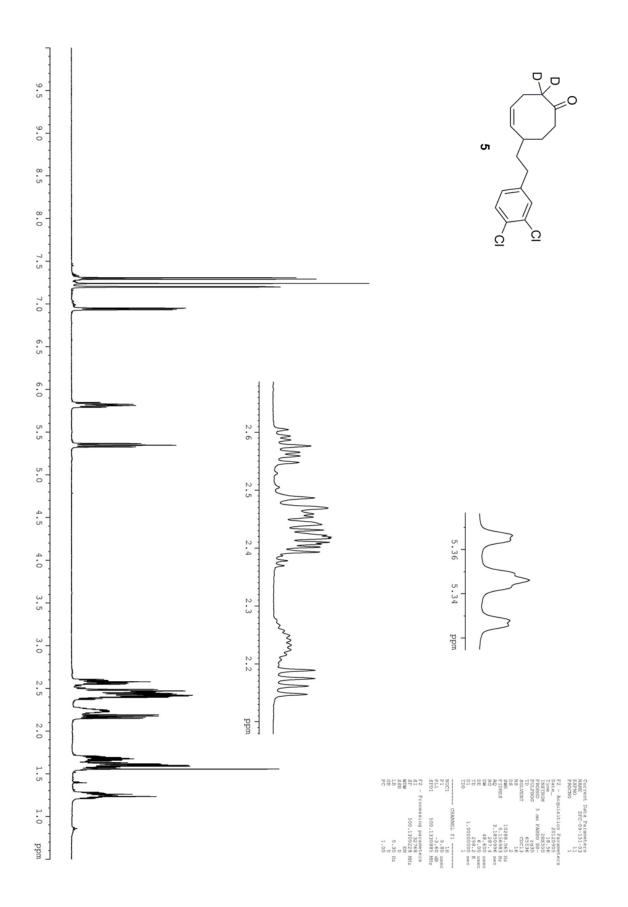


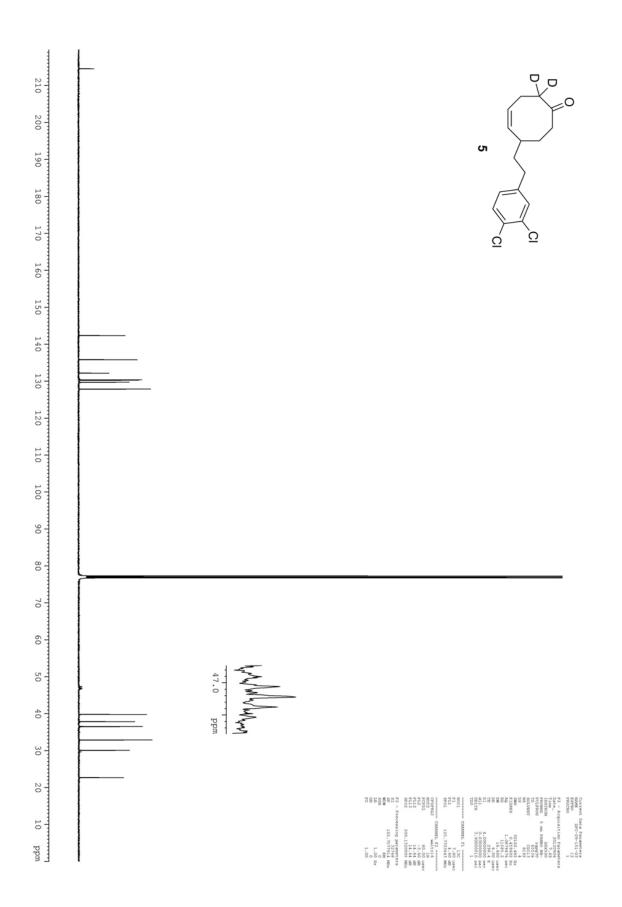


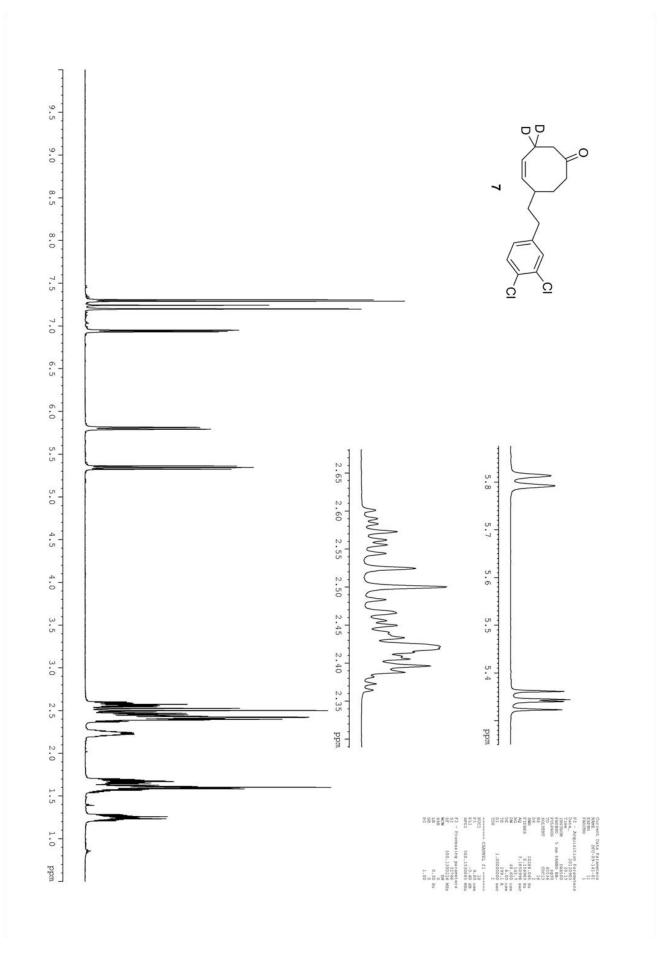


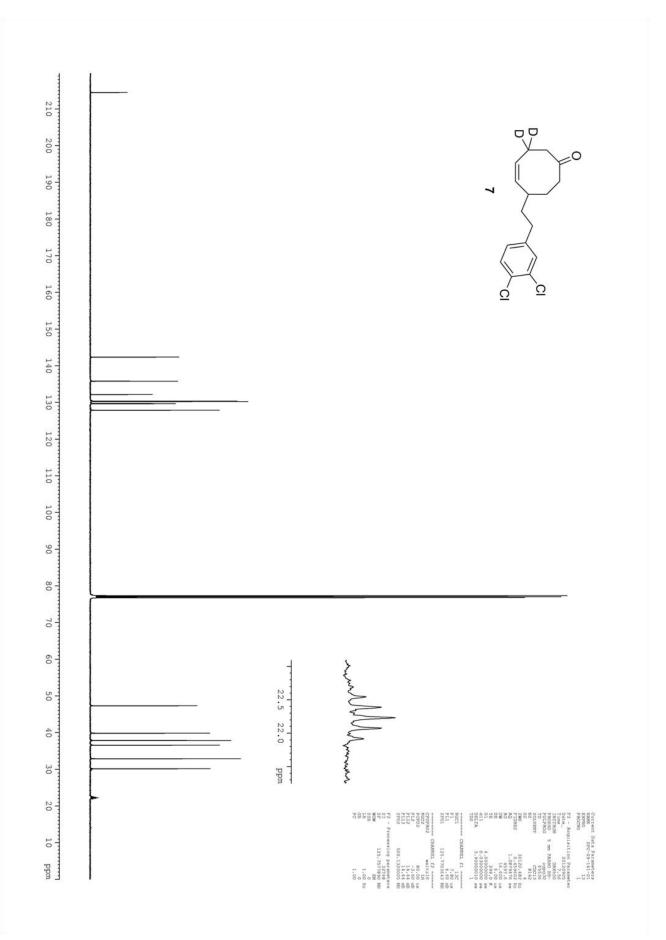


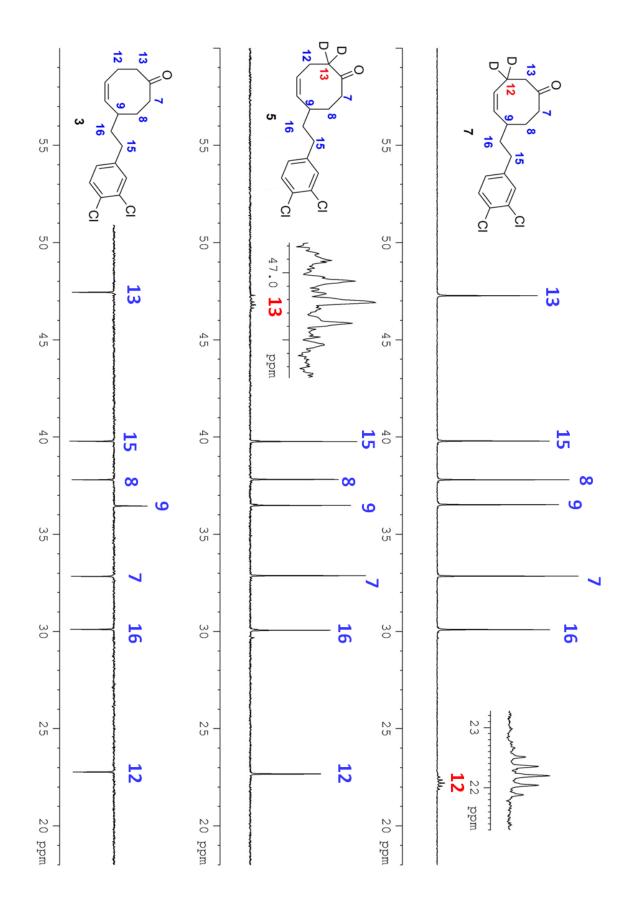

201 214	0.30	138 CB
MRZ	500.1300000 MM: EM	MDM
usec dis NH2	- CHANNEL fl 9.80 -3.60 500.1330885	P1 P1 PL1 SFO1
usec N sec	48.600 6.00 289.3 1.00000000 1	DE TE TE
990 1111 1111	10288.065 0.156983 3.1850996	NS DS SWH FIDRES AQ AQ
015	14.39 5 mm PABBO 185 5 mm PABBO 185 65536 65536 65536	P2 - Acc Date_ Time INSTRUM PROBND PULPROG TD SOLVENT
	Data Parameters DFC-11-019-01 11	Current NAME EXPNO FROCNO

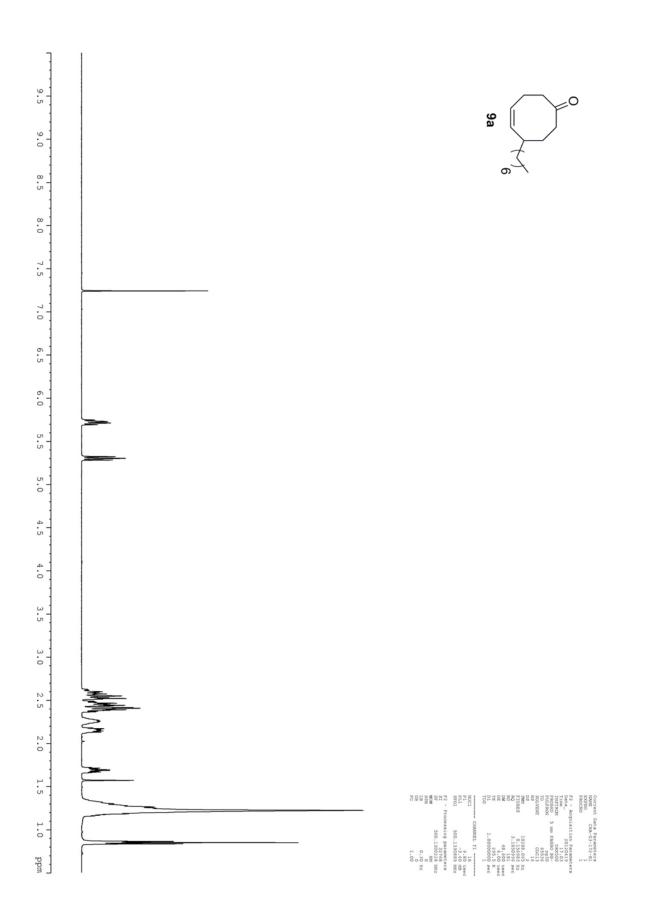


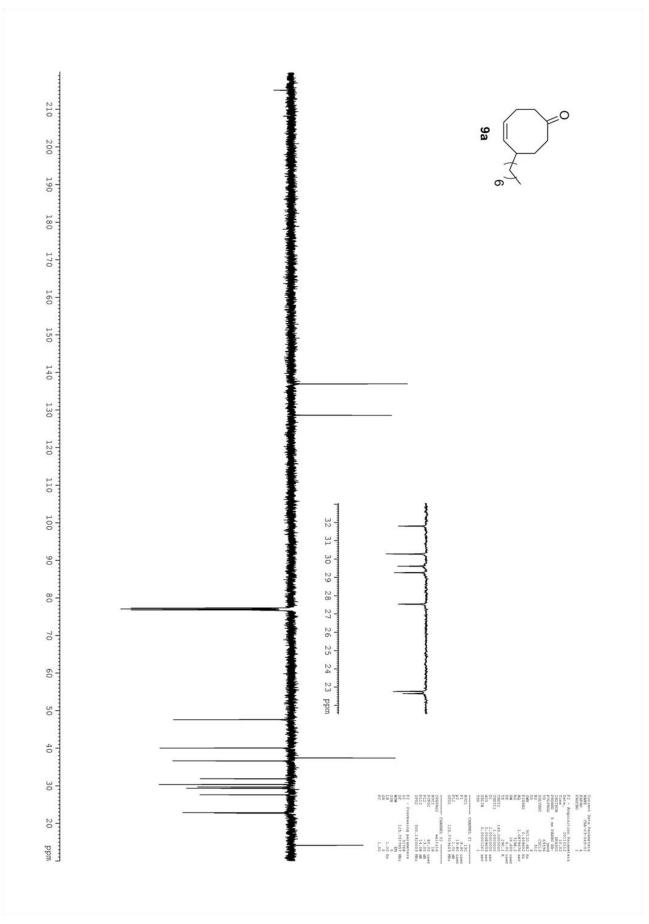


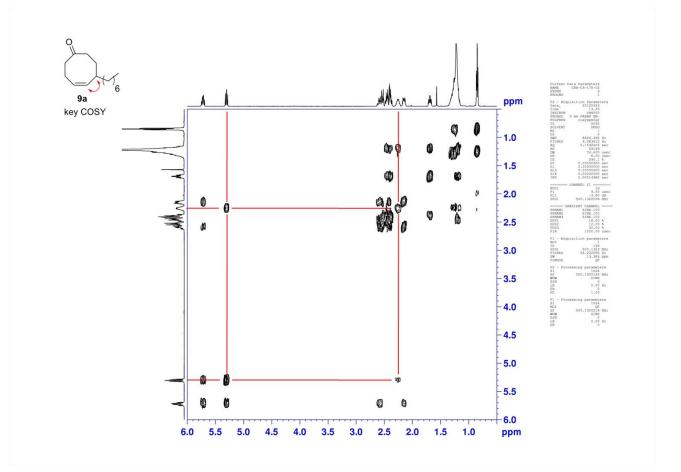


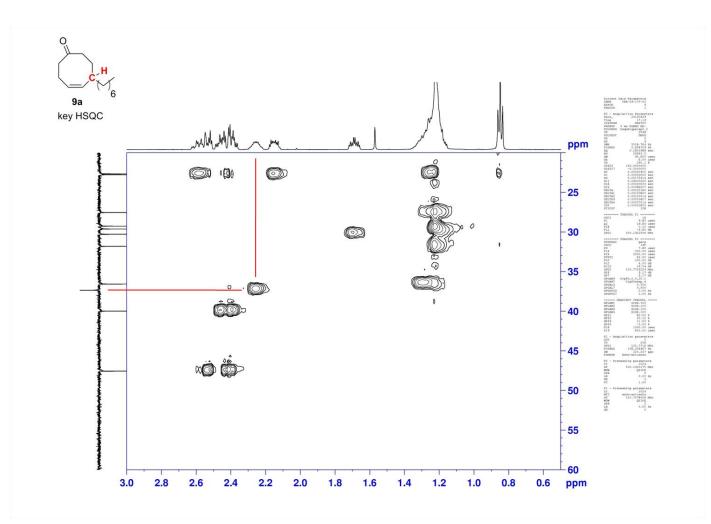


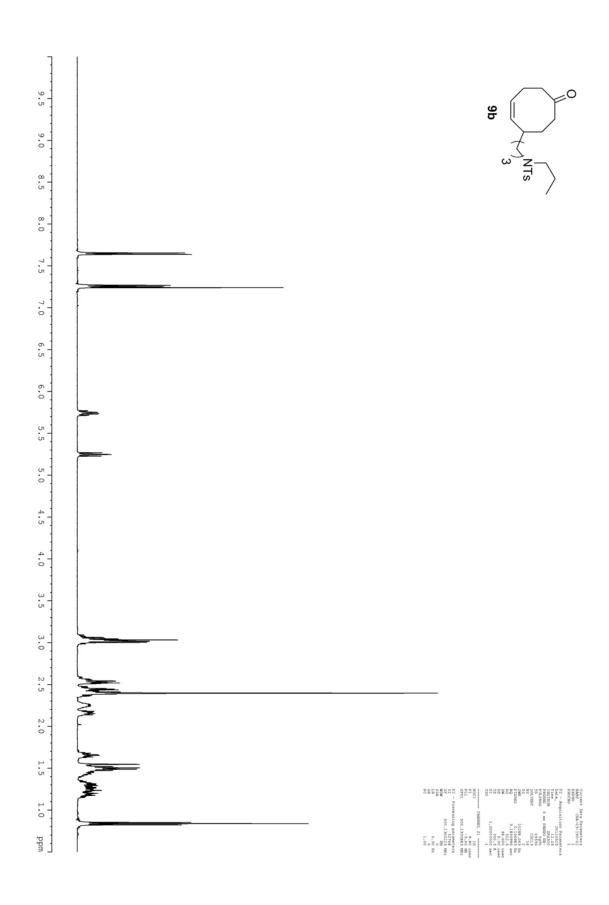


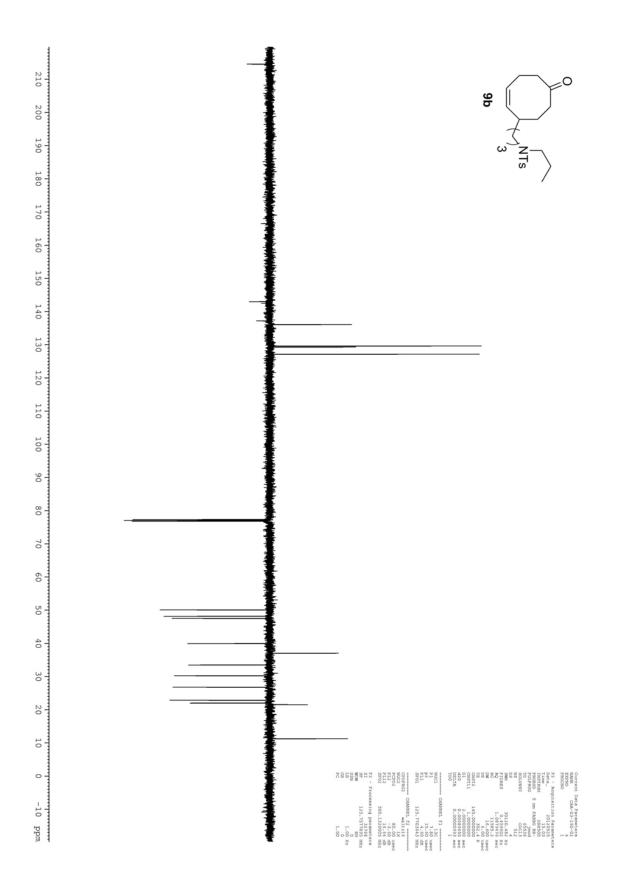


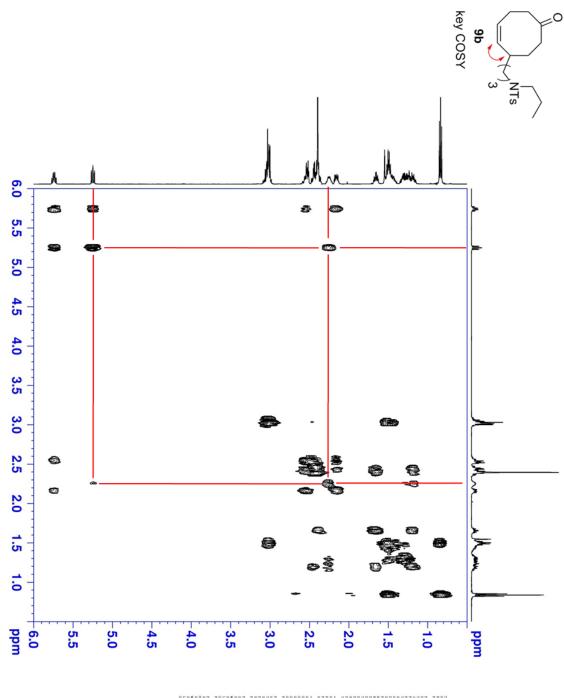


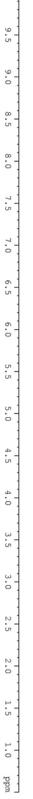


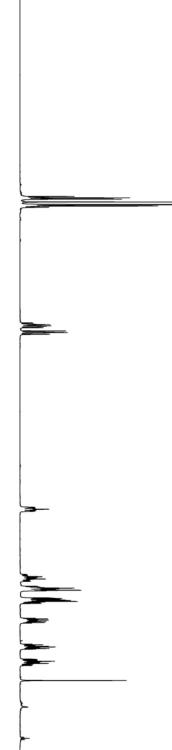


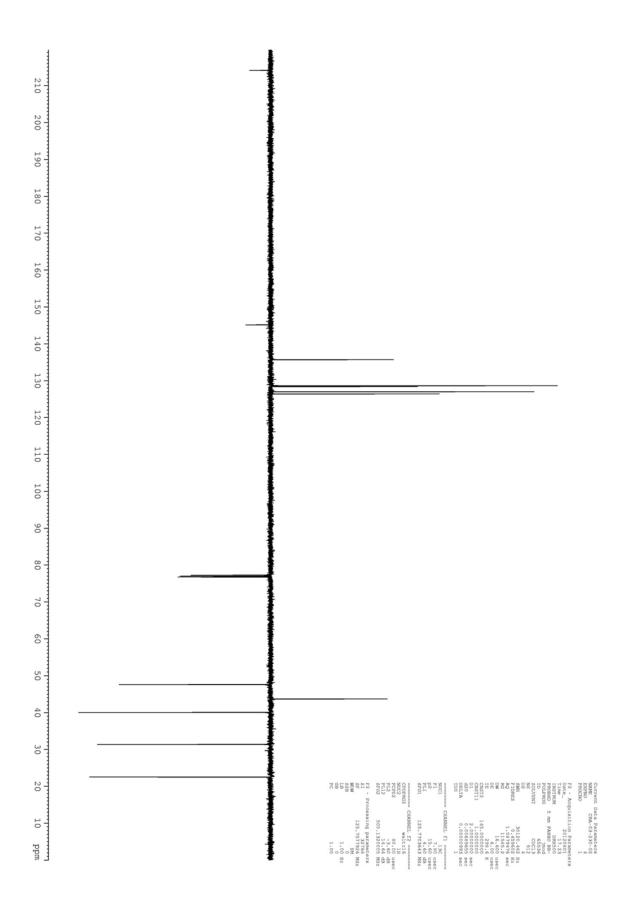


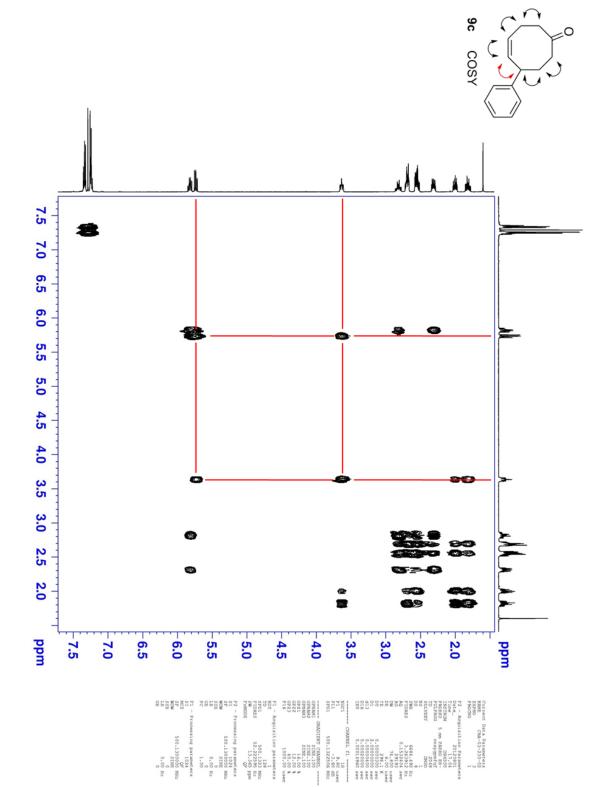


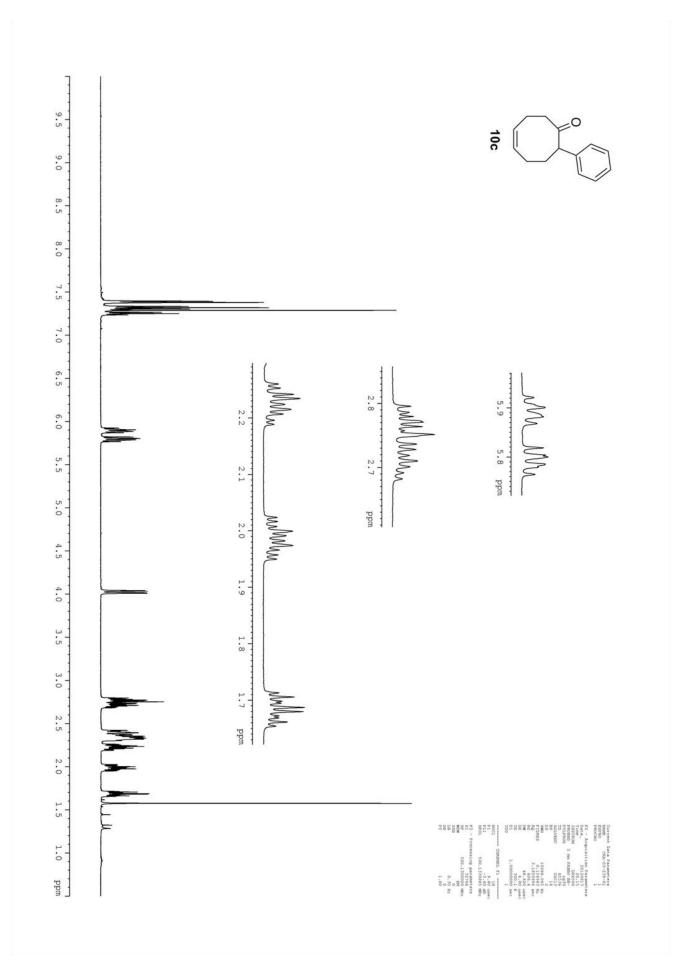


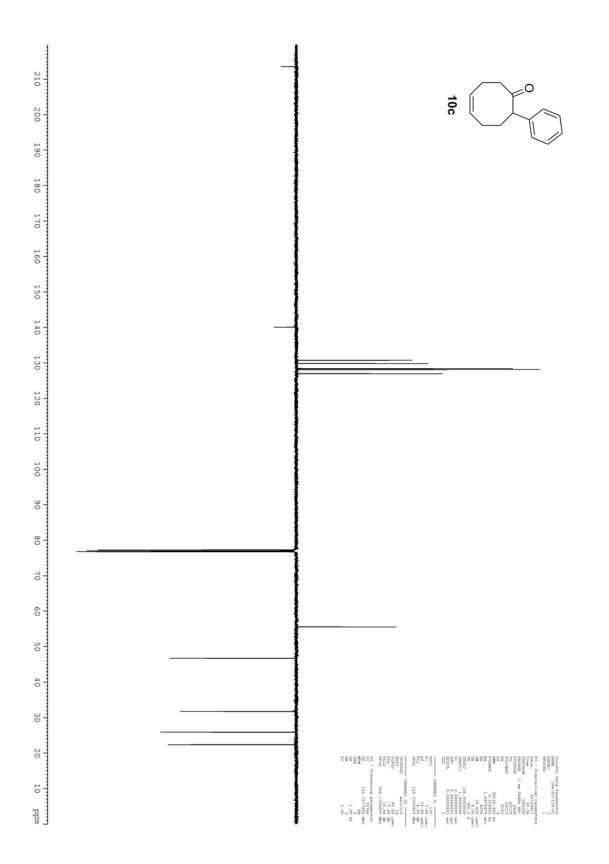


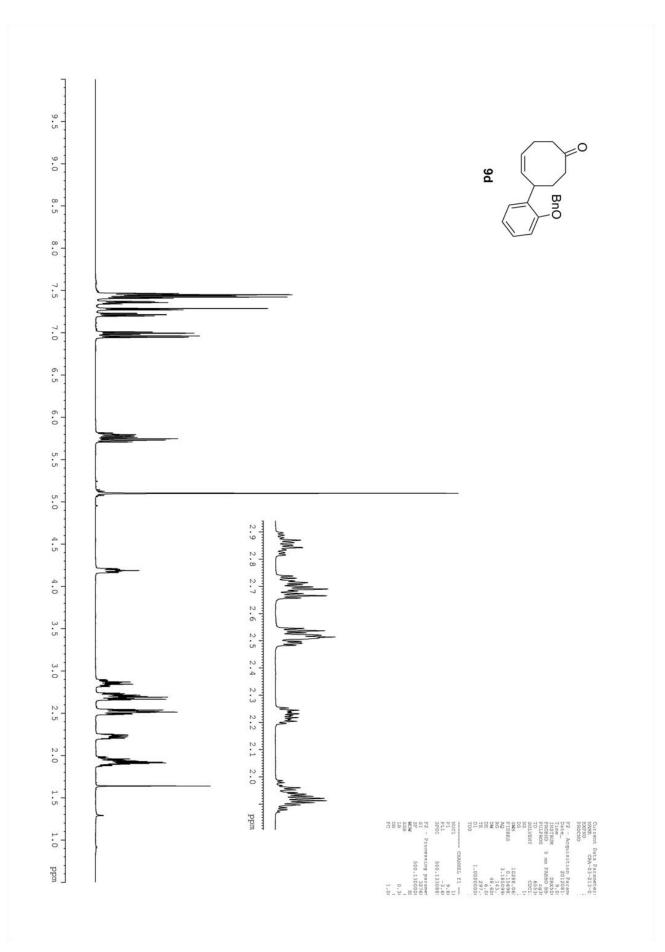


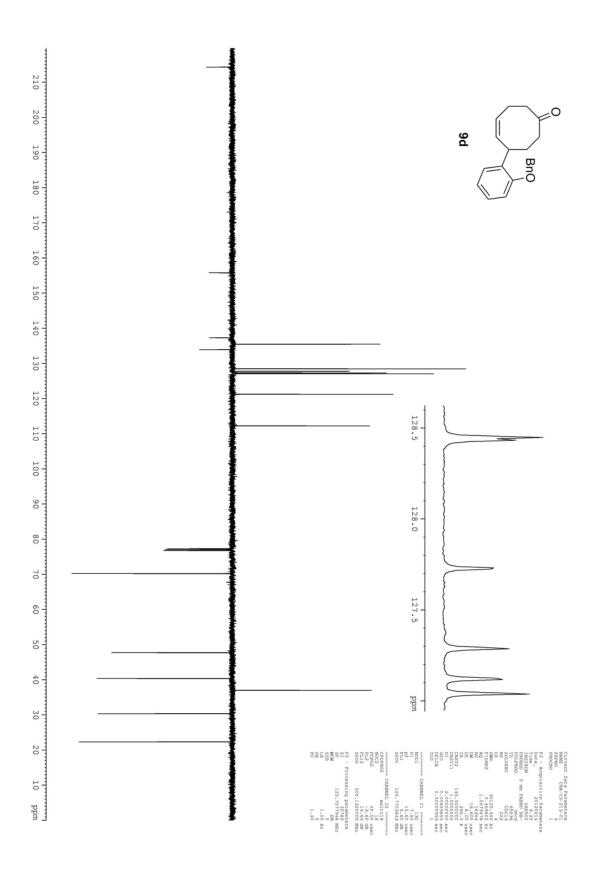


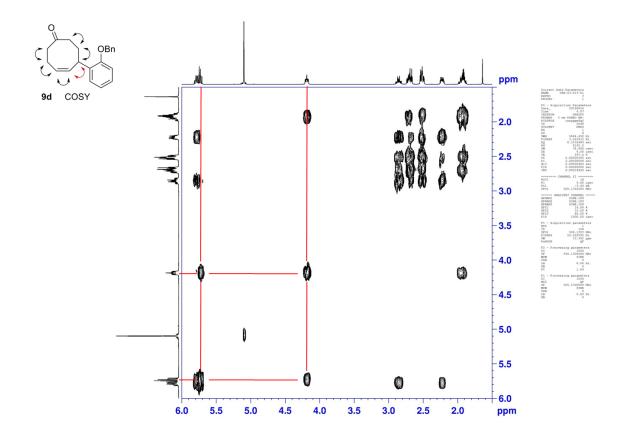


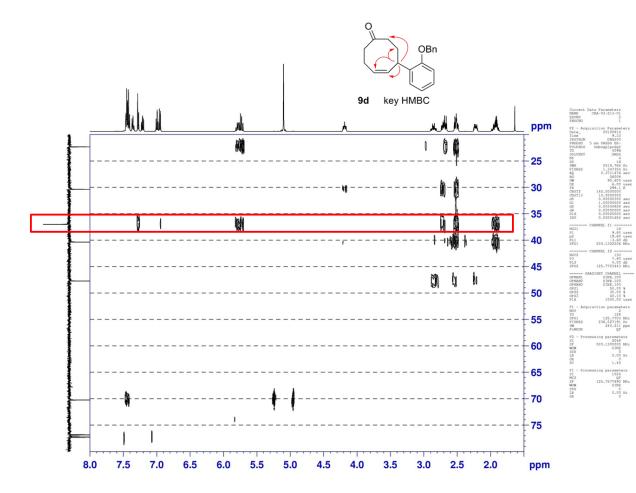


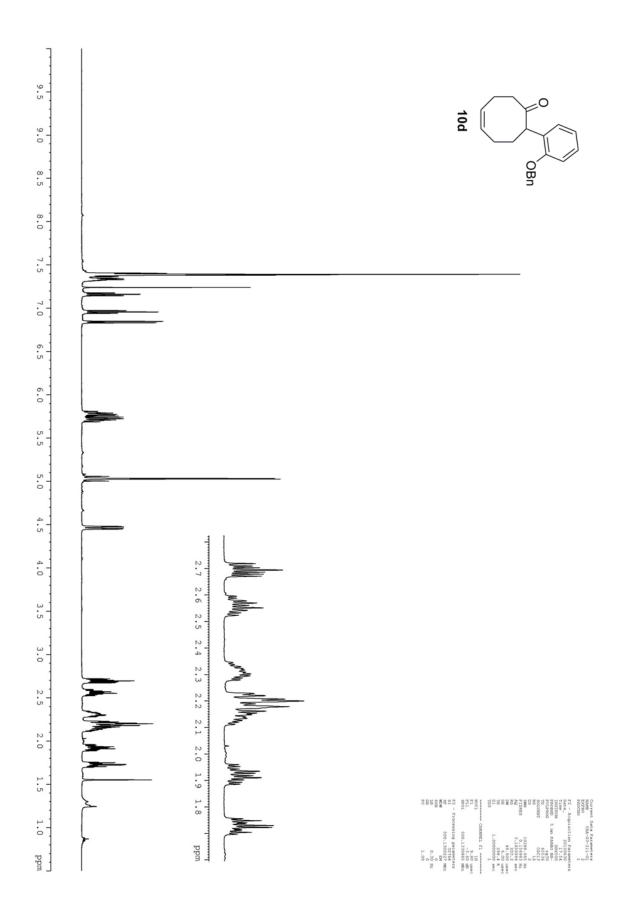

F2 - Proc SI SF NDN SSB LB GB PC	PL1 SF01	F2 - Acqu Tate- Tate- TANSTRUM FROMBD FULPROD FULPROD FULPROD SULVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT TE FURBES RG ER FURBES RG ER FURBES RG ER FURBES RG	EXENO EXENO
wssing paramet 32768 500.1300229 0.30 0.30 1.00	CHANNEL fl ==== 9.80 -3.60 500.1330685	20120812 2012012012 20120000000000	CRA-03-230-02 T
MIL	da usec	ters Mi Mi Sec Sec	

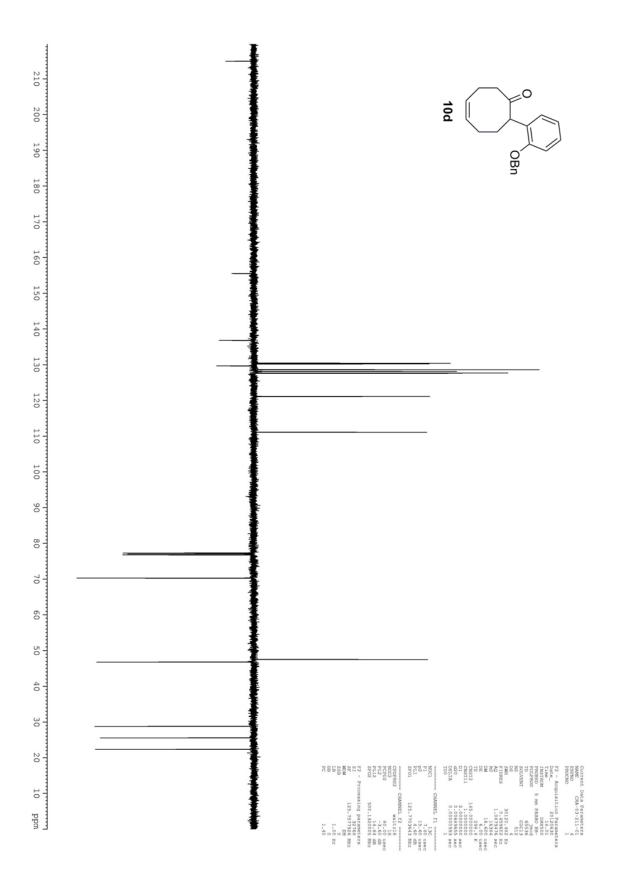


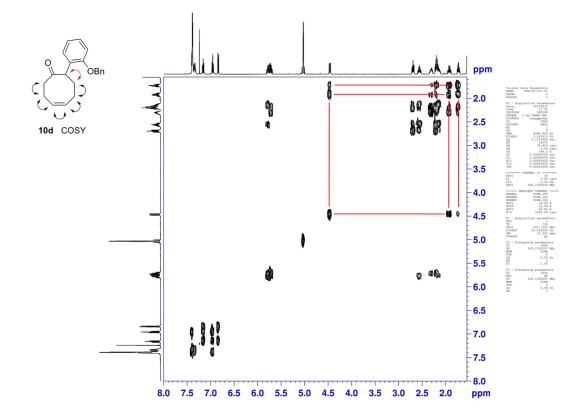


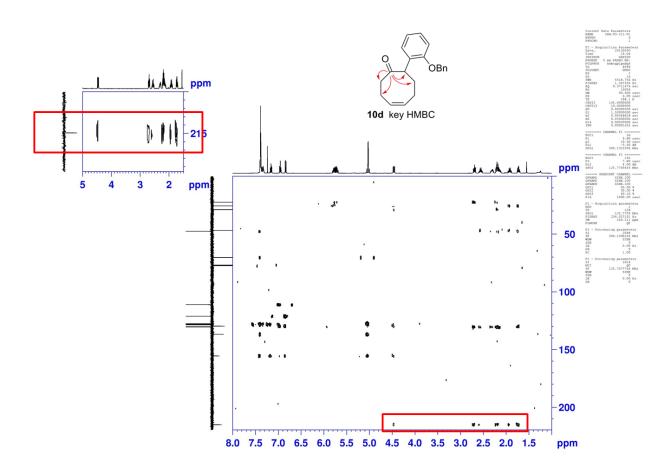


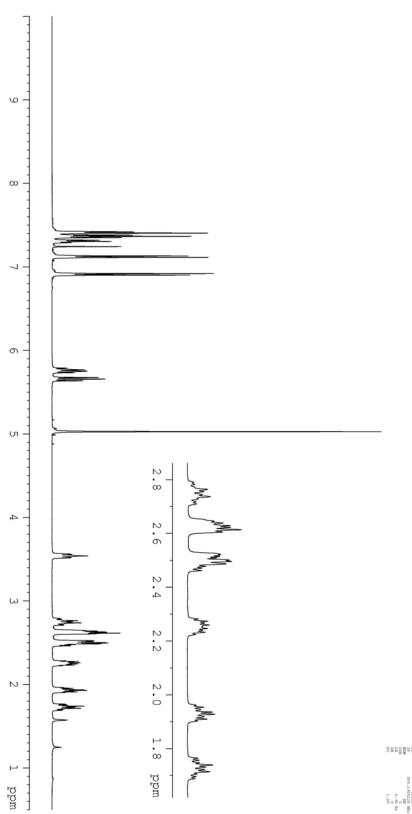


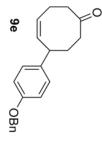


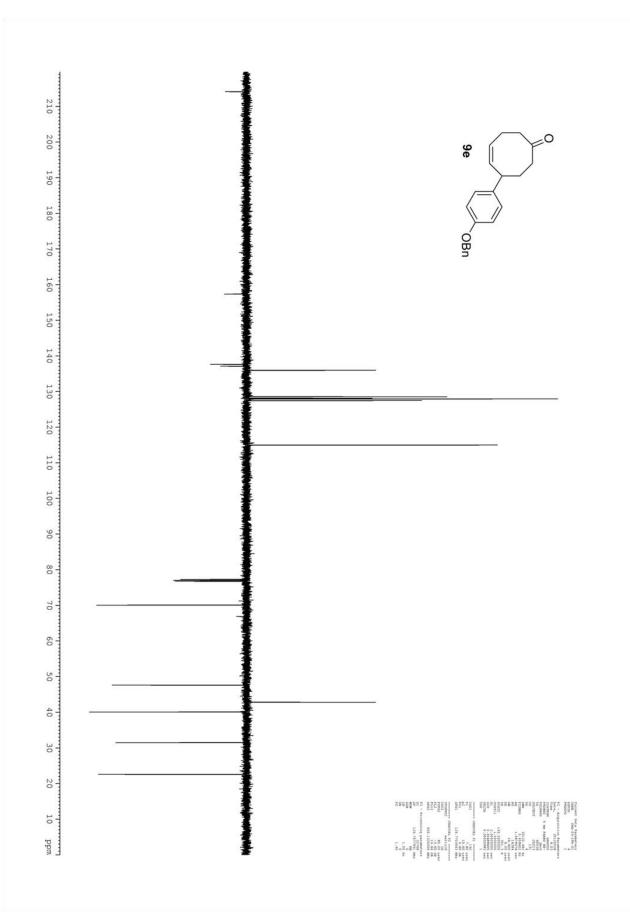


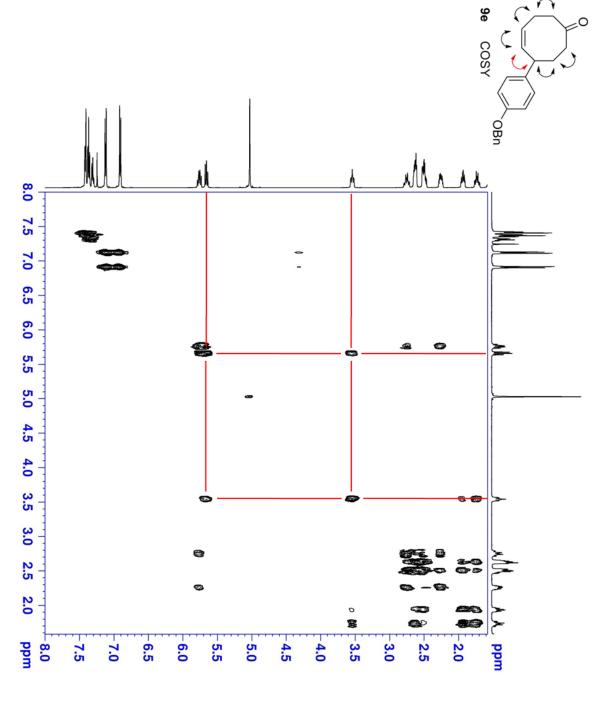




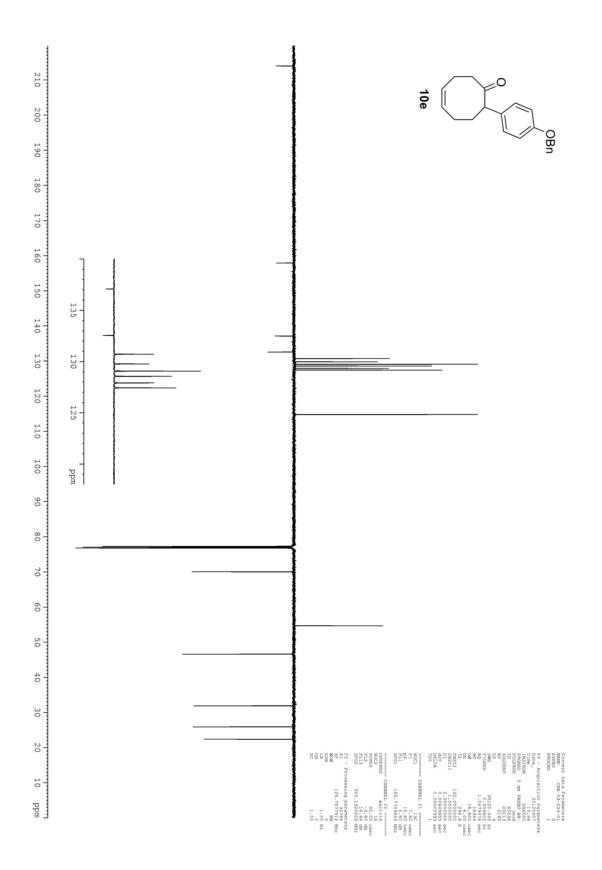


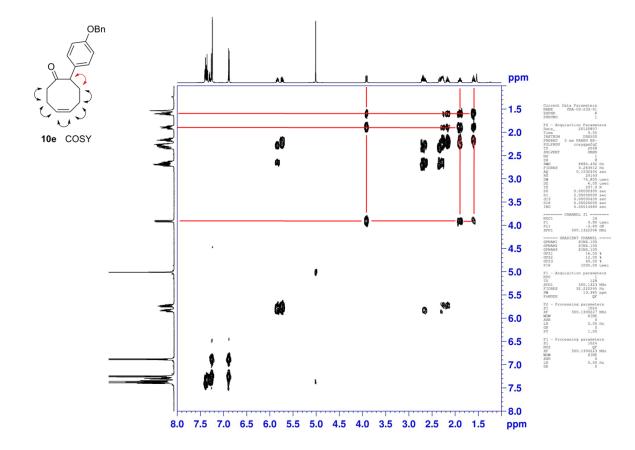


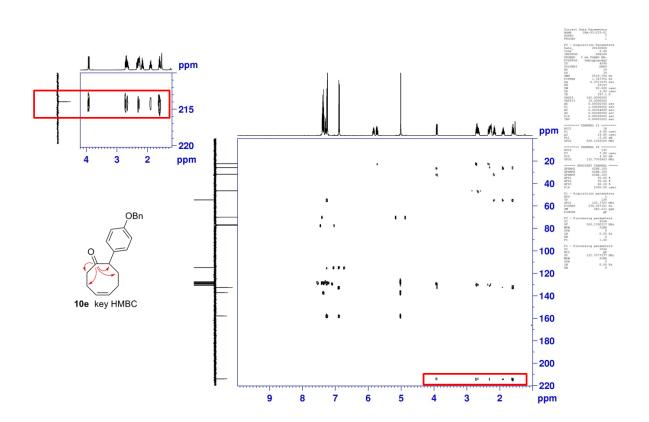


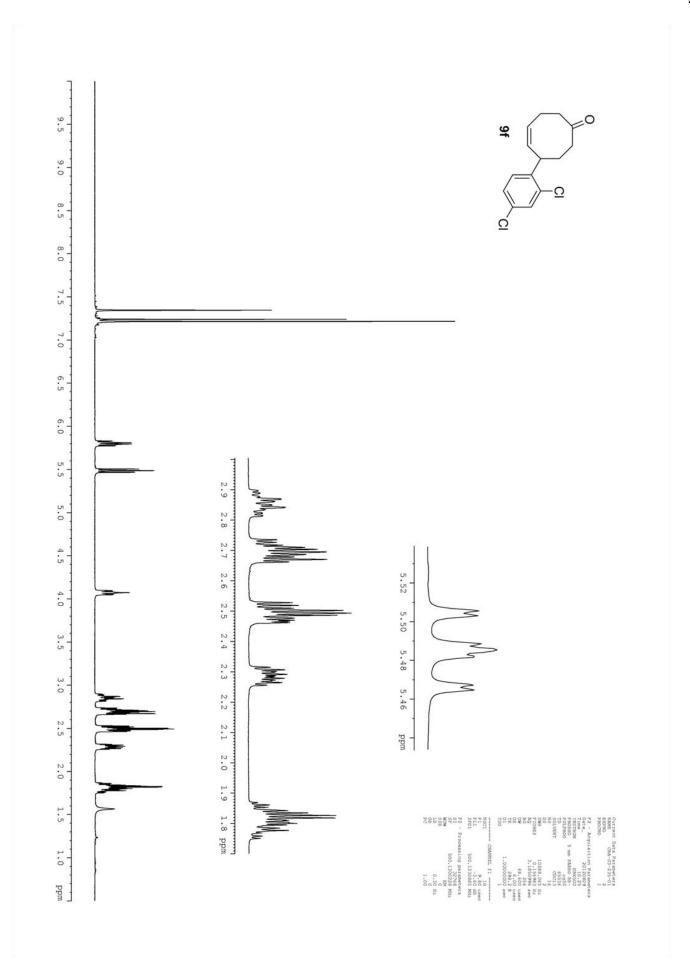


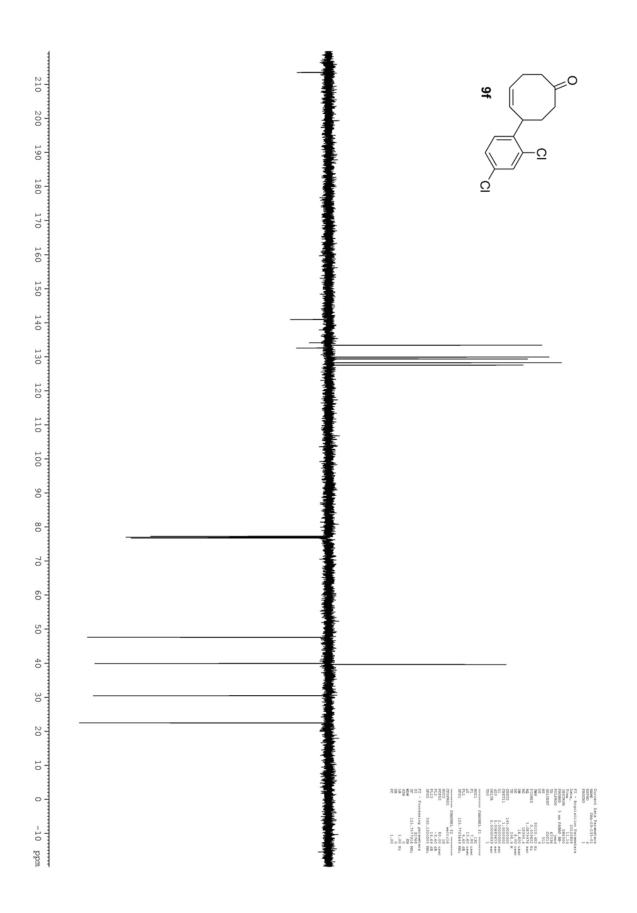

P2 - Pro SI SI SI SI SI SI SI SI SI PC	PL1 PL1 SP01	F2 - Acq Date_ The_ The_ The Produce Produce Produce Socvent S	Current NAME EXPNO PROCNO
cessing parameters 500.1300226 MB 0.30 Hz 0.30 Hz 1.00	CHANNEL f1 9.80 u -3.60 d 500,1330885 M	s mm PARISON Parameter 5 mm PARISON 22 102282 CDCL 102282 CDCL 102	Data Parameters CSA-03-194-01 2

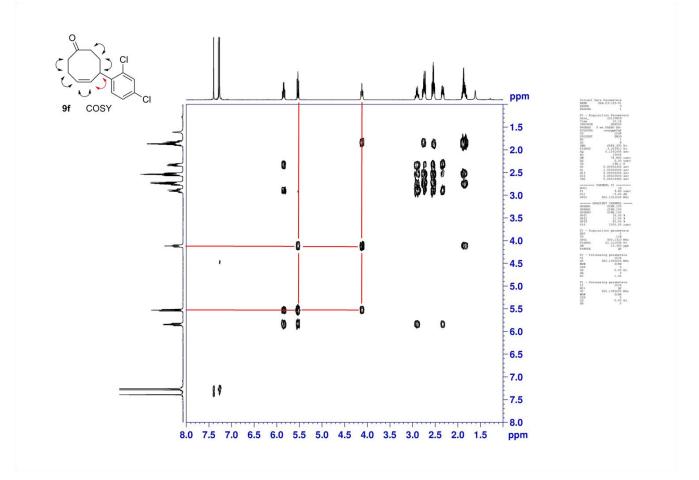


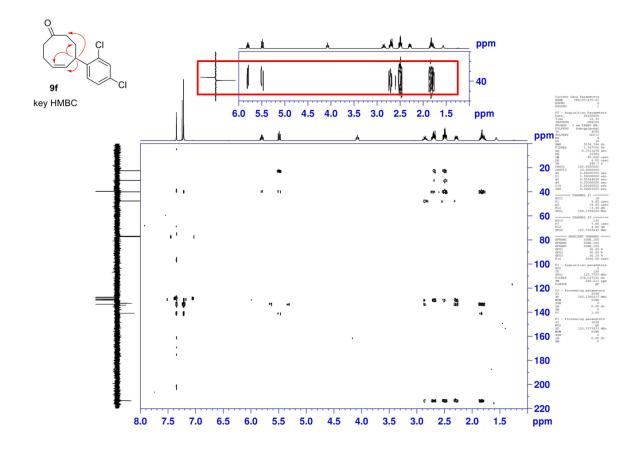




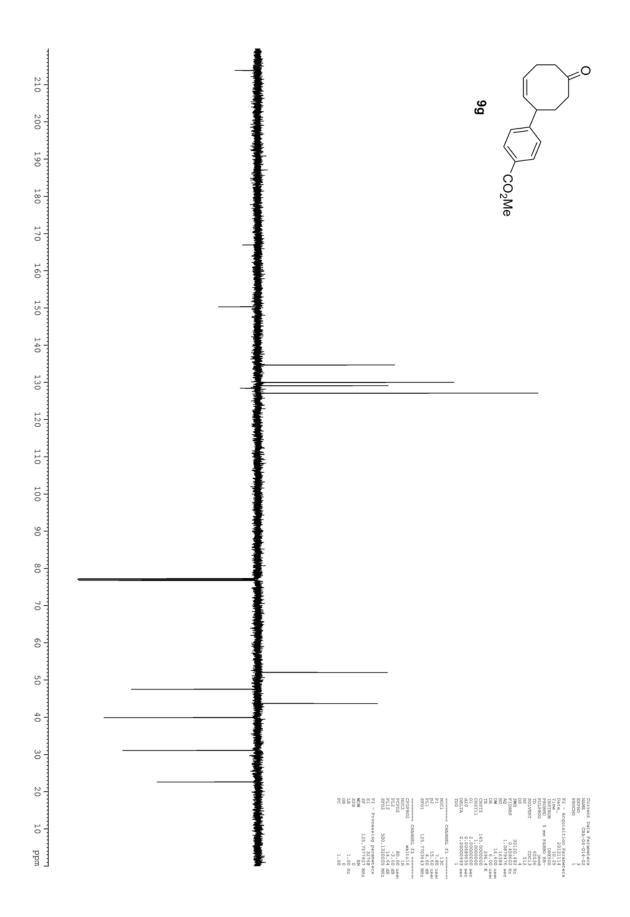

ST ST SSB SSB SSB SSB SSB SSB SSB SSB SS	GP22 P16 F1 - Acq NDO SPO1 SPO1 SPO1 SPO1 SPO1 SPO1 SPO1 SPO	NUC1 P1 SFO1 SFO1 GRNAM2 GRNAM2 GRNAM3 GRZ1	INSTRUM PROMADO PTOLIPROOD TTO SOLIVENT SNEE SNEE SNEE SNEE SNEE SNEE SNEE S	Current NAME EXPRO PROCINO PROCINO PROCINO PROCINO PROCINO PROCINO PROCINO PROCINO
.13010203 SINE 0.00 1.00 Paramet 1024 .1300158 SINE 0.00 0.00 0.00	12.00 4 40.00 4 1000.00 usec 1 128 52.22555 Ha 52.22555 Ha 13.355 Ppm 0 0		2 1000 1000 100 2 1000 1000 10 2 1000 1000 10 2 1000 10000 1000 1000 1000000000000000	Data Parameters CRA-03-194-03 3 1 1 1 1 1 1 1 1 20120528 20120528

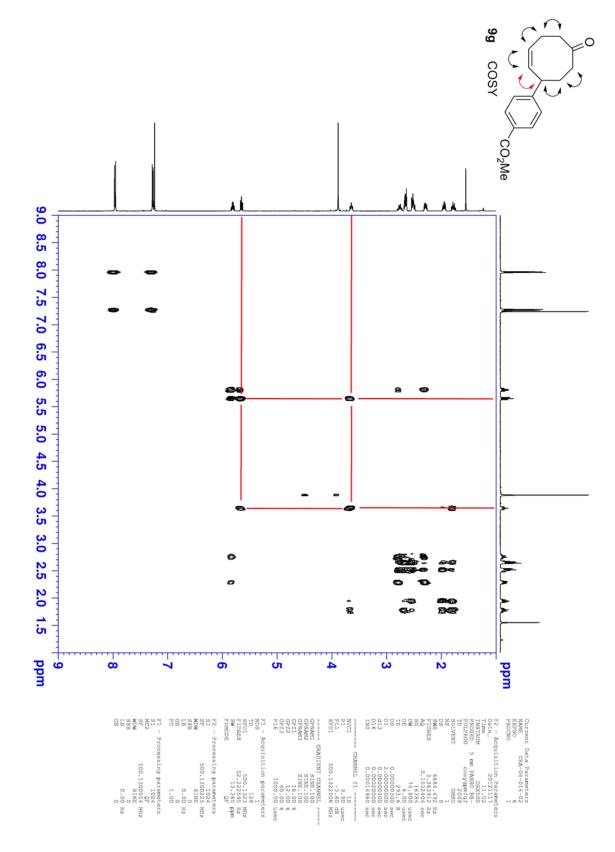


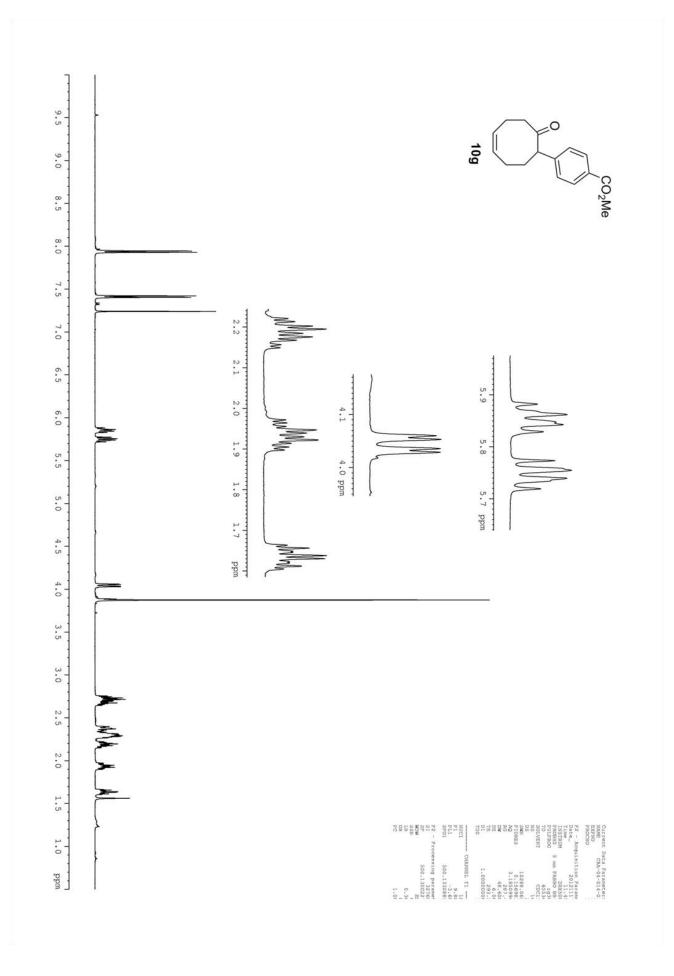


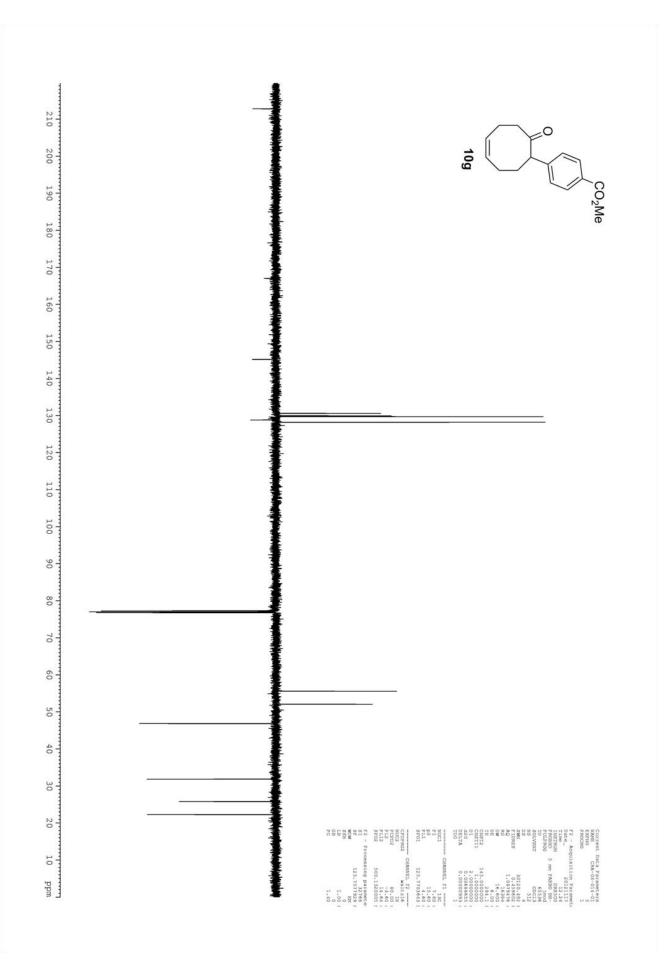


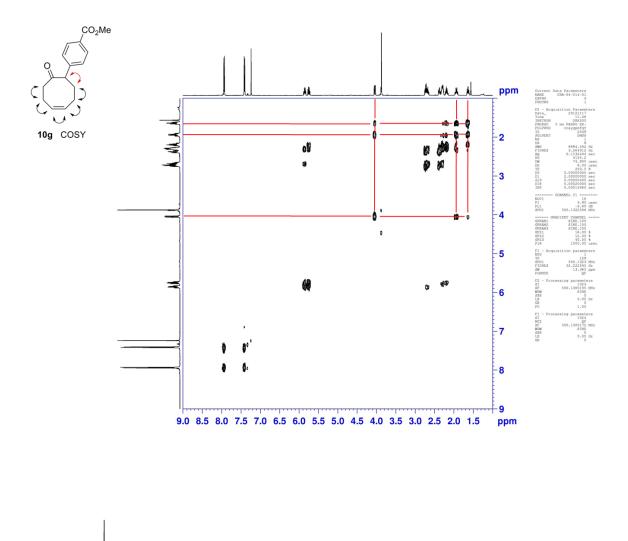


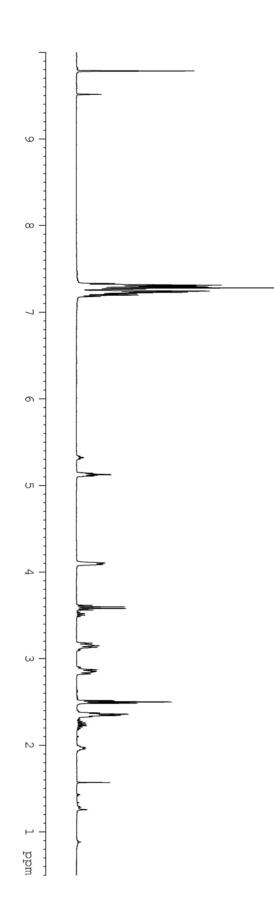


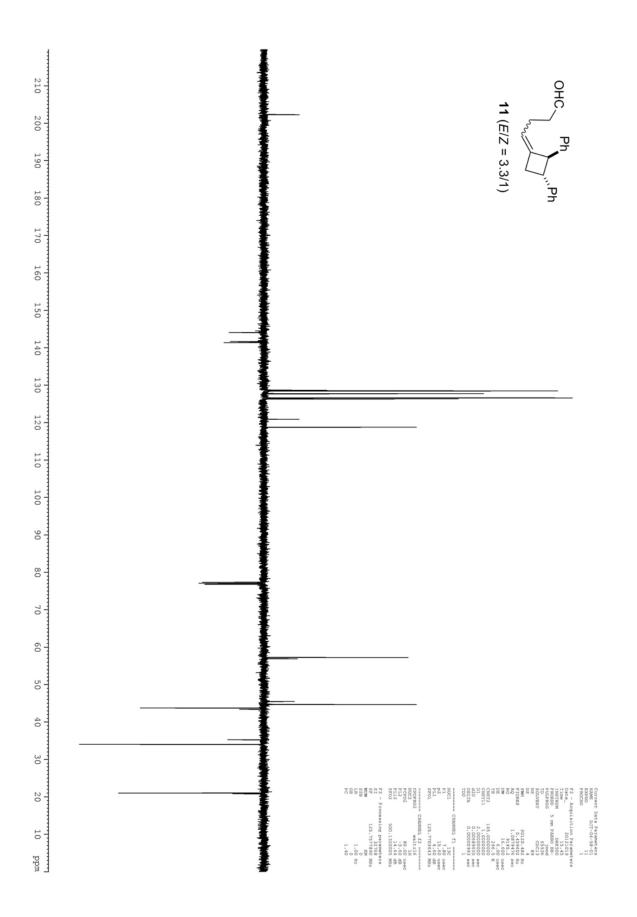


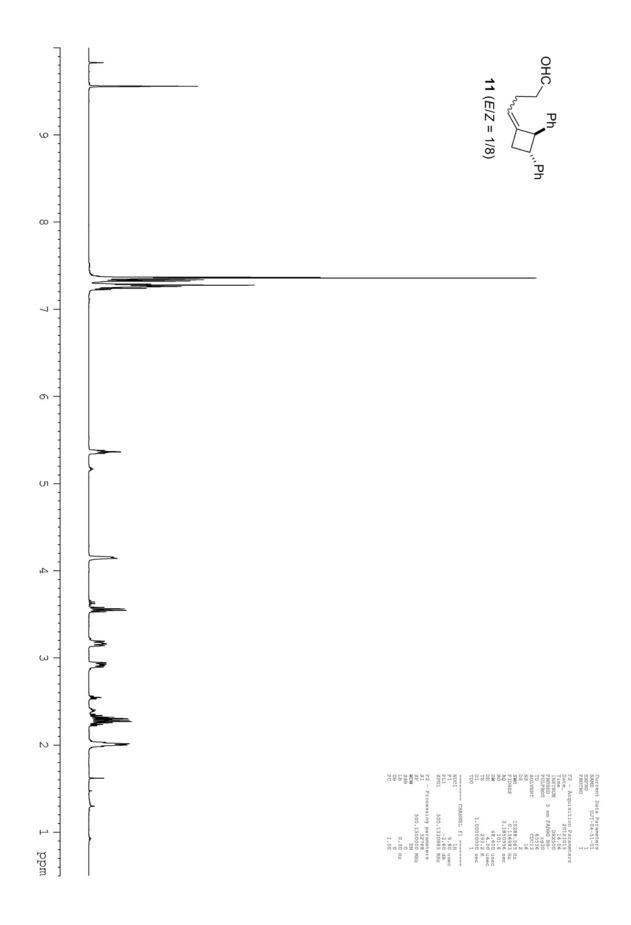


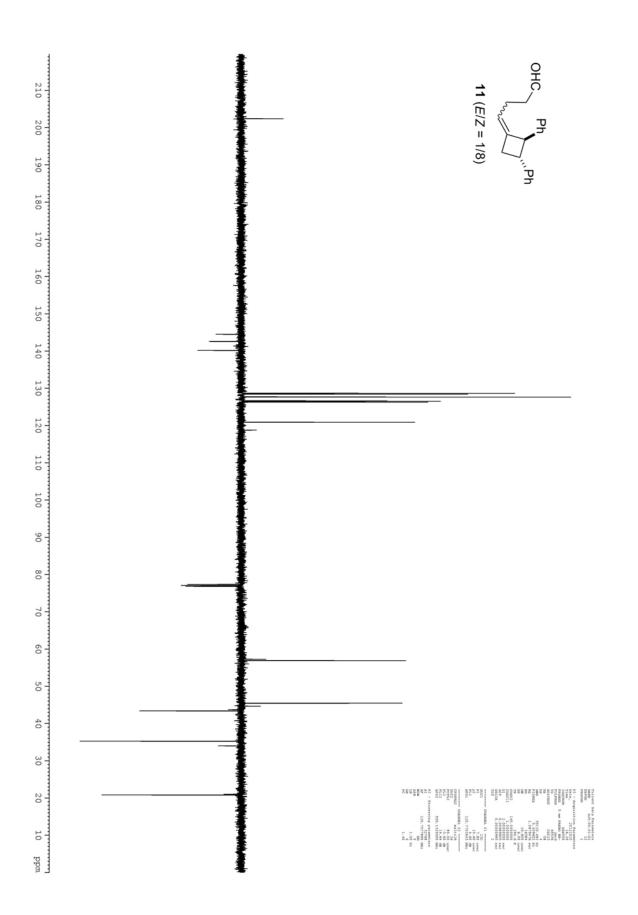


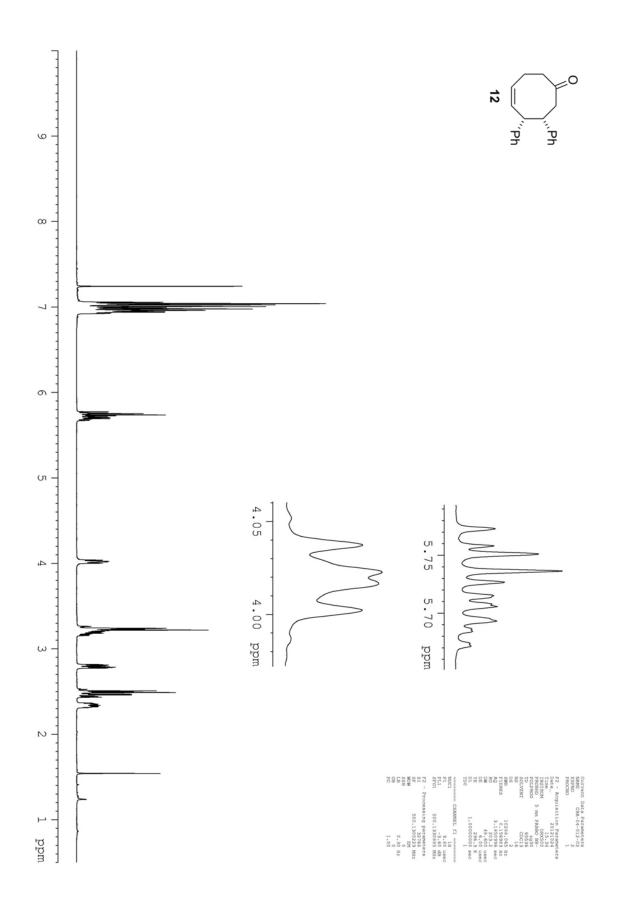


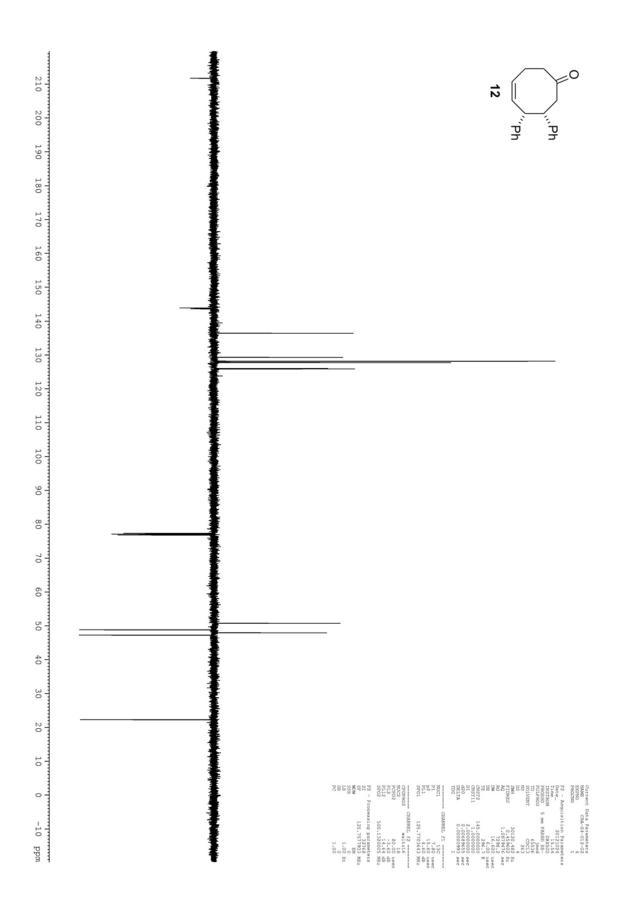









PC	La	SSB B	MOM	100	SI	¥2 - Pro	104S	PL1	P1	NUCL	IDO	10	18	20	DW	RC	MQ	FIDRES	SMS	DS	SN	SOLVENT	10	PULPROG	PROBHD	INSTRUM	Time	Date_	F2 - Acq	PROCNO	EXPNO	20
1.00		0	EM		32764	cessing paramete				CHANNEL fl	1	1.00000000	29	6.00	48.600	114	3.1850996	0.156983	10288.065	2	16	CDC13	65536	Zq30	5 mm PABBO BB-	DRX500	15.32	20121019	sisition Paramet	н	-	DJT-04-58-01
	H II			MHH		015	MHI	G	115-00			200	×	115-00	05-00		500	11	No.										015			


OHC Ph **11** (*E*/*Z* = 3.3/1) Ph

