Asymmetric Synthesis of cis-2,5-Disubstituted Pyrrolidine, the Core Scaffold of β_{3}-AR Agonists

Feng Xu, ${ }^{*}{ }^{\dagger}$ John Y. L. Chung,,${ }^{\dagger}{ }^{\dagger}$ Jeffery C. Moore, ${ }^{\dagger}$ Zhuqing Liu, ${ }^{\dagger}$ Naoki Yoshikawa, ${ }^{\dagger}$ R. Scott Hoerrner, ${ }^{\dagger}$ Jaemoon Lee, ${ }^{\dagger}$ Maksim Royzen, ${ }^{\dagger}$ Ed Cleator, ${ }^{\dagger}$ Andrew G. Gibson, ${ }^{\dagger}$ Robert Dunn, ${ }^{\dagger}$ Kevin M. Maloney, ${ }^{\dagger}$ Mahbub Alam, ${ }^{\dagger}$ Adrian Goodyear, ${ }^{\ddagger}$ Joseph Lynch, ${ }^{\dagger}$ Nobuyashi Yasuda, ${ }^{\dagger}$ and Paul N. Devine ${ }^{\dagger}$
${ }^{\dagger}$ Process Chemistry, Merck Research Laboratories, Rahway, NJ 07065, United States and ${ }^{\dagger}$ Process Research Preparative Laboratory, Merck Sharp \& Dohme Research Laboratories, Hoddesdon, Hertfordshire, EN11 9BU, U.K.
E-mail: feng_xu@merck.com,john_chung@merck.com

Supporting Information

Table of Contents

1. Alternative synthesis of aldehyde $\mathbf{1 3}$ S2
2. Diastereoselective hydrogenation of imines $\mathbf{1 7}$ and $\mathbf{1 8}$. S3
3. Experimental procedure S4
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. S9

1. Alternative synthesis of aldehyde 13

Alternative preparation of aldehyde $\mathbf{1 3}$ from (1R,2R)-2-amino-1-phenylpropane-1,3-diol (6) is depicted in Scheme S-1. Protection of diol 6 resulted in a mixture of acetonides S-1 and S-2. The solvent-dependent ratio of $\mathbf{S - 1}$ and $\mathbf{S - 2}$ was a result of thermodynamic equilibrium between S-1 and S-2 under the reaction conditions. Typically, by heating 6 in a mixture of acetone and dichloromethane or toluene under Dean-Stark conditions, a $85: 15$ mixture of S-1/S-2 in favor of $\mathbf{S}-\mathbf{1}$ was obtained. The resulting reaction solution was then treated with 1.1 equiv of $\mathrm{Boc}_{2} \mathrm{O}$ at ambient temperature to $45^{\circ} \mathrm{C}$ to afford N-Boc oxazolidine $\mathbf{1 2}$ in 95% assay yield, albeit the ratio of the Boc protection products was $95: 3: 2$ ($\mathbf{1 2}: \mathbf{S} \mathbf{- 3}: \mathbf{S}-\mathbf{4}$). Benefiting from the equilibration between acetonide alcohols $\mathbf{S - 1}$ and $\mathbf{S - 2}$, the ratio of Boc protected acetonides ($\mathbf{1 2}: \mathbf{S - 3}$) was improved because the major isomer $\mathbf{S - 1}$ reacted with $\mathrm{Boc}_{2} \mathrm{O}$ faster than the minor isomer $\mathbf{S}-\mathbf{2}$. In addition, the removal of water was important to achieve higher conversion for the acetonide formation and therefore to minimize the formation of N -Boc diol byproduct S-4.

Scheme S-1. Preparation of aldehyde 13

The crude Boc protected reaction mixture (in MTBE) after work-up was used directly "as-is" in the TEMPO oxidation to give aldehyde $\mathbf{1 3}$ in $85-95 \%$ assay yield.

Attempts to use 2,2-dimethoxypropane instead of acetone ($10 \mathrm{~mol} \% \mathrm{TsOH}$ in toluene at up to $80{ }^{\circ} \mathrm{C}$) for the oxazolidine formation gave only $\sim 20 \%$ conversion. Similarly, an attempt to reverse the order of acetonide and Boc protection, by forming N-Boc amino diol S-4 first followed by treating with 2,2-dimethoxypropane, in the presence of a catalytic amount of TsOH , afforded an unsatisfactory mixture of desired $\mathbf{1 2}$ and regioisomer S-3.

2. Diastereoselective hydrogenation of imines 17 and 18

Table S-1. Selected Results of Hydrogenation of Imines $\mathbf{1 7}$ and $\mathbf{1 8}^{\text {a }}$

entry	substrates	catalysts	Solvents	additives	conv (\%) ${ }^{\text {b }}$	cis/trans ${ }^{\text {b }}$
1	17	Pd/C	$i-\mathrm{PrOH}$		64	60:40
2	$(\mathrm{R}=\mathrm{H})$	Pt / C	$i-\mathrm{PrOH}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$		71:29
3		Pd/C	EtOH		93	56:44
4		$\mathrm{Pd}(\mathrm{OH})_{2}$	$i-\mathrm{PrOH}$			60:40
5		$\mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}$	MeOH			44:55
6		$\mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}$	MeOH	$\mathrm{Na}_{2} \mathrm{CO}_{3}$		44:55
7		$\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$	MeOH		94	61:39
8		$\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$	MeOH	$\mathrm{Na}_{2} \mathrm{CO}_{3}$		76:24
9		$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	$i-\mathrm{PrOH}$		>99	84:16
10		$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	EtOH			73:27
11		$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	MeOH			77:23
12		$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{H}_{2} \mathrm{O}$			81:19
13		$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$			66:34
14		$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	DMF			81:19
15		$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	THF	$\mathrm{Na}_{2} \mathrm{CO}_{3}$		87:13
16		Ru / C	$i-\mathrm{PrOH}$		61	84:16
17		Ru / C	EtOAc			79:21
18		PtO_{2}	EtOH		69	66:33
19		Raney $\mathrm{Ni}^{\text {c }}$	MeOH		>99	96:4 ${ }^{\text {c }}$
20		Raney $\mathrm{Ni}^{\text {d }}$	MeOH		>99	92:8 ${ }^{\text {d }}$
21	18	$\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$	DMF		>99	96:4
22	($\mathrm{R}=\mathrm{TMS}$)	Pt / C	THF		>99	96:4
23		$\mathrm{Rh} / \mathrm{Al}$	THF		72	98:2
24		Pd / C	THF		78	91:9
25		$\mathrm{Pd} / \mathrm{Al}$	THF		37	95: 5

${ }^{\text {a }}$ Unless otherwise mentioned, all reactions were carried out at $25^{\circ} \mathrm{C}, 15-40 \mathrm{psi} \mathrm{H}_{2}$ with $10-25$ wt \% catalyst loading.
${ }^{\mathrm{b}}$ Determined by HPLC analysis: Waters Xbridge C18 column, $3.5 \mu \mathrm{~m}$ particle size, $150 \times$ 4.6 mm ; mobile phase: 0.1% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ adjust to pH 9.5 with $\mathrm{HCl} /$ acetonitrile, $1 \mathrm{ml} / \mathrm{min}$ flow rate, $25^{\circ} \mathrm{C}$, detection at 210 nm .
${ }^{\mathrm{c}} 75^{\circ} \mathrm{C}, 40 \mathrm{psi} \mathrm{H}_{2}, 100 \mathrm{wt} \%$ Raney Ni.
${ }^{\mathrm{d}} 50^{\circ} \mathrm{C}, 40 \mathrm{psi} \mathrm{H}_{2}, 100 \mathrm{wt} \%$ Raney Ni.

Figure S-1. Hydrogenation of alcohol imine 17 in the presence of Raney Ni: Water effect on diastereoselectivity. Reaction conditions: $75^{\circ} \mathrm{C}, 40 \mathrm{psi} \mathrm{H}_{2}, 100 \mathrm{wt} \%$ Raney Ni with various ratios of MeOH -water.

3. Experimental Procedure

Methyl 2-((tert-butoxycarbonyl)amino)-3-oxo-3-phenylpropanoate (9). To a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}(110 \mathrm{~g}, 1.034 \mathrm{~mol})$ in water $(600 \mathrm{~mL})$ and EtOAc (600 mL) at $0-5{ }^{\circ} \mathrm{C}$ was added glycine methyl ester hydrochloride ($119 \mathrm{~g}, 0.948$ mol) in portions over 30 min . The resulting slurry was aged for additional 1530 min , $\mathrm{PhCOCl}(100 \mathrm{~mL}, 0.862 \mathrm{~mol})$ was then added dropwise over 1.5 h at $0-5{ }^{\circ} \mathrm{C}$. After aging additional 1 h at $0-5{ }^{\circ} \mathrm{C}$, the reaction mixture was warmed to $25{ }^{\circ} \mathrm{C}$ and formed a homogenous biphasic solution. The separated organic phase was azeotropically concentrated and solvent switched to MeCN at a final volume of $\sim 600 \mathrm{~mL}$. DMAP ($43.1 \mathrm{mmol}, 5.26 \mathrm{~g}$) was added. A solution of $\mathrm{Boc}_{2} \mathrm{O}(0.948 \mathrm{~mol}, 207 \mathrm{~g})$ in $\mathrm{MeCN}(200 \mathrm{~mL})$ was added at ambient temperature dropwsie over 2-3 h. After the reaction solution was stirred at ambient temperature for $\sim 6 \mathrm{~h}$, the batch was vacuum degassed with N_{2} to remove CO_{2} generated in the amidation step. THF (540 mL) was added. Then, a solution of t-BuOK ($1.12 \mathrm{~mol}, 128 \mathrm{~g}, 97 \%$) in THF $(670 \mathrm{ml})$ was added at $0-10{ }^{\circ} \mathrm{C}$ dropwise over $1-2 \mathrm{~h}$. After aging at $0-5^{\circ} \mathrm{C}$ for additional 1 h , a solution of $15 \mathrm{wt} \%$ citric acid in water ($0.431 \mathrm{~mol}, 91 \mathrm{~g}$ citric acid in $515 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) was added at $<10{ }^{\circ} \mathrm{C}$. The organic phase was washed with 480 mL of half saturated aqueous NaCl , and solvent switched to $i-\mathrm{PrOH}$ at a final volume of $\sim 1.25 \mathrm{~L}$ containing $\sim 10 \%$ water at $<45{ }^{\circ} \mathrm{C}$. Water (1.25 L) was added dropwise at $40-50^{\circ} \mathrm{C}$ over 2 h . Then, the slurry was cooled to ambient temperature and aged for 1-2 h before filtration. The wet cake was displacement washed with $30 \% i-\mathrm{PrOH}$ in water ($640 \mathrm{~mL} \times 2$), and vacuum oven dried at $<50^{\circ} \mathrm{C}$ to give 227 g of white crystalline solid 9. 90% yield. m.p. $96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): major rotomer:
$\delta 7.95(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{H}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.38(3,9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO): major rotomer: δ 192.9, $168.3,155.5,134.5,133.9,128.74,128.68,79.1,59.1,52.4,28.0$; HRMS calc'd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+} 316.1155$, found 316.1156 .

Methyl
 (2S,3R)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-3-

 phenylpropanoate (10). To a solution of $\mathrm{K}_{2} \mathrm{HPO}_{4}(141 \mathrm{~g})$ in water $(800$ mL) at ambient temperature was added dextrose ($98 \mathrm{~g}, 0.49 \mathrm{~mol}$) followed by NADP (3.6 g), GDH-105 (1.15 g), CDX-018 (2.9 g). The resulting homogenous solution was pH adjusted to a minimum of 7.5 with 2 M NaOH prior to use. A solution of ketone $9(120 \mathrm{~g}, 0.409 \mathrm{~mol})$ in DMSO (360 mL) was added over 4 h at $30^{\circ} \mathrm{C}$ with vigorous agitation, while $2 \mathrm{M} \mathrm{NaOH}(\sim 2.1 \mathrm{~L}$ total) was added dropwise to maintain the reaction mixture at $\mathrm{pH}=7.3-7.7$. Once $90 \%(\sim 1.9 \mathrm{~L})$ of 2 M NaOH solution was added, the reaction temperature was raised to $35{ }^{\circ} \mathrm{C}$ until $>95 \%$ conversion was achieved. i $\operatorname{PrOH}(0.9 \mathrm{~L})$ followed by MTBE $(0.49 \mathrm{~L})$ were added and the organic phase was separated. The aqueous phase was extracted with i-PrOH:MTBE (1.4 L , i - $\mathrm{PrOH}: \mathrm{MTBE}=20: 80$). The combined organic phase was washed with brine ($0.5 \mathrm{~L}, 10 \% \mathrm{w} / \mathrm{v}$ brine) and the crude product containing compound $\mathbf{1 0}$ was directly used for the next step. $90-92 \%$ assay yield.

tert-Butyl (4R,5R)-4-(hydroxymethyl)-2,2-dimethyl-5-phenyl-1,3-oxazolidine-3-carboxylate (12). To a toluene solution of ester 10 (35.9 mmol, 10.6 g , in ~ 25 to 30 mL toluene, crude solution from previous DKR step) were added acetone (50 mL) and 2,2-dimethoxy propane (20 mL). A solution of BF_{3} etherate ($3.59 \mathrm{mmol}, 0.43 \mathrm{~mL}$) in toluene (2 mL) was then added via a syringe pump at ambient temperature over 2 h . The reaction solution was aged at ambient temperature for $15 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(3.59 \mathrm{mmol}, 0.5 \mathrm{~mL})$ was added dropwise. After aging for additional 15 min , the solution was solvent switched to toluene $(\sim 30 \mathrm{~mL})$ while most of the acetone was removed in vacuum. MTBE (60 mL) was added and the organic phase was washed with $5 \% \mathrm{NaHCO}_{3} /$ brine $(40 \mathrm{~mL})$. The organic phase was azeotropically dried and solvent switched to toluene at a final volume of $\sim 35-40 \mathrm{~mL}(95 \%$ assay yield of 11).
The above solution was added to a mixture of $\mathrm{LiBH}_{4}(44.3 \mathrm{mmol}, 966 \mathrm{mg})$ in THF (60 mL) over 30 min . The reaction mixture was aged for 15 h at $35^{\circ} \mathrm{C}$. The reaction solution was cooled to ambient temperature and added to a solution of $10 \% \mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ below $5^{\circ} \mathrm{C}$ with external cooling. The quenched solution was aged at ambient temperature for $2-3 \mathrm{~h}$ or until the evolution of H_{2} gas ceased. MTBE (100 mL) was added. The separated organic layer was solvent switched to toluene at a final volume of $\sim 40 \mathrm{~mL}$, which was directly used in the subsequent oxidation step. 92% assay yield of $\mathbf{1 2}$.
An analytically pure sample of $\mathbf{1 2}$ was obtained by crystallization from toluene/heptane: m.p. 69-72 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.58(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.70(\mathrm{brm}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.3,137 ., 129.0,128.9,127.5,94.9,81.6,78.6,67.9,63.7,28.6,27.9$, 26.2; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 66.43; H, 8.20; N, 4.56; Found: C, 66.33; H, 8.43; N, 4.59 .

tert-Butyl (4S,5R)-4-formyl-2,2-dimethyl-5-phenyloxazolidine-3carboxylate (13). To a solution of alcohol 12 in toluene ($65.07 \mathrm{mmol}, 20 \mathrm{~g}$ assay, $\sim 60 \mathrm{~mL}$) was added acetonitrile (120 mL) at ambient temperature. $\mathrm{KBr}(9.76 \mathrm{mmol}, 1.16 \mathrm{~g}), \mathrm{NaHCO}_{3}(21.48 \mathrm{mmol}, 1.8 \mathrm{~g})$ and water $(40 \mathrm{~mL})$ were then charged. The biphasic mixture was cooled to $5^{\circ} \mathrm{C}$ and TEMPO $(1.95 \mathrm{mmol}, 305 \mathrm{mg})$ was added. Then, $6 \mathrm{wt} \% \mathrm{NaOCl}$ solution ($81.38 \mathrm{mmol}, 101 \mathrm{~g}$) was added dropwise at $0-5{ }^{\circ} \mathrm{C}$ over 2 h . After addition, the reaction was stirred at $5^{\circ} \mathrm{C}$ for additional 30 min . The reaction was quenched by dropwise addition of 10% sodium sulfite $(50 \mathrm{~mL})$ at $5{ }^{\circ} \mathrm{C}$. The organic layer was separated and directly used for the subsequent HWE coupling step without further purification. The assay yield of $\mathbf{1 3}$ was $17.5 \mathrm{~g}(88 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\mathbf{1 2}$ exists as a mixture of two rotomers. Overlap of signals does not permit unequivocal assignment of each rotomers. $\delta 9.62-9.50(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 7.5-7.4(\mathrm{~m}, 5 \mathrm{H}), 4.99(\mathrm{~d}, 1 \mathrm{H}), 4.3-4.1(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, 1.8-1.7 (m, 6 H), 1.55-1.47 (m, 9 H); Selected data of ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Some ${ }^{13} \mathrm{C}$ signals are too broad to be assigned due to a mixture of rotomers at $20^{\circ} \mathrm{C} . \delta 197.2,136.7,129.1$, 129.0, 126.7, 96.2, 81.9, 76.3, 71.5, 28.4, 26.4, 25.5.

tert-Butyl (4R,5R)-4-((E)-4-(4-((tert-butoxycarbonyl)-amino) -phenyl)-3-oxobut-1-en-1-yl)-2,2-dimethyl-5-phenyloxazoli-dine-3-carboxylate (14). To a solution of aldehyde 13 in wet toluene/acetonitrile ($57.3 \mathrm{mmol}, 17.5 \mathrm{~g}$ assay; $10.81 \mathrm{wt} \%, 162 \mathrm{~g}$ crude stream solution) obtained above at $-10{ }^{\circ} \mathrm{C}$ were added acetonitrile (140 mL), phosphonate $4(68.8 \mathrm{mmol}, 24.6 \mathrm{~g})$ and $\mathrm{LiBr}(171.9 \mathrm{mmol}, 14.9 \mathrm{~g})$ while the internal temperature was maintained below $0{ }^{\circ} \mathrm{C}$. Then, Hunig's base ($171.9 \mathrm{mmol}, 22.2 \mathrm{~g}$) was added at $0-5^{\circ} \mathrm{C}$ dropwise over 2 h . The resulting reaction mixture was stirred at $0-5^{\circ} \mathrm{C}$ for $2-4 \mathrm{~h}$ followed by at ambient temperature for 12 h . The slurry was cooled to $5^{\circ} \mathrm{C}$, and a 10% aqueous solution of citric acid ($39.1 \mathrm{mmol}, \sim 75 \mathrm{~g}$) was added dropwise to adjust the pH to $6.5-7.0$ while maintaining the batch temperature at $0-5^{\circ} \mathrm{C}$. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(57 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(57 \mathrm{~mL})$ successively. The organic phase was solvent switched to $i-\mathrm{PrOH}$ at a final volume of $\sim 190 \mathrm{~mL}$. The product was gradually crystallized during the distillation. Water (16.4 mL) was added and the slurry was heated to $49^{\circ} \mathrm{C}$ to give a homogeneous solution. The resulting solution was cooled to $40^{\circ} \mathrm{C}$ and seeded $(0.27 \mathrm{~g})$. After aging at $40^{\circ} \mathrm{C}$ for 2 h to establish a seed bed, $\mathrm{H}_{2} \mathrm{O}(93 \mathrm{~mL})$ was charged dropwise at $40^{\circ} \mathrm{C}$ over 3 h . After aging at $40^{\circ} \mathrm{C}$ for additional 1 h , the slurry was gradually cooled to $5-10{ }^{\circ} \mathrm{C}$ and agitated at $5-10{ }^{\circ} \mathrm{C}$ for additional 2 h before filtration. The wet cake was washed with $50 \% \mathrm{H}_{2} \mathrm{O} / i$ - PrOH (a 164 mL displacement wash followed by a 110 mL slurry wash). Suction dried under nitrogen gave the product as an offwhite solid ($24.9 \mathrm{~g},>99 \%$ purity). 80% isolated yield. m.p. $134-135{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.32(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{dd}, \mathrm{J}=15.7,8.0 \mathrm{~Hz}, 1$ H), $6.50(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.02(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.71$ $(\mathrm{s}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{br} \mathrm{s}, 9 \mathrm{H})$; Selected data of ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Some ${ }^{13} \mathrm{C}$ signals are too broad to be assigned due to a mixture of rotomers at $20^{\circ} \mathrm{C} . \delta 196.8,152.9,137.7,136.8,130.1,129.5,128.9,128.8,127.0,119.0,80.9,66.4,48.0$, 28.54, 28.50, 26.5, 26.0; Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 69.38 ; H, 7.51; N, 5.22. Found: C, 69.11; H, 7.58; N, 5.24.

(R)-((R)-5-(4-aminobenzyl)-3,4-dihydro-2H-pyrrol-2-yl)(phenyl)methanol bis hydrochloric acid salt monohydrate (17). A mixture of enone $14(0.354 \mathrm{~mol}, 190.0 \mathrm{~g})$ and 10% Palladium on 10% $\mathrm{Pd} / \mathrm{C}(9.5 \mathrm{~g})$ in THF $(0.85 \mathrm{Kg})$ was hydrogenated under $20 \mathrm{psig} \mathrm{H}_{2}$ for 90 min at $25^{\circ} \mathrm{C}$ until uptake of hydrogen had ceased. The catalyst was removed through filtration of a bed of solka floc. The filtered residues were washed with THF $(0.85 \mathrm{Kg})$. The combined filtrate was solvent switched to $i-\mathrm{PrOH}$ at a final volume of $\sim 1.4 \mathrm{~L} .4 \mathrm{~N} \mathrm{HCl}$ in $i-\mathrm{PrOH}(1.5 \mathrm{~L})$ at ambient temperature. The reaction mixture was stirred at $20-25^{\circ} \mathrm{C}$ for 24 h . The batch was distilled under reduced pressure, at constant volume by charging $i-\mathrm{PrOH}$ up to one batch volume, to remove HCl . The batch was then concentrated to a final volume of $\sim 1.5 \mathrm{~L}$. The resulting slurry was heated to $45^{\circ} \mathrm{C}$, and $i-\operatorname{PrOAc}(2.5 \mathrm{~L})$ was slowly added to the batch over $2-3 \mathrm{~h}$. The slurry was then cooled to $\sim 20^{\circ} \mathrm{C}$ over 1-2 h and aged overnight. The batch was filtered, and the cake was washed with a $1: 2$ mixture of $i-\operatorname{PrOH} / i-\operatorname{PrOAc}(0.8 \mathrm{~L})$ followed by $i-\operatorname{PrOAc}(0.8 \mathrm{~L})$. The wet cake was dried at $45{ }^{\circ} \mathrm{C}$ in vacuum under nitrogen sweep to give the cyclic imine bis- HCl salt $17\left(124 \mathrm{~g},>97 \%\right.$ purity). 94% yield. m.p. $220-226^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.16$ (br s, 2 H), 7.47-7.28 (m, 9 H), $4.74(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.21(\mathrm{AB} \mathrm{q}, \mathrm{J}=22.1$, $14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 194.7,140.5,132.5,131.7,130.7,128.3,137.9,126.9,123.5,73.2,72.1,36.2,36.1$, 22.3; HRMS calc'd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1654, found 281.1645.

(R)-((2R,5S)-5-(4-aminobenzyl)pyrrolidin-2-yl)(phenyl)methanol (1). To a mixture of imine dihydrochloride 17 ($0.318 \mathrm{~mol}, 120.0 \mathrm{~g}, 98.5 \mathrm{wt} \%$) and THF (0.9 L) under nitrogen was charged hexamethyldisilazane ($0.679 \mathrm{~mol}, 109.5 \mathrm{~g}$) while maintaining the batch temperature below $25^{\circ} \mathrm{C}$. The resulting slurry was stirred vigorously at ambient temperature for 2 h . The slurry was transferred to an 3 L autoclave charged with a suspension of 5% platinum on alumina $(6.05 \mathrm{~g})$ in THF $(240 \mathrm{~mL})$. The transfer line was flushed with THF (85 mL). The resulting mixture was stirred at ambient under hydrogen (40 psig) until the hydrogen uptake ceased (~ 12 h). The catalyst was filtered through a pad of Solka Floc, and washed with THF (1 L). The combined filtrate was stirred with 0.5 M hydrochloric acid $(1.3 \mathrm{~L})$ at ambient temperature for 1 h. The aqueous layer was separated and $i-\operatorname{PrOAc}(400 \mathrm{~mL})$ was added. Sodium hydroxide (5 N , $\sim 150 \mathrm{~mL}$) was added to adjust the pH to 10.0 . The organic phase was treated with carbon (AquaGuard ${ }^{\circledR}$ powder, Meadwestvaco; 25 g) at ambient temperature for 2 h . The mixture was filtered through a pad of Solka Floc and was washed with 2-propanol (180 mL). The combined filtrate was concentrated to $\sim 700 \mathrm{~mL}$. The solution was distilled at the constant volume by feeding a total of 1.4 L of 2-propanol, maintaining the batch temperature at $33-35^{\circ} \mathrm{C}$ in vacuum. The resulting solution was then concentrated to 340 mL and heated to $50{ }^{\circ} \mathrm{C}$, followed by addition of $\mathrm{H}_{2} \mathrm{O}(65 \mathrm{~mL})$. The resulting solution was cooled to $41-43{ }^{\circ} \mathrm{C}$ and seeded with pyrrolidine aniline hemihydrate $(0.4 \mathrm{~g})$. The resulting mixture was aged at $41-43{ }^{\circ} \mathrm{C}$ for 1 h to establish a seed bed. $\mathrm{H}_{2} \mathrm{O}(610 \mathrm{~mL})$ was charged at $41-43{ }^{\circ} \mathrm{C}$ over 6 h , and the resulting mixture was cooled to $10^{\circ} \mathrm{C}$ over 3 h , followed by aging at $10^{\circ} \mathrm{C}$ for 2 h before filtration. The wet cake was displacement washed with 25% 2-propanol/ $\mathrm{H}_{2} \mathrm{O}(1: 3 \mathrm{v} / \mathrm{v}, 500 \mathrm{~mL})$. The wet cake was suction-dried at ambient temperature under nitrogen to afford 76.8 g of pyrrolidine aniline as
hemihydrate in 99% purity. 80% isolated yield. m.p. $88-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): $\delta 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.1,2 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$, 4.75 (s, 2 H), $4.18(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dd}, \mathrm{J}=13.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}$ $=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.34\left(\mathrm{~m}, 1 \mathrm{H} 0,1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, d_{6^{-}}\right.\right.$ DMSO): $\delta 146.5,144.3,129.2,127.8,127.4,126.8,126.7,114.0,76.8,64.4,60.1,42.1,30.2$, 27.2. HRMS calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.1810, found 283.1805.
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

$$
\begin{array}{lllll}
9.5 & 9.0 & 8.5 & 8.0 & 7.5
\end{array}
$$

14

[^0]

[^0]:

