Supporting information for

Unexpected formation of *N*-(1-(2-aryl-hydrazono)isoindolin-2-yl)benzamides and their conversion into 1,2-(bis-1,3,4-oxadiazol-2-yl)benzenes

by

Codruța C. Paraschivescu,[†] Mihaela Matache,^{†*} Cristian Dobrotă,^{†,1} Alina Nicolescu,^{‡#} Cătălin Maxim,^{††} Călin Deleanu,^{‡#} Ileana C. Fărcășanu,[†] Niculina D. Hădade^{||*}

[†]University of Bucharest, Faculty of Chemistry, 90-92 Panduri Street, RO-050663-Bucharest, Romania

[‡] "Petru Poni" Institute of Macromolecular Chemistry of the Romanian Academy, Aleea Grigore Ghica

Voda 41-A, RO-0700487-Iasi, Romania

[#]Centre of Organic Chemistry of the Romanian Academy, Spl. Independentei 202-B, RO-0060023-

Bucharest, Romania

^{††}Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, 23 Dumbrava Rosie

Str., RO-020464-Bucharest, Romania

Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Str., RO-

400028-Cluj-Napoca, Romania

*Corresponding authors e-mail: nbogdan@chem.ubbcluj.ro, mihaela.matache@g.unibuc.ro

Contents

Figure S1. ROESY full-spectrum of 10Ca	5
Table S1. Crystallographic data for 10Ca-Z	6
Figure S2. Crystal packing of 10Ca-Z (view along <i>a</i> axis) with illustration of the C-HO contacts between the supramolecular chains	7
General experimental procedures, ¹ H NMR and MS spectra of crude reactions for condensations of <i>ortho</i> -phthalaldehyde and hydrazide 9a	8
Table S2. Reaction conditions for condensation of <i>ortho</i> -phthalaldehyde and hydrazide 9a	8

¹ Current address: Toronto Research Chemicals, 2 Brisbane Rd., Toronto, Ontario, Canada M3J 2J8

Figure S3. ¹ H NMR spectrum of crude condensation reaction corresponding to entry 1 in Table S2	10
Figure S4. ¹ H NMR spectrum of crude condensation reaction corresponding to entry 2 in Table S2	11
Figure S5. ¹ H NMR spectrum of crude condensation reaction corresponding to entry 3 in Table S2	12
Figure S6. ¹ H NMR spectrum of crude condensation reaction corresponding to entry 4 in Table S2	13
Figure S7. ¹ H NMR spectrum of crude condensation reaction corresponding to entry 5 in Table S2	14
Figure S8. ¹ H NMR spectrum of crude condensation reaction corresponding to entry 6 in Table S2	15
Table S3. Reaction conditions used to prepare 10a (various isomers ratios) that were assessed as precursors of the 1,3,4-oxadiazoles	16
Figure S9. ¹ H NMR spectrum of the product 5a when optimising cyclisation reaction conditions	16
Figure S10. UV-Vis and fluorescence spectra of compounds 5b	17
Figure S11. UV-Vis and fluorescence spectra of compounds $5g$	17
Figure S12. ¹ H NMR spectrum of compound 10Ca	18
Figure S13. ¹ H NMR spectra of compound 10Ca at 40°C, 70°C, 100°C and 120°C	19
Figure S14. ¹³ C NMR spectrum of compound 10Ca	20
Figure S15. H-H COSY NMR spectrum of compound 10Ca	21
Figure S16. H-C HMBC NMR spectrum of compound 10Ca	21
Figure S17. H-C HSQC NMR spectrum of compound 10Ca	23
Figure S18. H-N HMQC NMR spectrum of compound 10Ca	24
Figure S19. H-N HMBC NMR spectrum of compound 10Ca	25
Figure S20. APCI-HRMS spectrum of compound 10Ca	26
Figure S21. ¹ H NMR spectrum of compound 10Cb	27
Figure S22. ¹³ C NMR spectrum of compound 10Cb	28
Figure S23. H-N HMQC NMR spectrum of compound 10Cb	29
Figure S24. APCI-HRMS spectrum of compound 10Cb	30
Figure S25. ¹ H NMR spectrum of compound 10Cc	31
Figure S26. ¹³ C NMR spectrum of compound 10Cc	32
Figure S27. H-N HMQC NMR spectrum of compound 10Cc	33
Figure S28. H-N HMBC NMR spectrum of compound 10Cc	34
Figure S29. APCI-HRMS spectrum of compound 10Cc	35
Figure S30. ¹ H NMR spectrum of compound 10Cd	36
Figure S31. ¹³ C NMR spectrum of compound 10Cd	37
Figure S32. H-N HMQC NMR spectrum of compound 10Cd	38
Figure S33. H-N HMBC NMR spectrum of compound 10Cd	39

Figure S34. APCI-HRMS spectrum of compound 10Cd	40
Figure S35. ¹ H NMR spectrum of compound 10Ce	41
Figure S36. ¹³ C NMR spectrum of compound 10Ce	42
Figure S37. H-N HMQC NMR spectrum of compound 10Ce	43
Figure S38. H-N HMBC NMR spectrum of compound 10Ce	44
Figure S39. APCI-HRMS spectrum of compound 10Ce	45
Figure S40. ¹ H NMR spectrum of compound 10Cf	46
Figure S41. ¹³ C NMR spectrum of compound 10Cf	47
Figure S42. H-N HMQC NMR spectrum of compound 10Cf	48
Figure S43. H-N HMBC NMR spectrum of compound 10Cf	49
Figure S44. APCI-HRMS spectrum of compound 10Cf	50
Figure S45. ¹ H NMR spectrum of compound 10Cg	51
Figure S46. ¹³ C NMR spectrum of compound 10Cg	52
Figure S47. APCI-HRMS spectrum of compound 10Cg	53
Figure S48. ¹ H NMR spectrum of compound 10Ch	54
Figure S49. ¹³ C NMR spectrum of compound 10Ch	55
Figure S50. H-N HMQC NMR spectrum of compound 10Ch	56
Figure S51. H-N HMBC NMR spectrum of compound 10Ch	57
Figure S52. APCI-HRMS spectrum of compound 10Ch	58
Figure S53. ¹ H NMR spectrum of compound 10Ci	59
Figure S54. ¹³ C NMR spectrum of compound 10Ci	60
Figure S55. H-N HMQC NMR spectrum of compound 10Ci	61
Figure S56. H-N HMBC NMR spectrum of compound 10Ci	62
Figure S57. APCI-HRMS spectrum of compound 10Ci	63
Figure S58. ¹ H NMR spectrum of compound 5a	64
Figure S59. ¹³ C NMR spectrum of compound 5a	65
Figure S60. APCI-HRMS spectrum of compound 5a	66
Figure S61. ¹ H NMR spectrum of compound 5b	67
Figure S62. ¹³ C NMR spectrum of compound 5b	68
Figure S63. APCI-HRMS spectrum of compound 5b	69
Figure S64. ¹ H NMR spectrum of compound 5c	70
Figure S65. ¹³ C NMR spectrum of compound 5c	71
Figure S66. APCI-HRMS spectrum of compound 5c	72

Figure S67. ¹ H NMR spectrum of compound 5d	73
Figure S68. ¹³ C NMR spectrum of compound 5d	74
Figure S69. APCI-HRMS spectrum of compound 5d	75
Figure S70. ¹ H NMR spectrum of compound 5e	76
Figure S71. ¹³ C NMR spectrum of compound 5e	77
Figure S72. APCI-HRMS spectrum of compound 5e	78
Figure S73. ¹ H NMR spectrum of compound 5 f	79
Figure S74. ¹³ C NMR spectrum of compound 5f	80
Figure S75. APCI-HRMS spectrum of compound 5f	81
Figure S76. ¹ H NMR spectrum of compound 5g	82
Figure S77. ¹³ C NMR spectrum of compound 5g	83
Figure S78. APCI-HRMS spectrum of compound 5g	84
Figure S79. ¹ H NMR spectrum of compound 5h	85
Figure S80. ¹³ C NMR spectrum of compound 5h	86
Figure S81. APCI-HRMS spectrum of compound 5h	87
Figure S82. ¹ H NMR spectrum of compound 5 i	88
Figure S83. ¹³ C NMR spectrum of compound 5 i	89
Figure S84. APCI-HRMS spectrum of compound 5i	90

Figure S 1 ROESY full-spectrum of 10Ca

Formula	C ₂₈ H ₃₀ N ₄ O ₈
FW (g·mol ⁻¹)	550.56
Temperature (K)	293(2)
Wavelength (Å)	0,56080
Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>n</i>
a (Å)	10,2036(18)
b (Å)	14,2650(15)
c (Å)	18,965(3)
α(°)	90,00
β (°)	97,125(11)
γ (°)	90,00
$V(A^3)$	2739,1(7)
Ζ	4
Density (g·cm ⁻³)	1,335
$\mu (\mathrm{mm}^{-1})$	0,061
F (000)	1160
Fit quality for F ²	1,021
R_1 final, $wR^2 [I > 2(I)]$	0,0786; 0,1725
R ₁ , wR ² (for all data)	0,1378; 0,2002
Maximum difference peak and hole (e Å ⁻³)	0,457; -0,266

Table S 1 Crystallographic data for 10Ca-Z

between the supramolecular chains

Figure S 2 Crystal packing of 10C-Z (view along *a* axis) with illustration of the C–H---O contacts

General experimental procedures, ¹H NMR and MS spectra of crude reactions for condensations of

ortho-phthalaldehyde and hydrazide 9a

Table S 2 Reaction conditions for condensation of ortho-phthaldehyde and hydrazide 9a

Entry	Solvent	Reaction time (h)	Temperature (°C)	Catalyst
1	EtOH	24	78	-
2	EtOH	4/12	78/rt	-
3	CHCl ₃	24	rt	-
4	CHCl ₃	24	63	AcOH
5	CHCl ₃	4/12	63/rt	АсОН
6	toluene	1	110	-

Entry 1

Hydrazide **9a** (3 mmol) and *ortho*-phthalaldehyde (1,5 mmol, 0.201 g) were refluxed for 24 h in ethanol (50 mL). The solvent was removed under vacuum, the residue was dried and ¹H NMR spectrum recorded (Figure S3).

Entry 2

Hydrazide **9a** (3 mmol) and *ortho*-phthalaldehyde (1,5 mmol, 0.201 g) were refluxed for 4 h in ethanol (50 mL). The mixture was then stirred at room temperature for 12 h. The solvent was removed under vacuum, the residue (denoted R2-**10a**) was dried and ¹H NMR spectrum (Figure S4) were recorded.

Entry 3

Hydrazide **9a** (3 mmol) and *ortho*-phthalaldehyde (1.5 mmol, 0.201 g) were stirred at room temperature for 24 h in chloroform (50 mL). The solvent was removed under vacuum, the residue (denoted R3-10a) was washed with cold ethyl ether, filtered and washed again with cold methanol. After drying ¹H NMR spectrum was recorded (Figure S5).

Entry 4

Hydrazide **9a** (3 mmol) and *ortho*-phthalaldehyde (1.5 mmol, 0.201 g) were refluxed for 24 h in chloroform (50 mL) and a few drops of acetic acid. The solvent was removed under vacuum, the residue (denoted R4-**10a**) was dried and ¹H NMR spectrum recorded (Figure S6).

Entry 5

Hydrazide **9a** (3 mmol) and *ortho*-phthalaldehyde (1.5 mmol, 0.201 g) were refluxed for 4 h in chloroform (50 mL) and a few drops of acetic acid added. The mixture was then stirred at room temperature for 12 h. The solvent was removed under vacuum, the residue was dried and ¹H NMR spectra and RP-HPLC performed. The solvent was removed under vacuum, the residue (denoted R5-**10a**) was washed with cold ethyl ether, filtered and washed again with cold methanol. After drying ¹H NMR spectrum was recorded (Figure S7).

Entry 6

Hydrazide **9a** (3 mmol) and *ortho*-phthalaldehyde (1.5 mmoli, 0.201 g) were refluxed for 1 h in toluene (50 mL). The solution was concentrated under vacuum, cooled to room temperature and the resulted white residue (denoted R6-**10a**) was dried and ¹H NMR spectrum recorded (Figure S8).

Figure S 4 ¹H NMR spectrum of crude condensation reaction corresponding to entry 2 in Table S2

Figure S 5 ¹H NMR spectrum of crude condensation reaction corresponding to entry 3 in Table S2

ppm (t1)

Figure S 6 ¹H NMR spectrum of crude condensation reaction corresponding to entry 4 in Table S2

13

ppm (t1)

Figure S 8 ¹H NMR spectrum of crude condensation reaction corresponding to entry 6 in Table 3

15

Optimisation of the cyclisation reaction and ¹H NMR spectra of the isolated product 5a in each

reaction

Table S 3 Reaction conditions used to prepare 10a (various isomers ratios) that were assessed as

Entry	Starting material	Isolated yield of 5a
1	10C resulted from reaction preformed according to entry 6 in Table 3	35%
2	10A + 10C resulted from reaction preformed according to entry 5 in Table 3	33%
3	10A + 10C resulted from reaction preformed according to entry 4 in Table 3	34%

precursors of the 1,3,4-oxadiazoles

Figure S 9¹H NMR spectrum of the product 5a when optimising cyclisation reaction conditions

Figure S 10 UV-Vis and fluorescence spectra of compounds 5b Solvent: CH_2Cl_2 , $\lambda_{ex}=270$ nm, $c=8,58\cdot10^{-5}$ mole/L, A=0,29, $\lambda_A=270$ nm, $c=2,5\cdot10^{-6}$ mole/L, $\lambda_F=383$ nm, $\Delta\phi=113$ nm

Figure S 11 UV-Vis and fluorescence spectra of compounds 5g Solvent: CH_2Cl_2 , λ_{ex} =250 nm, c=2,5·10⁻⁴ mole/L, A=0,8, λ_A =301 nm, c=2,5·10⁻⁶ mole/L, λ_F =360 nm, $\Delta \phi$ =59 nm

04 84 32 1H-NMR . . . 101 0 . . • ٠ Ē **11** 0CH₃ 12 13/ 18 14 -OCH3 _ŅH N-\ 19 OCH₃ 16 15\ 2 3 `N∽_` ' NH 9 =0 10Ca 25 20 $H_{3}^{26}CO \xrightarrow{24}$ 21 22 H₃CÓ 27 OCH₃ 28 11 111 -----11 10 9 8 7 6 5 3 4 ppm

Figure S 12 ¹H NMR spectrum of compound 10Ca

18

.00

0 0

66 39 39

12 0 3 5 12

• •

•

41 34

Ч

٠ •

O

94 . 0

Figure S 14 ¹³C NMR spectrum of compound 10Ca

Figure S 15 H-H COSY NMR spectrum of compound 10Ca

Figure S 16 H-C HMBC NMR spectrum of compound 10Ca

Figure S 17 H-C HSQC NMR spectrum of compound 10Ca

Figure S 18 H-N HMQC NMR spectrum of compound 10Ca

Figure S 19 H-N HMBC NMR spectrum of compound 10Ca

Figure S 20 APCI-HRMS spectrum of compound 10Ca

Figure S 21 ¹H NMR spectrum of compound 10Cb

Figure S 23 H-N HMQC NMR spectrum of compound 10Cb

Figure S 24 APCI-HRMS spectrum of compound 10Cb

Figure S 25 ¹H NMR spectrum of compound 10Cc

Figure S 26 ¹³C NMR spectrum of compound 10Cc

Figure S 27 H-N HMQC NMR spectrum of compound 10Cc

Figure S 28 H-N HMBC NMR spectrum of compound 10Cc

Figure S 29 APCI-HRMS spectrum of compound 10Cc

35

Figure S 30 ¹H NMR spectrum of compound 10Cd

36
Figure S 31 ¹³C NMR spectrum of compound 10Cd

Figure S 32 H-N HMQC NMR spectrum of compound 10Cd

Figure S 33 H-N HMBC NMR spectrum of compound 10Cd

Figure S 34 APCI-HRMS spectrum of compound 10Cd

Figure S 35 ¹H NMR spectrum of compound 10Ce

Figure S 36 ¹³C NMR spectrum of compound 10Ce

Figure S 37 H-N HMQC NMR spectrum of compound 10Ce

Figure S 38 H-N HMBC NMR spectrum of compound 10Ce

Figure S 39 APCI-HRMS spectrum of compound 10Ce

45

Figure S 40 ¹H NMR spectrum of compound 10Cf

Figure S 41 ¹³C NMR spectrum of compound 10Cf

Figure S 42 H-N HMQC NMR spectrum of compound 10Cf

Figure S 43 H-N HMBC NMR spectrum of compound 10Cf

Figure S 44 APCI-HRMS spectrum of compound 10Cf

Figure S 45 ¹H NMR spectrum of compound 10Cg

Figure S 47 APCI HR-MS spectrum of compound 10Cg

Figure S 48 ¹H NMR spectrum of compound 10Ch

54

Figure S 50 H-N HMQC NMR spectrum of compound 10Ch

Figure S 51 H-N HMBC NMR spectrum of compound 10Ch

Figure S 52 APCI-HRMS spectrum of compound 10Ch

Figure S 53 ¹H NMR spectrum of compound 10Ci

Figure S 54 ¹³C NMR spectrum of compound 10Ci

Figure S 55 H-N HMQC NMR spectrum of compound 10Ci

Figure S 56 H-N HMBC NMR spectrum of compound 10Ci

Figure S 57 APCI-HRMS spectrum of compound 10Ci

Figure S 58 ¹H NMR spectrum of compound 5a

Figure S 59 ¹³C NMR spectrum of compound 5a

Figure S 60 APCI-HRMS spectrum of compound 5a

Figure S 61 ¹H NMR spectrum of compound 5b

67

Figure S 62 ¹³C NMR spectrum of compound 5b

Figure S 63 APCI-HRMS spectrum of compound 5b

Figure S 64 ¹H NMR spectrum of compound 5c

Figure S 65 ¹³C NMR spectrum of compound 5c

Figure S 66 APCI-HRMS spectrum of compound 5c

72
Figure S 67 ¹H NMR spectrum of compound 5d

Figure S 68 ¹³C NMR spectrum of compound 5d

Figure S 69 APCI-HRMS spectrum of compound 5d

Figure S 70 ¹H NMR spectrum of compound 5e

Figure S 71 ¹³C NMR spectrum of compound 5e

Figure S 72 APCI-HRMS spectrum of compound 5e

78

Figure S 73 ¹H NMR spectrum of compound 5f

Figure S 74 ¹³C NMR spectrum of compound 5f

Figure S 75 APCI-HRMS spectrum of compound 5f

Figure S 76 ¹H NMR spectrum of compound 5g

Figure S 77 ¹³C NMR spectrum of compound 5g

Figure S 78 APCI-HRMS spectrum of compound 5g

Figure S 79 ¹H NMR spectrum of compound 5h

Figure S 80 ¹³C NMR spectrum of compound 5h

Figure S 81 APCI-HRMS spectrum of compound 5h

Figure S 82 ¹H NMR spectrum of compound 5i

Figure S 83 ¹³C NMR spectrum of compound 5i

Figure S 84 APCI-HRMS spectrum of compound 5i

90