Supporting Information.

Supplementary Methods.

Generation and Characterization of $tsa1\Delta$ $tsa2\Delta$ strain. To create a targeting construct for disrupting the *TSA2* locus, 500 bp upstream and downstream of the *TSA2* coding sequence (5'-UTR and 3'-UTR, respectively) were amplified out of *S. cerevisiae* genomic DNA using the primers described in Supplementary Table 1 with standard PCR conditions. The amplified products were sequentially cloned into pBluescript II vector containing a *HIS3* rescue cassette cloned into the BamHI site using the restriction sites described in the primer sequence. Correct production of the targeting construct was confirmed by restriction digestion and DNA sequencing. Wild-type (BY4741) or $tsa1\Delta$:: kan^R strains were transformed with the targeting construct and plated to His dropout medium. PCR genotyping was performed to confirm disruption of the *TSA2* locus (Supp. 7A). The strain's phenotype was also characterized for H₂O₂ sensitivity (Supp. Fig. 7B).

Supplementary Table 1. Primers Used for Cloning, Site-Directed Mutagenesis, and Deletion Mutant Production.

Deletion Mutant Production.
Primers for Cloning Tsa1 into pET45b (KpnI/XhoI)
Forward: 5'-GGGGGGGTACCGTCGCTCAAGTTCAAAAGCAAG
Reverse: 5'-CCCCCTCGAGTTATTTGTTGGCAGCTTCGAAG
Primers for Cloning FLAG-fusion proteins into p416-GPD (FLAG tag underlined)
FLAG-Trx2 (SpeI/XhoI) Forward: 5'-GGGGACTAGTATGGATTACAAAGATGATGATGATAAAGTCACTCAATTAAAATCCGCTTC
Reverse: 5'-GGGGCTCGAGCTATACGTTGGAAGCAATAGCTTGC
FLAG-Tsal (Spel/XhoI) Forward: 5'-GGGGACTAGTATGGATTACAAAGATGATGATGATAAAGTCGCTCAAGTTCAAAAGCAAGC
Reverse: 5'-GGGGCTCGAGTTATTTGTTGGCAGCTTCGAAGTATTCC
FLAG-Trr1 (HindIII/XhoI)
Forward: 5'-GGGGAAGCTTATG <u>GATTACAAAGATGATGATGATAAA</u> GTTCACAAAAGTTACTATC Reverse: 5'-GGGGCTCGAGCTATTCTAGGGAAGTTAAGTATTTCTCAG
Site-Directed Mutagenesis Primers (Mutation Sites in Bold) C ³¹ A-Trx2
Forward: 5'-CTTTTTTGCCACATGGGCTGGGCCATGTAAAATGATTGC
Reverse: 5'-GCAATCATTTTACATGGCCCAGCCCATGTGGCAAAAAAG
C ³⁴ A-Trx2
Forward: 5'-GCCACATGGTGTGGGGCCAGCTAAAATGATTGCACCAATG
Reverse: 5'-CATTGGTGCAATCATTTTAGCTGGCCCACACCATGTGGC
C ^{31,34} A-Trx2
Forward: 5'-GCCACATGGGCTGGGCCAGCTAAAATGATTGCACCAATG
Reverse: 5'-CATTGGTGCAATCATTTTAGCTGGCCCAGCCCATGTGGC
~47. —
C ⁴⁷ A-Tsa1 Forward: 5'-CCATTGGCCTTCACTTTCGTC GCT CCAACCGAAATCATTGCTTTC
Reverse: 5'-GAAAGCAATGATTTCGGTTGGAGCGACGAAAGTGAAGGCCAATGG
C ¹⁷⁰ A-Tsa1
Forward: 5'-AAGAACGGTACTGTCTTGCCAGCTAACTGGACTCCAGGTGCTGCT Reverse: 5'-AGCAGCACCTGGAGTCCAGTTAGCTGGCAAGACAGTACCGTTCTT
Reverse. 5 -AUCAUCACCIUUAUICCAUITAGCIUUCAAUACAUIACCUITCII
Primers for <i>tsa2</i> Targeting Construct
Tsa2 5'-UTR primers (XhoI/EcoRI)
Forward: 5'-GGGGCTCGAGGTTCTCAACGGGCTTATGCTAG
Reverse: 5'-GGGGGAATTCGAACTTCTGCTACCATGATTGG
Tsa2 3'-UTR primers (SpeI/NotI)
Forward: 5'-GGGGACTAGTGCCAATAATTAATCTTCGCACG
Reverse: 5'-GGGGGCGGCCGCGACAAGACTATGCCAATTGAG
Primers for Genotyping $tsal \Delta$ and $tsa2 \Delta$ Strains
wt <i>TSA1</i> locus Forward: 5'-TGCGTTTAAGGTGTACGAAAACCC
Reverse: 5'-AAACCACCTTCCTTCTTGGGA
wt TSA2 locus
Forward: 5'-ATTATCTTAACTATATGCGCCCCTC Reverse: 5'-CATGCCAGTAAGGAATATTCAGAGT
Reverse. J -CATOCCAUTAAUUAATATICAUAUT

tsa1A::kan^R locus Forward: 5'-TGCGTTTAAGGTGTACGAAAACCC Reverse: 5'-CTGCAGCGAGGAGCCGTAAT

tsa2A::kan^R locus Forward: 5'-ATTATCTTAACTATATGCGCCCCTC Reverse: 5'-CTGCAGCGAGGAGCCGTAAT

tsa2A::HIS3 locus Forward: 5'-GATTAGCGACCAGCCGGAATGC Reverse: 5'-ACTCAATGGATTCGTTAACAGTAGG

Supplementary Table 2. Proteins Co-Precipitating fro	Supplementary Table 2. Summary of Proteomic Proteins Co-Precipitating from Me ₂ SO-Treated Cells.	mic	Data from FLAG-Trx2 Immunoprecipitations. ^a	precipitations. ^a	
	Biological	Ч	Approximate	Mascot Score	No. of Peptides Identified
Protein	Function ^b	MWc	MW on Gel	(Expt. 1, Expt. 2) ^a	(Expt. 1, Expt. 2) ^e
Trx2/Trx1	protein disulfide reductase	11,311	12,000	(282, 180)	(15, 8)
			18,000	(59, 70)	
			24,000	(80, 64)	(3, 3)
			30,000	(68, 66)	
			36,000	(38, 77)	(2, 2)
Gpx2	peroxidase	18,622	12,000	(40, 22)	(1, 1)
Arfl	ADP-ribosylation factor	20,574	18,000	(72, 72)	(9, 2)
Tef1/Tef2	translation elongation factor	50,400	48,000	(29, 39)	(2, 3)
Tifl/Tif2	translation initiation factor	44,840	54,000	(42, 59)	(3, 4)
Ssa1/Ssa2	molecular chaperone	69,786	72,000	(65, 38)	(5,3)
Ssb1	molecular chaperone	69,599	72,000	(40, 32)	(5, 1)
Hsc82/Hsp82	molecular chaperone	80,850/81,356	78,000	(197, 260)	(14, 12)
Proteins Co-Pr	Proteins Co-Precipitating from DVSF-Treated Cells	Cells.			
	Biological	Predicted	Annroximate	Mascot Score	No. of Pentides Identified
Protein	Function ^b	MW ^c	MW on Gel	(Expt. 1, Expt. 2) ^d	(Expt. 1. Expt. 2) ^c
Trx2/Trx1	protein disulfide reductase	11.311	12.000	(215, 206)	(8,7)
			18,000	(110.85)	(4, 2)
			24,000	(57, 108)	(2, 3)
			30,000	(77, 33)	(3, 1)
			36,000	(230, 128)	(7, 4)
			42,000	(230 144)	(7 4)
			48.000	(192, 116)	(7, 3)
			54,000	(259, 27)	(16.1)
			00009	(69, 69)	(5, 3)
			66,000	(94, 105)	
			72,000	(120, 65)	(4, 2)
			78,000	(88, 76)	
			84,000	(92, 92)	
Arfl	ADP-ribosylation factor	20,574	18,000	(86, 66)	(3, 2)
Tsa1	peroxidase	21,690	24,000	(104, 116)	(4, 3)
			30,000	(46, 160)	(2, 4)
			36,000	(188, 69)	(8, 2)
			42,000	(188, 138)	(8, 8)
			48,000	(130, 72)	(0 , 2)
			54,000	(285, 45)	(10, 2)
			000,000 66 000	(210, 212)	(10, 0)
			00,000 72,000	(29, 142)	(11, 0) (6, 4)
			12,000	(100, 07)	

Ē		115	78,000	(87, 98)	(5, 3)
1 5 3 2	peroxidase	21/,12	42,000	(119, 00)	(c °0)
			54,000	(83, 45)	(10, 2)
			60,000	(57, 66)	(5, 3)
Tef1/Tef2	translation elongation factor	50,033	54,000	(24, 42)	(3, 1)
Trr1	thioredoxin reductase	34,445	54,000	(116, 52)	(8, 2)
Ssa1/Ssa2	molecular chaperone	69,786/69,599	72,000	(125, 70)	(11, 4)
Ssb1	molecular chaperone	66,732	78,000	(26, 41)	(2, 1)
Hsc82/Hsp82	molecular chaperone	80,850/81,356	86,000	(121, 61)	(8, 3)
^a Proteins listed	Proteins listed were isolated and identified in two replicate experiments under the treatment conditions outlined in Experimental Procedures. ^b Biological function	wo replicate experiments u	inder the treatment conditio	ns outlined in Experimental	Procedures. ^b Biological function
information wa	nformation was obtained from www.yeastgenome.org. ^c Predicted molecular weight (MW) values were obtained from www.expasy.org. ^d Mascot database scores from	e.org. ^c Predicted molecula	r weight (MW) values were	obtained from www.expasy.	rg. ^d Mascot database scores from
the replicate ex	the replicate experiments are provided, with higher numbers indicating the relative likelihood that a correct identification of the protein has been made. Only proteins	ler numbers indicating the r	elative likelihood that a corr	ect identification of the prot	ein has been made. Only proteins

information was obtained from www.yeastgenome.org. ^cPredicted molecular weight (MW) values were obtained from www.expasy.org. ^dMascot database scores from the replicate experiments are provided, with higher numbers indicating the relative likelihood that a correct identification of the protein has been made. Only proteins with Mascot scores of greater than 20 were included in further analysis. ^cThe number of peptides identified for each protein isolated is included from each of the replicate experiments.

Supplementary Table 3. Relative Toxicities of	f DVSF, DAD, DEB, HN2 in RKO Cells.
Molecule	$\underline{IC_{50}} (\mu M)^a$
DVSF	34 ± 3^{b}
DAD	$30 \pm 1^{\circ}$
DEB	130 ± 40
HN2	10 ± 2

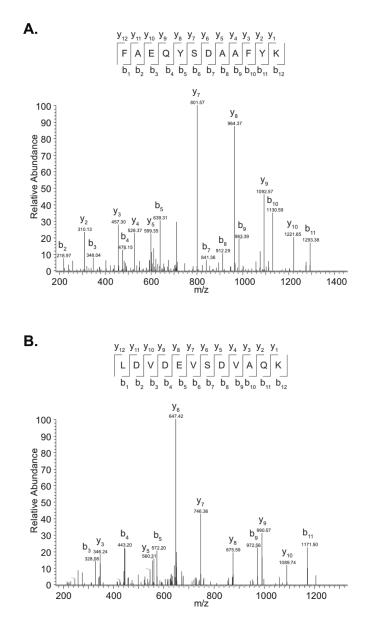
^aToxicity was measured using the WST-1 assay described. IC₅₀ values (the concentration at which WST-1 conversion was 50% of the control) were determined using GraphPad Prism. ^bValue is from *Chem. Res. Toxicol.* (2011) **24**, 1457-1459. ^cValue is from *Chem. Res. Toxicol.* (2011) **24**, 81-88.

Supplementary Figure Legends.

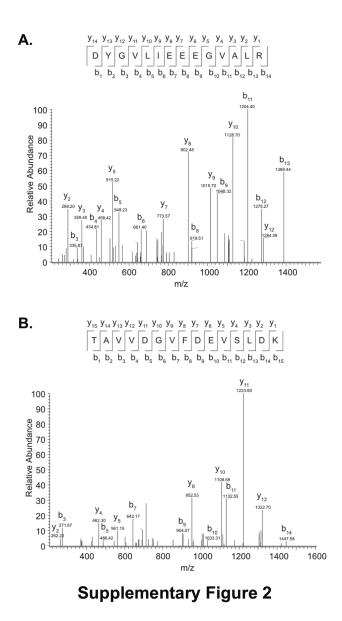
Supplementary Figure 1. Representative Mass Spectra to Establish Identity of Trx2. Two representative collision-induced dissociation (CID) spectra showing the fragmentation of peptides derived from Trx2. In this case, the Trx2 peptides migrated at the same location on the gel where a cross-linked Tsa1 species also electrophoresed (at ~36 kDa). The same peptides were isolated in the gel region where a cross-linked Trr1 was isolated (at ~54 kDa).

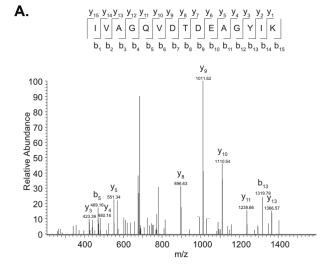
Supplementary Figure 2. Representative Mass Spectra to Establish Identity of Tsa1. Two representative CID spectra showing the fragmentation of peptides derived from Tsa1. The digested cross-linked species of Tsa1 that yielded these peptides migrated with Trx2 at ~36 kDa.

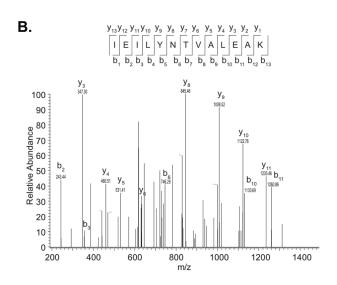
Supplementary Figure 3. Representative Mass Spectra to Establish Identity of Trr1. Two representative CID spectra showing the fragmentation of peptides derived from Trr1. The digested cross-linked species of Trr1 that yielded these peptides migrated with Trx2 at ~54 kDa.

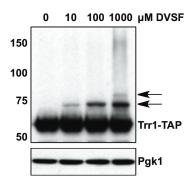

Supplementary Figure 4. Modification of Trr1-TAP by DVSF. Yeast cultures expressing Trr1-TAP were exposed to increasing concentrations of DVSF. Protein lysates from treated cells were resolved by SDS-PAGE, transferred to PVDF membrane, and probed with antibodies against the TAP tag (anti-protein A) or against Pgk1 (loading control). Cross-linked complexes are indicated with arrows. Results are representative of two independent experiments.

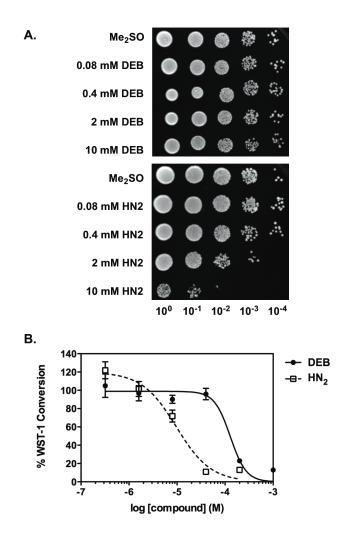
Supplementary Figure 5. Toxicity of DEB and HN2 in *S. cerevisiae* and RKO Cells. (A) Yeast cells in mid-log phase were exposed to Me₂SO (vehicle) or varying doses of DEB or HN2 for 1 h. Cultures were diluted in a series of 10-fold dilutions, spotted onto YPD medium, and monitored for survival/growth after 48 h at 30°C. Results are representative of two independent experiments. (B) RKO cells were incubated with DEB or HN2 over a concentration range from \sim 320 nM to 1 mM for 24 h at 37°C. Viability was measured using the WST-1 assay, with 100% survival set at the amount of WST-1 conversion in the Me₂SO (vehicle) control. Results shown are the average of two independent experiments done in quadruplicate \pm SEM.

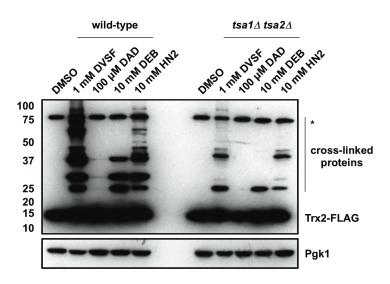

Supplementary Figure 6. Decreased Cross-Linking of FLAG-Trx2 in Yeast Lacking Tsa1 and Tsa2 Following Exposure to Structurally Diverse Bifunctional Electrophiles. Wild-type (BY4741) or $tsa1\Delta tsa2\Delta$ yeast expressing FLAG-Trx2 were exposed to 300 µM DVSF for 1 h. Protein lysates from cultures were subjected to immunoblot for the FLAG tag (to detect changes in cross-linked complexes containing Trx2) or Pgk1 (loading control). An asterisk indicates a non-specific band. Results are representative of two independent experiments.

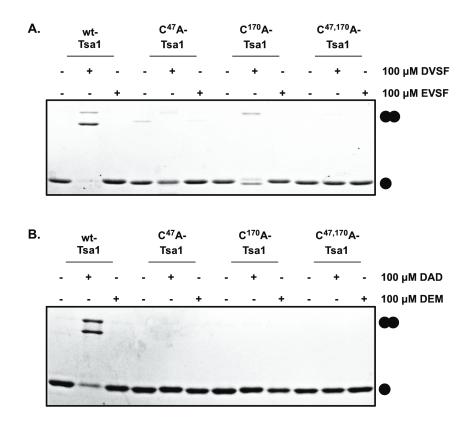

Supplementary Figure 7. Active Site Cys Residues Mediate Cross-Linking of Recombinant Tsa1 Treated with DVSF or DAD. Wild-type (wt) or mutant Tsa1 (10 μ M) was treated with Me₂SO (vehicle), DVSF, or EVSF (A) or Me₂SO, DAD, or DEM (B) for 24 h at 37°C as described in the Materials and Methods. Samples were resolved using SDS-PAGE and visualized with Coomassie blue staining. Results are representative of two-three independent experiments.


Supplementary Figure 8. Genotypic and Phenotypic Characterization of the $tsa1\Delta$ $tsa2\Delta$ Mutant. (A) Validation of strain by genotyping. Genomic DNA was isolated from the yeast strains shown at the top of the figure. PCRs were set up with primers specific for the wild-type (wt) loci for *TSA1* and *TSA2*, a deleted *tsa1* gene (where gene disrupted with a *kan^R* cassette), or a deleted *tsa2* gene (where gene was disrupted with either a *kan^R* cassette or *HIS3* gene). The *tsa1* Δ *tsa2* Δ strain shows PCR products consistent with both genes being disrupted. (B) Phenotypic characterization of strains with hydrogen peroxide sensitivity. Serial dilutions of strains diluted to OD₆₀₀ = 0.5 from stationary phase cultures were plated onto YPD plates containing Me₂SO (vehicle) or 3 mM H₂O₂ and grown for 48 h at 37°C. As expected, the *tsa1* Δ strain and the *tsa1* Δ *tsa2* Δ strain showed increased sensitivity to H₂O₂ when compared with the wt control. Results are representative of three independent experiments.








Supplementary Figure 3

