Supporting Information.

Supplementary Methods.

Generation and Characterization of tsa1 $\boldsymbol{t} \boldsymbol{t s a} \mathbf{2 \Delta}$ strain. To create a targeting construct for disrupting the TSA2 locus, 500 bp upstream and downstream of the TSA2 coding sequence (5'UTR and 3'-UTR, respectively) were amplified out of S. cerevisiae genomic DNA using the primers described in Supplementary Table 1 with standard PCR conditions. The amplified products were sequentially cloned into pBluescript II vector containing a $H I S 3$ rescue cassette cloned into the BamHI site using the restriction sites described in the primer sequence. Correct production of the targeting construct was confirmed by restriction digestion and DNA sequencing. Wild-type (BY4741) or tsal $\Delta:: \mathrm{kan}^{R}$ strains were transformed with the targeting construct and plated to His dropout medium. PCR genotyping was performed to confirm disruption of the TSA2 locus (Supp. 7A). The strain's phenotype was also characterized for $\mathrm{H}_{2} \mathrm{O}_{2}$ sensitivity (Supp. Fig. 7B).

Supplementary Table 1. Primers Used for Cloning, Site-Directed Mutagenesis, and Deletion Mutant Production.

Primers for Cloning Tsal into pET45b (KpnI/Xhol)
Forward: 5’-GGGGGGGTACCGTCGCTCAAGTTCAAAAGCAAG
Reverse: 5'-CCCCCCTCGAGTTATTTGTTGGCAGCTTCGAAG
Primers for Cloning FLAG-fusion proteins into p416-GPD (FLAG tag underlined)
FLAG-Trx2 (SpeI/XhoI)
Forward: 5'-GGGGACTAGTATGGATTACAAAGATGATGATGATAAAGTCACTCAATTAAAATCCGCTTC
Reverse: 5'-GGGGCTCGAGCTATACGTTGGAAGCAATAGCTTGC
FLAG-Tsa1 (SpeI/XhoI)
Forward: 5'-GGGGACTAGTATGGATTACAAAGATGATGATGATAAAGTCGCTCAAGTTCAAAAGCAAGC Reverse: 5'-GGGGCTCGAGTTATTTGTTGGCAGCTTCGAAGTATTCC

FLAG-Trr1 (HindIII/XhoI)
Forward: 5'-GGGGAAGCTTATGGATTACAAAGATGATGATGATAAAGTTCACAACAAAGTTACTATC
Reverse: 5'-GGGGCTCGAGCTATTCTAGGGAAGTTAAGTATTTCTCAG
Site-Directed Mutagenesis Primers (Mutation Sites in Bold)
C^{31} A-Trx2
Forward: 5’-CTTTTTTGCCACATGGGCTGGGCCATGTAAAATGATTGC
Reverse: 5'-GCAATCATTTTACATGGCCCAGCCCATGTGGCAAAAAAG
$\mathrm{C}^{34} \mathrm{~A}-\operatorname{Trx} 2$
Forward: 5'-GCCACATGGTGTGGGCCAGCTAAAATGATTGCACCAATG
Reverse: 5’-CATTGGTGCAATCATTTTAGCTGGCCCACACCATGTGGC
$\mathrm{C}^{31,34} \mathrm{~A}-\mathrm{Trx} 2$
Forward: 5'-GCCACATGGGCTGGGCCAGCTAAAATGATTGCACCAATG
Reverse: 5’-CATTGGTGCAATCATTTTAGCTGGCCCAGCCCATGTGGC
$\mathrm{C}^{47} \mathrm{~A}-\mathrm{Tsa} 1$
Forward: 5’-CCATTGGCCTTCACTTTCGTCGCTCCAACCGAAATCATTGCTTTC
Reverse: 5’-GAAAGCAATGATTTCGGTTGGAGCGACGAAAGTGAAGGCCAATGG
$\mathrm{C}^{170} \mathrm{~A}$-Tsal
Forward: 5'-AAGAACGGTACTGTCTTGCCAGCTAACTGGACTCCAGGTGCTGCT
Reverse: 5’-AGCAGCACCTGGAGTCCAGTTAGCTGGCAAGACAGTACCGTTCTT
Primers for $t s a 2 \Delta$ Targeting Construct
Tsa2 5'-UTR primers (XhoI/EcoRI)
Forward: 5'-GGGGCTCGAGGTTCTCAACGGGCTTATGCTAG
Reverse: 5'-GGGGGAATTCGAACTTCTGCTACCATGATTGG
Tsa2 3'-UTR primers (SpeI/NotI)
Forward: 5'-GGGGACTAGTGCCAATAATTAATCTTCGCACG
Reverse: 5'-GGGGGCGGCCGCGACAAGACTATGCCAATTGAG
Primers for Genotyping tsal Δ and tsa 2Δ Strains
wt TSAl locus
Forward: 5’-TGCGTTTAAGGTGTACGAAAACCC
Reverse: 5'-AAACCACCTTCCTTTCTTGGGA
wt TSA2 locus
Forward: 5'-ATTATCTTAACTATATGCGCCCCTC
Reverse: 5'-CATGCCAGTAAGGAATATTCAGAGT
tsal $\Delta:: k^{R}{ }^{R}$ locus
Forward: 5'-TGCGTTTAAGGTGTACGAAAACCC
Reverse: 5'-CTGCAGCGAGGAGCCGTAAT
tsa2 $\Delta::$ kan R locus
Forward: 5'-ATTATCTTAACTATATGCGCCCCTC
Reverse: 5'-CTGCAGCGAGGAGCCGTAAT
tsa24::HIS3 locus
Forward: 5'-GATTAGCGACCAGCCGGAATGC
Reverse: 5'-ACTCAATGGATTCGTTAACAGTAGG
Supplementary Table 2. Summary of Proteomic Data from FLAG-Trx2 Immunoprecipitations. ${ }^{\text {a }}$

Proteins Co-Precipitating from $\mathrm{Me}_{2} \mathrm{SO}$-Treated Cells.					
Protein	Biological Function ${ }^{\text {b }}$	Predicted $\mathbf{M W}^{\mathbf{c}}$	Approximate MW on Gel	Mascot Score (Expt. 1, Expt. 2)	No. of Peptides Identified (Expt. 1, Expt. 2) ${ }^{\text {e }}$
Trx2/Trx1	protein disulfide reductase	11,311	12,000	$(282,180)$	$(15,8)$
			18,000	$(59,70)$	$(3,2)$
			24,000	$(80,64)$	$(3,3)$
			30,000	$(68,66)$	$(3,2)$
			36,000	$(38,77)$	$(2,2)$
Gpx2	peroxidase	18,622	12,000	$(40,22)$	$(1,1)$
Arf1	ADP-ribosylation factor	20,574	18,000	$(72,72)$	$(9,2)$
Tefl/Tef2	translation elongation factor	50,400	48,000	$(29,39)$	$(2,3)$
Tif1/Tif2	translation initiation factor	44,840	54,000	$(42,59)$	$(3,4)$
Ssa1/Ssa2	molecular chaperone	69,786	72,000	$(65,38)$	$(5,3)$
Ssb1	molecular chaperone	69,599	72,000	$(40,32)$	$(5,1)$
Hsc82/Hsp82	molecular chaperone	80,850/81,356	78,000	$(197,260)$	$(14,12)$

Proteins Co-Precipitating from DVSF-Treated Cells.					
Protein	Biological Function ${ }^{\text {b }}$	Predicted $\mathbf{M W}^{\mathrm{c}}$	Approximate MW on Gel	Mascot Score (Expt. 1, Expt. 2) ${ }^{\text {d }}$	No. of Peptides Identified (Expt. 1, Expt. 2) ${ }^{\text {e }}$
Trx2/Trx1	protein disulfide reductase	11,311	12,000	$(215,206)$	$(8,7)$
			18,000	$(110,85)$	$(4,2)$
			24,000	$(57,108)$	$(2,3)$
			30,000	$(77,33)$	$(3,1)$
			36,000	$(230,128)$	$(7,4)$
			42,000	$(230,144)$	$(7,4)$
			48,000	$(192,116)$	$(7,3)$
			54,000	$(259,27)$	$(16,1)$
			60,000	$(99,69)$	$(5,3)$
			66,000	$(94,105)$	$(4,2)$
			72,000	$(120,65)$	$(4,2)$
			78,000	$(88,76)$	$(3,2)$
			84,000	$(92,92)$	$(4,3)$
Arfl	ADP-ribosylation factor peroxidase	20,574	18,000	$(86,66)$	$(3,2)$
Tsa1		21,690	24,000	$(104,116)$	$(4,3)$
			30,000	$(46,160)$	$(2,4)$
			36,000	$(188,69)$	$(8,2)$
			42,000	$(188,138)$	$(8,8)$
			48,000	$(130,75)$	$(6,2)$
			54,000	$(285,45)$	$(10,2)$
			60,000	$(250,213)$	$(10,8)$
			66,000	$(259,142)$	$(11,6)$
			72,000	$(168,87)$	$(6,4)$

Tsa2	peroxidase		78,000	$(87,98)$	$(5,3)$
		21,715	42,000	$(119,60)$	$(6,5)$
			54,000	$(83,45)$	$(10,2)$
			60,000	$(57,66)$	$(5,3)$
Tefl/Tef2	translation elongation factor	50,033	54,000	$(24,42)$	$(3,1)$
Trrl	thioredoxin reductase	34,445	54,000	$(116,52)$	$(8,2)$
Ssa1/Ssa2	molecular chaperone	69,786/69,599	72,000	$(125,70)$	$(11,4)$
Ssb1	molecular chaperone	66,732	78,000	$(26,41)$	$(2,1)$
Hsc82/Hsp82	molecular chaperone	80,850/81,356	86,000	$(121,61)$	$(8,3)$
${ }^{a}$ Proteins listed were isolated and identified in two replicate experiments under the treatment conditions outlined in Experimental Procedures. ${ }^{6} \mathrm{~B}$ information was obtained from www.yeastgenome.org. ${ }^{\text {c }}$ Predicted molecular weight (MW) values were obtained from www.expasy.org. ${ }^{\mathrm{d}}$ Mascot dat the replicate experiments are provided, with higher numbers indicating the relative likelihood that a correct identification of the protein has been made. with Mascot scores of greater than 20 were included in further analysis. ${ }^{\mathrm{e}}$ The number of peptides identified for each protein isolated is included from each experiments.					

Supplementary Table 3. Relative Toxicities of DVSF, DAD, DEB, HN2 in RKO Cells.

Molecule	$\frac{\mathrm{IC}_{50}(\mu \mathrm{M})^{\mathrm{a}}}{34 \pm 3^{\mathrm{b}}}$
DVSF	$30 \pm 1^{\mathrm{c}}$
DAD	130 ± 40
DEB	10 ± 2
HN2	

${ }^{\mathrm{a}}$ Toxicity was measured using the WST-1 assay described. IC_{50} values (the concentration at which WST-1 conversion was 50% of the control) were determined using GraphPad Prism. ${ }^{\mathrm{b}}$ Value is from Chem. Res. Toxicol. (2011) 24, 1457-1459. ${ }^{\mathrm{c}}$ Value is from Chem. Res. Toxicol. (2011) 24, 81-88.

Supplementary Figure Legends.

Supplementary Figure 1. Representative Mass Spectra to Establish Identity of Trx2. Two representative collision-induced dissociation (CID) spectra showing the fragmentation of peptides derived from Trx2. In this case, the Trx2 peptides migrated at the same location on the gel where a cross-linked Tsal species also electrophoresed (at $\sim 36 \mathrm{kDa}$). The same peptides were isolated in the gel region where a cross-linked Trrl was isolated (at $\sim 54 \mathrm{kDa}$).

Supplementary Figure 2. Representative Mass Spectra to Establish Identity of Tsa1. Two representative CID spectra showing the fragmentation of peptides derived from Tsa1. The digested cross-linked species of Tsa1 that yielded these peptides migrated with $\operatorname{Trx} 2$ at $\sim 36 \mathrm{kDa}$.

Supplementary Figure 3. Representative Mass Spectra to Establish Identity of Trr1. Two representative CID spectra showing the fragmentation of peptides derived from Trr1. The digested cross-linked species of Trr1 that yielded these peptides migrated with $\operatorname{Trx} 2 \mathrm{at} \sim 54 \mathrm{kDa}$.

Abstract

Supplementary Figure 4. Modification of Trr1-TAP by DVSF. Yeast cultures expressing Trrl-TAP were exposed to increasing concentrations of DVSF. Protein lysates from treated cells were resolved by SDS-PAGE, transferred to PVDF membrane, and probed with antibodies against the TAP tag (anti-protein A) or against Pgk1 (loading control). Cross-linked complexes are indicated with arrows. Results are representative of two independent experiments.

Supplementary Figure 5. Toxicity of DEB and HN2 in S. cerevisiae and RKO Cells. (A) Yeast cells in mid-log phase were exposed to $\mathrm{Me}_{2} \mathrm{SO}$ (vehicle) or varying doses of DEB or HN 2
for 1 h . Cultures were diluted in a series of 10 -fold dilutions, spotted onto YPD medium, and monitored for survival/growth after 48 h at $30^{\circ} \mathrm{C}$. Results are representative of two independent experiments. (B) RKO cells were incubated with DEB or HN2 over a concentration range from $\sim 320 \mathrm{nM}$ to 1 mM for 24 h at $37^{\circ} \mathrm{C}$. Viability was measured using the WST- 1 assay, with 100% survival set at the amount of WST-1 conversion in the $\mathrm{Me}_{2} \mathrm{SO}$ (vehicle) control. Results shown are the average of two independent experiments done in quadruplicate \pm SEM.

Supplementary Figure 6. Decreased Cross-Linking of FLAG-Trx2 in Yeast Lacking Tsa1 and Tsa2 Following Exposure to Structurally Diverse Bifunctional Electrophiles. Wild-type (BY4741) or tsal Δ tsa2 Δ yeast expressing FLAG-Trx2 were exposed to $300 \mu \mathrm{M}$ DVSF for 1 h . Protein lysates from cultures were subjected to immunoblot for the FLAG tag (to detect changes in cross-linked complexes containing Trx2) or Pgk1 (loading control). An asterisk indicates a non-specific band. Results are representative of two independent experiments.

Supplementary Figure 7. Active Site Cys Residues Mediate Cross-Linking of Recombinant

 Tsa1 Treated with DVSF or DAD. Wild-type (wt) or mutant Tsa1 $(10 \mu \mathrm{M})$ was treated with $\mathrm{Me}_{2} \mathrm{SO}$ (vehicle), DVSF, or EVSF (A) or $\mathrm{Me}_{2} \mathrm{SO}$, DAD , or DEM (B) for 24 h at $37^{\circ} \mathrm{C}$ as described in the Materials and Methods. Samples were resolved using SDS-PAGE and visualized with Coomassie blue staining. Results are representative of two-three independent experiments.
Supplementary Figure 8. Genotypic and Phenotypic Characterization of the tsa1 $\boldsymbol{\Delta}$ tsa2d

Mutant. (A) Validation of strain by genotyping. Genomic DNA was isolated from the yeast
strains shown at the top of the figure. PCRs were set up with primers specific for the wild-type (wt) loci for TSA1 and TSA2, a deleted tsal gene (where gene disrupted with a kan^{R} cassette), or a deleted tsa2 gene (where gene was disrupted with either a kan^{R} cassette or HIS3 gene). The $t s a 1 \Delta t s a 2 \Delta$ strain shows PCR products consistent with both genes being disrupted. (B) Phenotypic characterization of strains with hydrogen peroxide sensitivity. Serial dilutions of strains diluted to $\mathrm{OD}_{600}=0.5$ from stationary phase cultures were plated onto YPD plates containing $\mathrm{Me}_{2} \mathrm{SO}$ (vehicle) or $3 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ and grown for 48 h at $37^{\circ} \mathrm{C}$. As expected, the tsal Δ strain and the tsal tsa2 ts strain showed increased sensitivity to $\mathrm{H}_{2} \mathrm{O}_{2}$ when compared with the wt control. Results are representative of three independent experiments.
A.

B.

$$
\begin{aligned}
& y_{12} y_{11} y_{10} \\
& y_{9}
\end{aligned} y_{8} y_{7} y_{6} y_{5} y_{4} y_{3} y_{2} y_{1}
$$

Supplementary Figure 1
A.

$$
\begin{aligned}
& y_{14} y_{13} y_{12} y_{11} y_{10} y_{9} y_{8} y_{7} y_{6} y_{5} y_{4} y_{3} y_{2} y_{1}
\end{aligned}
$$

B.

Supplementary Figure 2

A. $\begin{aligned} & y_{15} y_{14} y_{13} y_{12} y_{11} y_{10} y_{9} y_{8} \\ & y_{7}\end{aligned} y_{6} y_{5} y_{4} y_{3} y_{2} y_{1}$.

B.

Supplementary Figure 3

Supplementary Figure 4
A.

B.

Supplementary Figure 5

Supplementary Figure 6

Supplementary Figure 7
A.

B.

Supplementary Figure 8

