SUPPORTING INFORMATION

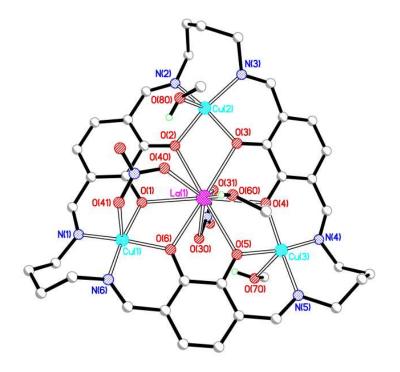
for

By Design: A Macrocyclic 3d-4f Single-Molecule Magnet with Quantifiable Zero-Field Slow Relaxation of Magnetization

Humphrey L. C. Feltham,[†] Rodolphe Clérac,^{‡,§} Liviu Ungur,^{⊥,^} Liviu F. Chibotaru,[⊥] Annie K. Powell⁺ and Sally Brooker^{†,*}

[†] Department of Chemistry and the MacDiarmid Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

[‡] CNRS, CRPP, UPR 8641, F-33600 Pessac, France.


[§] Univ. Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France.

^L Division of Quantum and Physical Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001, Leuven, Belgium

[^] INPAC-Institute of Nanoscale Physics and Chemistry Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001, Leuven, Belgium

⁺ Institut für Anorganische Chemie, Karlsruher Institut für Technologie, Engesserstrasse 15 Geb. 30.45, 76131 Karlsruhe, Germany

Supplementary X-ray data

Figure S1: The crystal structure of $[Cu_3La(L^{Bu})(NO_3)_2(MeOH)_3](NO_3)$. For clarity, non-acidic hydrogen atoms and the non-coordinated nitrate anion have been omitted.

Structure description for [Cu₃La(L^{Bu})(NO₃)₂(MeOH)₃](NO₃): Overall, the structure of [Cu₃La(L^{Bu})(NO₃)₂(MeOH)₃](NO₃) is very similar to the terbium(III) analogue, with the large lanthanum(III) ion bound in the central O₆ cavity and the smaller copper(II) ions in the outer N₂O₂ sites. The lanthanum(III) ion is ten-coordinate, with distorted decahexahedral geometry. All three copper(II) ions are all five-coordinate and are fairly regular square pyramids¹ (τ for Cu(1) = Cu(3) = 0.15; Cu(2) = 0.20). One of the nitrate anions is bound in a bidentate fashion to the lanthanum(III) ion, one bridges the lanthanum(III) ion and a copper(II) in a µ-mode and the remaining anion is not coordinated. One methanol molecule is coordinated to the lanthanum(III) ion and two are coordinated in the apical position of two copper(II) ions. The macrocycle is quite curved; the angles made by the plane of an arbitrarily chosen catecholate ring with the planes of the other two rings are 18.8° and 39.4°.

Refinement details for $[Cu_3La(L^{Bu})(NO_3)_2(MeOH)_3](NO_3)$: All hydrogen atoms were placed in calculated positions and rode on the attached non-H atom with U(H)=1.2U(X). In the case of X = O, the hydrogen selected was the one that formed the best hydrogen bond. All non-H atoms were refined anisotropically except for two catecholate carbon atoms (C4, C16) that presented negative ellipsoid parameters unless refined isotropically. An ISOR restraint was used on four carbon atoms (C6, C14, C20, C27) with a low principal mean square atomic displacement. No disorder is present. For further details see the cif file.

Refinement details for [Cu_3Tb(L^{Bu})(NO_3)_2(DMF)(H_2O)](NO_3)·DMF: All hydrogen atoms were placed in calculated positions and rode on the attached non-H atom with U(H)=1.2U(X). In the case of X = O, the hydrogen selected was the one that formed the best hydrogen bond. All non-H atoms were refined anisotropically except for two partial-occupancy carbonyl oxygen atoms (O80, O90) of the non-coordinated DMF solvent molecules. For further details see the cif file.

Supplementary magnetic data

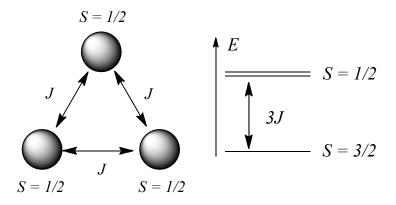
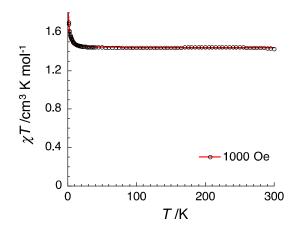
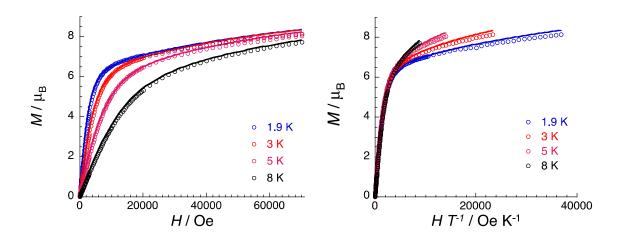




Figure S2: Scheme of the spin topology in $[Cu_3La(L^{Bu})]$ and its energy diagram in the case of ferromagnetic superexchange interactions.

Figure S3: Temperature dependence of the χT product of $[Cu_3La(L^{Bu})]$ in a 1000 Oe dc field (circles) and a fit to the data (redline) based on the model shown in Figure S2.

Figure S4: M vs. H (left) and M vs. H/T (right) data for [**Cu**₃**Tb**(**L**^{Bu})] at the indicated temperatures, scanning at about 100 – 200 Oe min.⁻¹ The solid lines are the calculated magnetization from the ab initio calculations described in the text.

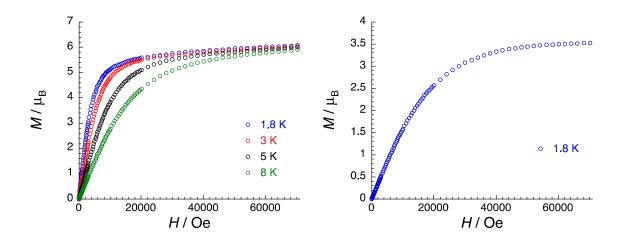


Figure S5: Field dependence of magnetisation for $[Zn_3Tb(L^{Bu})]$ (left) and $[Cu_3La(L^{Bu})]$ (right) at the temperatures indicated, scanning at about 100-200 Oe min⁻¹.

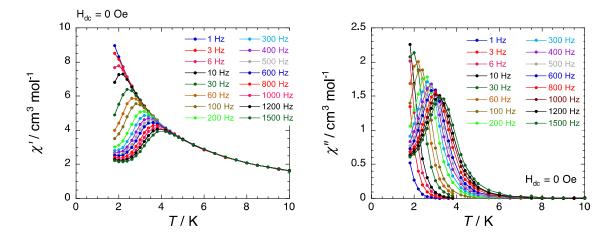


Figure S6: Temperature dependence of the in-phase (left) and out-of-phase (right) components of the ac susceptibility for $[Cu_3Tb(L^{Bu})]$ at the frequencies indicated in zero-dc field.

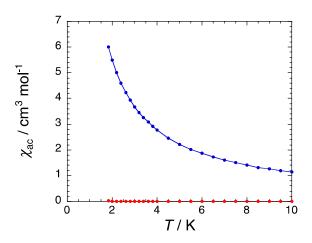


Figure S7: Temperature dependence of the in-phase and out-of-phase components of ac susceptibility for $[Zn_3Tb(L^{Bu})]$ at 1000 Hz in zero-dc field.

Additional ab initio results

Table S1. A comparison of low-lying level energies (in cm⁻¹) corresponding to the free ion J = 6 multiplet of central Tb ions in $[Cu_3Tb(L^{Pr})]$ and $[Cu_3Tb(L^{Bu})]$. The states defining the axiality are shown with bold: the axiality of Tb ion increases with the decrease of the energy gap.

[Cu ₃ Tb(L ^{Pr})]	[Cu ₃ Tb(L ^{Bu})]			
0.000	0.000			
4.248	0.174			
59.496	42.060			
91.321	42.688			
102.018	76.038			
153.304	86.706			
164.914	109.163			
211.549	110.691			
220.366	128.768			
264.691	182.476			
267.049	185.891			
472.033	406.847			
472.968	8 407.827			

Table S2. Calculated exchange energies (in K) and the corresponding *g* tensors of the low-lying exchange Kramers doublets of the previously reported $[Cu_3Tb(L^{Pr})]$ complex² and the present $[Cu_3Tb(L^{Bu})]$ compounds.

	[Cu ₃ Tb(L ^{Pr})] ^{4d}			[Cu ₃ Tb(L ^{Bu})]		
J(Cu- Cu)/k _B	1.41 K		1.37 K			
J(Cu- Tb)/k _B	4.14 K		4.34 K			
Kramers Doublets	energy cm⁻¹	g tensor		energy cm⁻¹	g tensor	
1	0.000	gx gy gz	0.0702 0.0849 22.5796	0.000	gx gy gz	0.0018 0.0021 23.9647
2	7.105	gx gy gz	2.3663 2.7211 16.3099	8.333	gx gy gz	0.0906 0.1029 19.7233
3	9.064	gx gy gz	1.0807 1.3485 16.5745	10.220	gx gy gz	0.0433 0.0509 19.7362
4	9.068	gx gy gz	1.1312 1.3429 16.4972	10.453	gx gy gz	0.0457 0.0536 19.7366
5	16.026	gx gy gz	1.8793 2.6203 11.9709	16.988	gx gy gz	0.0207 0.1785 15.4856
6	17.920	gx gy gz	0.9637 1.2247 12.2555	18.916	gx gy gz	0.0253 0.0740 15.5022
7	17.924	gx gy gz	0.9765 1.1664 12.1787	19.147	gx gy gz	0.0227 0.0718 15.5025
8	23.608	gx gy gz	0.1508 0.1766 9.5883	26.027	gx gy gz	0.0066 0.0369 11.2530

References

- 1. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Vershoor, *J. Chem. Soc., Dalton Trans.*, 1984, 1349-1356.
- 2. H. L. C. Feltham, R. Clérac, L. Ungur, V. Vieru, L. F. Chibotaru, A. K. Powell and S. Brooker, *Inorg. Chem.*, 2012, **51**, 10603–10612.