Supporting Information

Halisphingosines A and B, Modified Sphingoid Bases from *Haliclona tubifera*. Assignment of Configuration by Circular Dichroism and van't Hoff's Principle of Optical Superposition[†]

Tadeusz F. Molinski,^{*.‡,§} Renata Biegelmeyer,[⊥] E. Paige Stout,[‡] Xiao Wang,[‡]

Mario L. C. Frota. Jr., and ^{||}Amelia T. Henriques[⊥]

[‡]Department of Chemistry and Biochemistry, and [§]Skaggs School of Pharmacy and Pharmaceutical

Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0358, USA.

⁺*Pharmacognosy Laboratory and* ^{||}*Department of Biochemistry, Federal University of South Brazil,*

Porto Alegre, 90610-000, RS, Brazil.

Content		Page
Figure S1.	Tabulated CD data and hybrid CD spectra	S1
Figure S2.	¹ H NMR spectrum of $1a$ (500 MHz, CD ₃ OD)	S2
Figure S3.	13 C NMR spectrum of 1a (125 MHz, CDCl ₃)	S3
Figure S4	DEPT135 spectrum of 1a (125 MHz, CD ₃ OD)	S4
Figure S5	COSY spectrum of 1a (600 MHz, CD ₃ OD)	S5
Figure S6.	HSQC spectrum of 1a (500 MHz, CD ₃ OD)	S6
Figure S7.	HMBC spectrum of $1a$ (500 MHz, CD ₃ OD)	S7
Figure S8.	¹ H NMR spectrum of $2a$ (600 MHz, CD ₃ OD)	S8
Figure S9.	COSY spectrum of 2a (600 MHz, CD ₃ OD)	S9
Figure S10.	¹ H NMR spectrum of acetonide 3 (500 MHz, $CDCl_3$)	S10
Figure S11.	¹ H NMR spectrum of mononaphthoate 4 (500 MHz, CDCl ₃)	S11
Figure S12.	¹ H NMR spectrum of tetranaphthoyl deriv. 5 (500 MHz, CDCl ₃)	S12
Figure S13.	¹ H NMR spectrum of per-acetyl B 8 (600 MHz, $CDCl_3$)	S13
Figure S14.	¹ H NMR spectrum of 7,8-dihydro-per-acetyl A 8 (500 MHz, CDCl ₃)	S14
Figure S15.	COSY spectrum of 8 (600 MHz, CDCl ₃)	S15
Figure S16.	LCMS Coinjection of 8	S16
-	-	

Figure S1. Measured CD spectra (CH₃CN, 24 °C) of *N*,*O*,*O*-tetranaphthoyl halisphingosine A (**5**, solid line) overlayed with hybrid spectra (dashed lines) generated from CD of **4** and *erythro*-**6b**. (a) CD = CD[**4**]+CD[**6b**]. (b) CD = CD[**4**]-CD[**6b**].

					_
CD /Hybrid CD	$\lambda \left(\Delta \varepsilon ight)$	λ ($\Delta \varepsilon$)	$\lambda \left(\Delta \varepsilon ight)$	A	
4 ^{<i>a</i>}	$190(+8)^{b}$	236(-21.9)	_	_	
5 ^{<i>a</i>}	224(-12.5)	235(+17.4)	243(-20.1)	32.5	
6b ^{<i>a</i>}	226(+56)	242(+124)	_	124	
7b ^{<i>a</i>}	221(+7.2)	237(-19.3)	_	26.5	
CD[4]+CD[7b]	—	237(-40.9)	_	_	
CD[4]–CD[7b]	227(-18.5)	237(-2.5)	243(-12.4)	—	
CD[4]+CD[6b]	226(+42)	241(-84)	_	126	
CD[4]–CD[6b]	227(-69)	242 (+53)	_	122	

Table S1. Tabulated parameters $[\lambda / \text{nm} (\Delta \epsilon / \text{mol}^{-1} \text{dm}^3 \text{cm}^{-1})$, and *A* values] for measured and hybrid CD spectra in **Fig. 4** and **Fig. S1**.^{*a*}

a, all measured CD spectra under the same conditions (CH₃CN, 24 $^{\circ}$ C). *b*. truncated at end λ

Figure S1. Measured CD spectra (CH₃CN, 24 °C) of *N*,*O*,*O*-tetranaphthoyl halisphingosine A (**5**, solid line) overlayed with hybrid spectra (dashed lines) generated from CD of **4** and *erythro*-**6b**. (a) CD = CD[**4**]+CD[**6b**]. (b) CD = CD[**4**]-CD[**6b**].

					_
CD /Hybrid CD	$\lambda \left(\Delta \varepsilon ight)$	λ ($\Delta \varepsilon$)	$\lambda \left(\Delta \varepsilon ight)$	A	
4 ^{<i>a</i>}	$190(+8)^{b}$	236(-21.9)	_	_	
5 ^{<i>a</i>}	224(-12.5)	235(+17.4)	243(-20.1)	32.5	
6b ^{<i>a</i>}	226(+56)	242(+124)	_	124	
7b ^{<i>a</i>}	221(+7.2)	237(-19.3)	_	26.5	
CD[4]+CD[7b]	—	237(-40.9)	_	_	
CD[4]–CD[7b]	227(-18.5)	237(-2.5)	243(-12.4)	—	
CD[4]+CD[6b]	226(+42)	241(-84)	_	126	
CD[4]–CD[6b]	227(-69)	242 (+53)	_	122	

Table S1. Tabulated parameters $[\lambda / \text{nm} (\Delta \epsilon / \text{mol}^{-1} \text{dm}^3 \text{cm}^{-1})$, and *A* values] for measured and hybrid CD spectra in **Fig. 4** and **Fig. S1**.^{*a*}

a, all measured CD spectra under the same conditions (CH₃CN, 24 $^{\circ}$ C). *b*. truncated at end λ

Figure S6. ¹H-¹³C HSQC spectrum of *N*-Boc-halisphingosine A (1a) (CD₃OD, 500 MHz).

Figure S7. ¹H-¹³C HMBC spectrum of *N*-Boc-halisphingosine A (1a) (CD₃OD, 500 MHz).

Figure S9. ¹H-¹H COSY spectrum of *N*-Boc-halisphingosine B (2a) (CD₃OD, 600 MHz).

S-12

injection. LCMS conditions: Phenomenex Kinetex C₁₈ column (4.6 x 150 mm, 2.6 μm); linear gradient 60% CH₃CN to 100% CH₃CN, 0.1% formic acid, over 15 minutes, 0.7 mLmin⁻¹, APCI probe. Figure S16. LCMS total ion count (TIC) for *a*) 7,8-dihydro-per-acetyl-halisphingosine A (8), *b*) per-acetyl-halisphingosine B (8), and *c*) co-