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Supplementary Fig. 1: Thermal stability of AIP, AIPL1 and their variants 

To assess the stability of the different proteins, temperature-induced unfolding 

experiments were performed (a-d). Temperature-induced unfolding was monitored by 

far UV-CD spectroscopy at a fixed wavelength with a heating rate of 20 °C/h. Data were 

fitted to a Boltzmann function to obtain transition midpoints. 
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Supplementary Fig. 2: The proline-rich domain is a negative regulator of Hsp90 

interaction. 

a. Determination of the affinity of AIP to Hsp90 by SPR. The KD of AIP to hHsp90 was 

calculated to be 2.28 µM based on injections with different concentration of AIP onto a 

human Hsp90-coated CM5 chip  

b. Determination of the affinity of AIP-PRD to Hsp90 by SPR. The KD of AIP-PRD to 

hHsp90 was calculated to be 6.88 µM based on injections with different concentrations 

of AIP-PRD onto a human Hsp90-coated CM5 chip.  

c. Determination of the affinity of AIPL1 to Hsp90 by SPR. The KD of AIPL1 to hHsp90 

was calculated to be 2.60 µM based on injections with different concentration of AIPL1 

onto a human Hsp90-coated CM5 chip  

d. Determination of the affinity of AIPL1ΔPRD to Hsp90 by SPR. The KD of AIPL1ΔPRD 

to hHsp90 was calculated to be 0.89 µM based on injections with different 

concentrations of AIPL1ΔPRD onto a human Hsp90-coated CM5 chip. 
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