
S1 

 

Supporting materials  

 

Role of Sodium Doping in Lead Chalcogenide Thermoelectrics 
 

Jiaqing He,
 *,†, #,⊥ 

Lidong Zhao, 
‡,⊥

 Jin-Cheng Zheng,
¥,⊥

 Jeff W. Doak,
 § 

Haijun Wu,
†
 Hui-Qiong 

Wang,
 ¥ 

Yeseul Lee,
 ‡

 C. Wolverton,
 §

 Mercouri G. Kanatzidis
 *,‡

 and Vinayak P. Dravid
 §

 

 

†
Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710054, P.R. 

China 

#
Department of Physics, South University of Science and Technology of China, Shenzhen 518055, 

P.R. China 

‡
Department of Chemistry and 

§
Department of Materials Science and Engineering, Northwestern 

University, Evanston, Illinois 60208, USA 

¥
Department of Physics and Fujian Provincial Key Laboratory of Theoretical and Computational 

Chemistry, Xiamen University, Xiamen 361005, P. R. China 

 

Corresponding Author: he.jq@sustc.edu.cn; m-kanatzidis@northwestern.edu 

 

Reference 16 in full. He, J. Q.; Blum, I. D.; Wang, H.-Q.; Girard, S. N.; Doak, J. W.; Zhao, L.-D.; 

Zheng, J.-C.; Casillas, G.; Wolverton, C.; Jose-Yacaman, M.; Seidman, D. N.; Kanatzidis, M. G.; 

Dravid, V. P. Nano Letters 2012, 12, 5979. 

A: Synthesis, characterization and DFT calculations    

(1) Synthesis  

Reagents chemicals were used as obtained: Pb wire (99.99%, American Elements, US), Te shot 

(99.999%, 5 N Plus, Canada), Se shot (99.999%, 5 N Plus, Canada), S shot or chunk (99.999%, Inc., 

Canada) and Na chunk (99.999%, Aldrich, US). 

 Samples Pb1-xNaxQ (x=0.005, 0.01 or 0.02; Q = Te, Se and S) were prepared by a melting 

reaction using mixing elemental Pb, Q (Q=Te, Se, or S) and Na inside carbon-coated fused silica 

tubes, the tubes were then evacuated to a base pressure of ~10
-4

 torr, flame-sealed, slowly heated to 

723 K in 12 h, and then heated to 1423 K in 7 h, soaked at this temperature for 6 h and subsequently 

air quenched to room temperature.  

(2) Characterization: 
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 Electrical properties: The obtained ingots were cut into bars with the dimension of 15 mm × 3 

mm × 2 mm that were used for simultaneous measurements of the Seebeck coefficient and the 

electrical conductivity using an Ulvac Riko ZEM-3 instrument under a helium atmosphere from 

room temperature to 723 K.. Electrical properties obtained from different slices cut from the same 

pellets were similar attesting to the good homogeneity of the samples. The uncertainty of Seebeck 

coefficient and electrical conductivity measurements is within 5%. 

 

    

FigureS1 (a) Electrical conductivity, and (b) Seebeck coefficient dependence of temperature of 

Na 2 mol% doped PbQ (Q=Te, S, Se) samples.  

 

Thermal conductivity: Highly dense ingots were cut and polished into coins of Ø ~ 8 mm and 

1~2 mm thickness for thermal diffusivity measurements. The samples were coated with a thin layer 

of graphite to minimize errors on the emissivity of the material. The thermal conductivity was 

calculated from k =D Cp ρ, where thermal diffusivity coefficient D was measured using laser flash 

diffusivity method in a Netzsch LFA457, the data were analyzed using a Cowan model with pulse 

correction,
 
heating and cooling cycles give a repeatable diffusivity for a given sample. Thermal 

diffusivities obtained for different slices from the same pellet are similar; where Cp is the specific 

heat capacity, was indirectly derived using standard sample (Pyroceram 9606) in the range 

300~923K, the Cp results show good agreement with the reported values, [1] where the density ρ of 

the sample was determined by using sample dimension and mass, the sample density was also 

reconfirmed by gas pycnometer (Micromeritics AccuPyc1340) measurements. The uncertainty of 

thermal conductivity is estimated to be within 8 % with considering the uncertainties for D, Cp and 
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ρ.  

Transmission Electron microscopy: Transmission electron microscopy (TEM) investigations 

were carried out in a JEOL 2100F microscope at Xi’an Jiaotong University. The thin TEM 

specimens were prepared by conventional standard methods. The procedures include cutting, 

grinding, dimpling, polishing and Ar-ion milling on a liquid nitrogen cooling state subsequently.  

 

(3) DFT calculations:  

Density functional theory (DFT) [2,3] calculations, which has been used to study phase stability 

in rocksalt-based thermoelectric materials with considerable success[4-7], have been carried out 

using projector-augmented wave (PAW) [8] pseudoptentials with the generalized gradient 

approximation (GGA) and exchange correlation of Perdew, Burke, and Ernzerhof (PBE) [9], as 

implemented in the Vienna Abinito Simulation Package (VASP)
 
[10]. The pseudopotentials for Na, 

Pb, S, Se, and Te had as valence the 2p
6
3s1, 6s

2
6p

2
, 3s

2
3p

4
, 4s

2
4p

4
, and 5s

2
5p

4
 electrons, 

respectively. DFT total energies of the elements Na, Pb, S, Se, and Te, as well as the compounds 

PbTe, PbSe, PbS, NaTe, NaSe, and NaS, were calculated using plane-wave energy cutoffs of 350 eV, 

and Monkhorst-Pack (MP) [11] k-point meshes with 8000 k-points per reciprocal atom (KPPRA) 

for metals and 2400 KPPRA for non-metals. The integration of electronic orbitals was performed 

with Gaussian smearing using a 0.1 eV smearing width. The crystal structures of the elements and 

compounds were taken from the inorganic crystal structure database (ICSD) [12], and their unit cell 

parameters and atomic positions were fully relaxed within DFT. The total energies of PbQ (Q=Te, 

Se, and S) containing one Pb atom replaced by Na were calculated using 216 atom supercells which 

were relaxed with respect to both unit cell parameters and atomic positions. The supercell 

calculations were carried out using 350 eV energy cutoffs, and 4x4x4 MP k-point meshes with 0.1 

eV Gaussian smearing. Both pure supercells and supercells with 1 Na and 107 Pb atoms were 

calculated in this manner.  

Table S1 shows the formation energies of the PbQ and NaQ compounds, the difference 

between the Na and Pb chemical potentials (with respect to their elemental standard states) found 

by assuming equilibrium between PbQ and NaQ [from eq. (4) in the main text], the ‘raw’ defect 

formation energy of Na in PbQ with respect to elemental standard states [the first term in eq. (3) of 

the main text], as well as the defect formation energy of Na in PbQ with respect to the compounds 
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PbQ and NaQ. There is no systematic trend in the chemical potential difference between Na and Pb 

– PbTe-NaTe has the lowest chemical potential difference, PbSe-NaSe has the highest, and 

PbS-NaS lies in between. On the other hand, the raw defect formation energies of Na in PbQ 

decrease as Q moves from Te to Se to S, with Na in PbS being twice as large as Na in PbTe. The 

trend in the defect formation energies with respect to the compounds PbQ-NaQ remains the same as 

the trend in the raw defect formation energies. 

 

                                    Table S1 

PbQ and NaQ formation energies, chemical potential differences between Na and Pb, ‘raw’ Na 

defect formation energies, and Na defect formation energies calculated for the systems PbQ-NaQ 

with Q = Te, Se, S. 

  Q 

 
Te Se S 

ΔEF
PbQ

 (eV/atom) -0.412 -0.578 -0.555 

ΔEF
NaQ

 (eV/atom) -0.711 -0.834 -0.835 

ΔμNa-ΔμPb (eV/2 atoms) -0.598 -0.511 -0.560 

ΔEF,raw
def

 (eV/defect) -0.33 -0.54 -0.66 

ΔEF
def

 (eV/defect) 0.27 -0.03 -0.10 

 

B: The calculations of lattice thermal conductivity 

The lattice thermal conductivity was calculated using the modified Callway’s model [13];  
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Where kB is the Boltzmann’s constant,   is the Plank constant, T is the absolute temperature,   

is an average phonon-group velocity, which can be calculated from  11

2,

1

1,

1

3

1   LTT  , 

where  L and  T,1,2 are the longitudinal- and transverse-sound velocity, respectively; 

Tx B / , and c  is the relaxation time.  The latter is obtained by integrating the relaxation 

times from various processes. In the TEM studies, at a certain frequency, relaxation time mainly is 

related to scattering from the boundaries, dislocations, strains, nanoscale precipitates, and the 

phonon-phonon interactions [13]; 
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Where U, N, PD, S, P, B and D, are the relaxation times [14-22] corresponding to scattering from 

Umklapp processes, normal processes, point defects (solid solution), strains, precipitates, 

boundaries and dislocations, respectively. In principle, more mechanisms may further contribute to 

the relaxation time, such as electron-phonon interactions. In our treatment, however, we consider 

only the contributors mentioned above.   

From the second–order perturbation theory, the relaxation time for Umklapp scattering is given 

by [14] 
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Wherein   is the Gruneisen anharmonicity parameter, M is the average mass of an atom in the 

crystal, and 
D  is the Debye temperature.  

For normal phonon-phonon scattering, several models were proposed [14-16]. For the 

appropriate form of group IV or III-V semiconductors can be written as [14]   

ba

NN TB  1

                                               (4) 

Where (a, b) = (1, 4) or (2, 3), depending on the type of phonons, for longitudinal phonons, 

(a, b) = (1, 4), and transverse phonons (a, b) = (2, 3); BN is a constant independent of  and T, 
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                                          (5) 

Where  is the ratio of normal phonon scattering to umklapp scattering, which is assumed to 

be temperature–independent. Here we used equation (5) to calculate normal phonon scattering of 

our study. The value of parameter  will be determined by fitting experimental data of pure PbQ. 

The term, PD, describing the contribution of point defects from solid solution part, is given 

by: [17] 
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In the above equation, δ is the radius of the impurity atom in the host lattice, υ is the average 

lattice sound velocity and Γ is the disorder scaling parameter, which depends on mass and strain 

field fluctuations. Both types of fluctuations are taken to have an additive effect on Γ.[18, 20] The 

mass fluctuations are quantified by ΓM that takes into account the average mass of each of the 

sublattices and the strain field fluctuations by ΓS that is a value weighted by the average sublattice 

mass, the average sublattice ionic radius and a phenomenological parameter ε. [19] The parameter ε 

is a function of the Grüneisen parameter and hence is a measure of the anharmonic contributions to 

the lattice.[18] he explicit relations of ΓΜ and ΓS are given by Yang et al.[18] as: 
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where the symbols in equation (8) and (9) are as following: ci is the degeneracy (here c1=c2=1), fi is 

the fractional occupation, <ri> the average radius, <Mi> the average mass of each sublattice and 

M
*
 is the average atomic mass of the compound.  

In addition to the boundary scattering mechanism, scattering due to dislocations are 

incorporated into the relaxation time according to our observations. We use here the following 

simplified dislocations: [21]  
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Where ND is the dislocation density, r is the core radius, BD is the magnitude of the Burgers 

vector of the dislocation,  is the Gruneisen number, and  the phonon angular frequency. The first 

term in this equation is the contribution of the dislocation core, and the secondary term is due to the 

surrounding strain field. Since PbQ is anisotropic structure, we use the approximation of averaged 

elastic constants with the anisotropic factor, H, defined over the elastic coefficients cij by H=2c44 

+c12-c11, the averaged elastic constant , and shear modulus  for a cubic crystal are 
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Hc )5/1(12    and  Hc )5/1(44  , correspondingly. The Poisson’s ratio  is equal to

)(2 




. 

To simplify our calculation, the relaxation time due to elastic strain field, S, is given by 

Peter Carruthers
 
[22] 
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Where
224g , 

2

0' rA  ,



q ,   is the scatter density,  r0 is radius of the sphere and  is the misfit 

between the sphere and the matrix. The misfit has a dependence of temperature, which can be written as: 

   3001 00  TMP 
 
                                (12) 

Where 0 is misfit at room temperature (300K) which can be obtained from TEM study, P 

and M are the thermal expansion coefficient of precipitate and matrix, respectively.  

Relaxation time of phonon scattering due to the nanoscale precipitates is given by a 

Mathiessen-type interpolation between the short- and long-wavelength scattering regimes [23-26] 

plsP V1111 )(                                               (13) 

Where 22 Rs   ; 
422 )/()/(

9

4
 RDDRl  , here R is particle average radius; D is medium 

density, and D is the difference between the particle and matrix materials; Vp is the density of the 

nanoscale particles.  
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Table S2 

Key parameters used to calculate the lattice thermal conductivity. 

Parameters PbTe PbSe PbS 

Lattice constant a (Å) 6.460 6.125 5.936 

Elastic coefficients 

c11 (GPa) 105.3 123.7 127 

c12 (GPa) 7.0 19.2 29.8 

c44 (GPa) 13.2 15.9 24.8 

 

H (GPa) -71.9 -72.7 -47.6 

 (GPa) 21.4 33.74 39.32 

 (GPa) 27.6 30.44 34.32 

  0.218 0.263 0.267 

Volume per atom V0 (Å
3
) 33.69 28.72 26.15 

Gruneisen parameter  1.96 1.65 2.52 

Sound velocity (m/s) 1770 1926.3 2040 

Debye temperature D (K) 136 125 145 

Density of mass ( g/cm
3
) 8.242 8.270 7.597 

 

Table S3 

Parameters used to calculate the lattice thermal conductivity. 

Parameters Symbol Value 

Mass of an atom Pb MPb [amu] 207.2 

Te MTe 127.6 

Se MSe 78.96 

S MS 32.065 

Na MNa 22.99 

Radius of an atom Pb rPb [pm] 175 

Te RTe 140 

Se RSe 115 

S RS 100 

Na RNa 186 

References:  

1. Blachnik, R.; Igel, R. Z. Naturforsch. B 1974, 29, 625. 

2. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, 864. 

3. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, 1133. 



S9 

 

4. Barabash, S. V.; Ozolins, V.; Wolverton, C. Phys. Rev. Lett. 2008, 101, 155704. 

5. Barabash, S.; Ozolins, V.; Wolverton, C. Phys. Rev. B 2008, 78, 214109. 

6. Barabash, S. V.; Ozolins, V. Phys. Rev. B 2010, 81, 075212. 

7. Doak, J. W.; Wolverton, C. Phys. Rev. B 2012, 86, 1144202 

8. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. 

9. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. 

10. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. 

11. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. 

12. Belsky, A.; Hellenbrandt, M.; Karen, V. L.; Luksch, P. Acta Crystallogr., Sect. B: Struct. Sci 2002, 58, 364. 

13. Callaway, J.; Von Baeyer, H. C. Phys. Rev. 1960, 120, 1149. 

14. Morelli, D. T.; Heremans, J. P.  Phys. Rev. B 2002, 66, 195304. 

15. Steigmeier, E. F. ; Abeles, B.  Phys. Rev. 1964,136, A1149.  

16. Yang, L.; Wu, J.; Zhang, L. Chin. Phys. 2004, 13, 0516. 

17. Abeles, B. Phys. Rev. 1963, 131, 1906. 

18. Yang, J.; Meisner, G. P.; Chen, L. Appl. Phys. Lett. 2004, 85, 1140. 

19. Alekseeva, G. T. ; Efimova, B. A.; Ostrovskaya, L. M.; Serebryannikova, O. S.; Tsypin, M. I. Soviet Physics- 

Semiconductors 1971, 4, 1122. 

20. Ohta, M.; Biswas, K.; Lo, S.-H.; He, J.; Chung, D. Y.; Dravid, V. P.; Kanatzidis, M. G. Adv. Energy Mater. 

2012, 2, 1117. 

21. Zhu, P. W.; Imai, Y.; Isoda, Y.; Shinohara, Y.; Jia, X. P.; Ren, G. Z.; Zou, G. Materials Transactions 2004, 45, 

3102. 

22. Zou, J.; KotchetKov D. et al , J. Appl. Phys. 2002, 92, 2534. 

23. Carruthers, P. Rev. Mod. Phys. 1961, 33, 92. 

24. Kim, W.; Singer, S. L.; Majumdar, A.; Zide, J. M. O. ; Klenov, D. ; Gossard, A. C.; Stermer, S. Nano letters 

2008, 8, 2097. 

25. Kim, W.; Majumdar, A. J. Appl. Phys. 2006, 99, 084306.  

26. Mingo, N. ; Hauser, D. ; Kobayashi, N. P.; Plissonnier, M.; Shakouri, A. Nano Letters 2009, 9, 711. 15. 

 


