Supporting Information for

Template-Free Synthesis of Renewable Macroporous Carbon via Yeast Cells for High-Performance Supercapacitor Electrode Materials

Hongmei Sun, Wenhui He, Chenghua Zong, and Lehui Lu*

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P.R. China

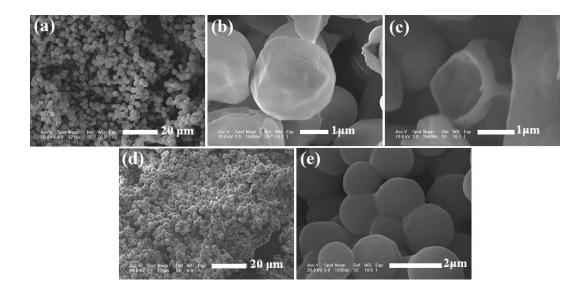
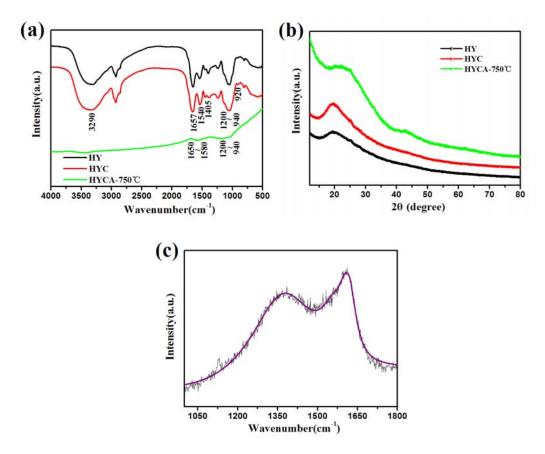



Figure S1. SEM images of (a-c) HY and (d, e) HYC.

Figure S2. (a) FTIR spectra and (b) XRD patterns of HY, HYC and HYCA-750 $^{\circ}$ C; (c) Raman spectrum of HYCA-750 $^{\circ}$ C.

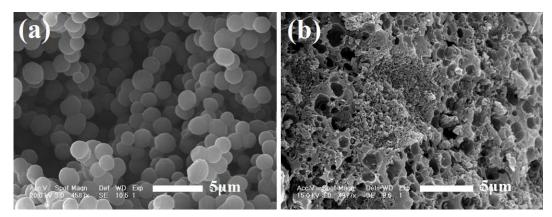


Figure S3. SEM images of (a) HYC-750 °C and (b) HYA-750 °C.

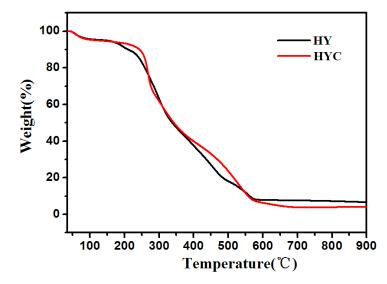


Figure S4. TGA curves of HY and HYC.

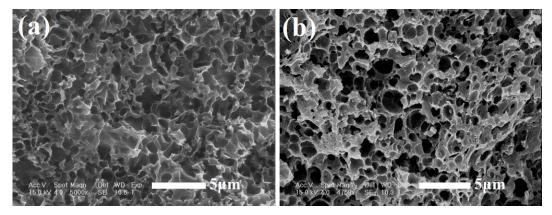
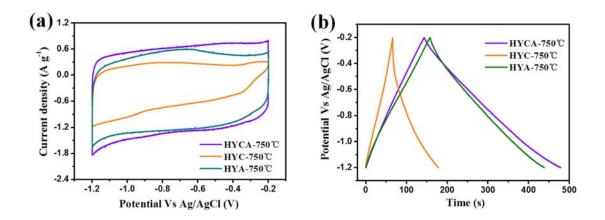
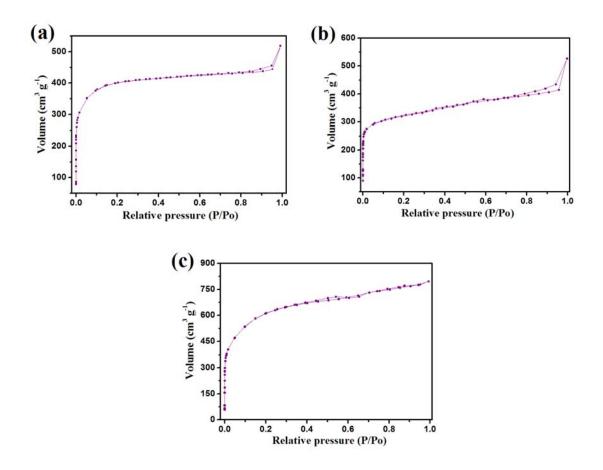




Figure S5. SEM images of (a) HYCA-650 °C and (b) HYCA-850 °C.

Figure S6. (a) CV curves at 5 mV s⁻¹ and (b) galvanostatic charge/discharge curves at 1 A g^{-1} of the samples.

Figure S7. Nitrogen adsorption/desorption isotherms of (a) HYCA-750 $^{\circ}$ C, (b) HYCA-650 $^{\circ}$ C, (c) HYCA-850 $^{\circ}$ C.

Table S1. Calculated surface area of the samples.

Sample	HYCA-650 °C	HYCA-750 °C	HYCA-850 °C
$S_{BET}(m^2 g^{-1})$	1002	1227	2011

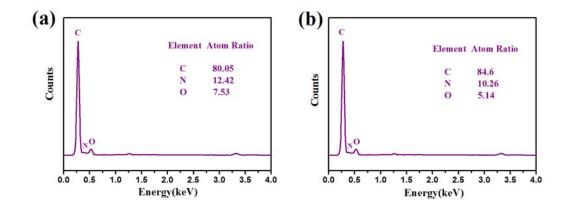
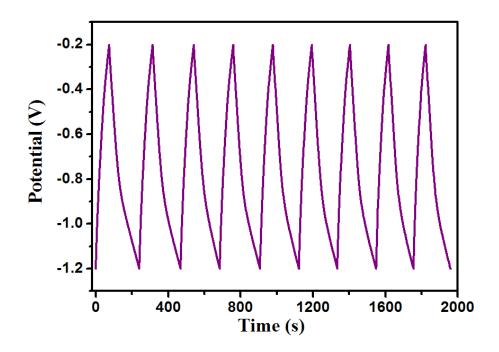



Figure S8. EDX analysis of (a) HYCA-650 °C and (b) HYCA-850 °C.

Table S2. The atom ratio of the elements in the samples.

Element	HYCA-650 °C	HYCA-750 °C	HYCA-850 °C
C (Atom Ratio %)	80.05	82.34	84.6
N (Atom Ratio %)	12.42	11.39	10.26
O (Atom Ratio %)	7.53	6.28	5.14

Figure S9. Galvanostatic charge/discharge curves of HYCA-750 $^{\circ}$ C at the current density of 1 A g⁻¹ in two-electrode system.

For HYCA-750 °C, the specific capacitance of a single electrode at the current density of 1A g⁻¹ in a symmetrical two-electrode configuration was calculated to be 280 F g⁻¹ by the equation: $Cs = 4(I \Delta t)/(\Delta V m)$,¹⁻³ where *I* is the current, Δt is the discharge time, ΔV is the potential range, and *m* is the total mass of HYCA-750 °C on both electrodes, 4 adjusts the capacitance of the cell and the combined mass of two electrodes to the capacitance and mass of a single electrode.

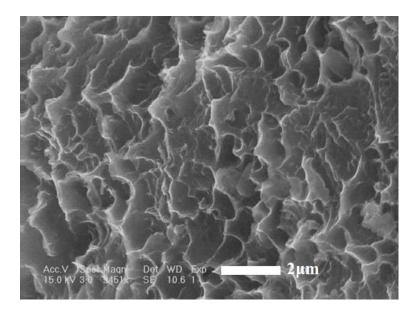


Figure S10. SEM image of HYCA-750 °C after 1000 cycles.

Reference:

- (1) Stoller M. D.; Ruoff, R. S. Energy Environ. Sci. 2010, 3, 1294-1301.
- (2) Xie, K.; Qin, X.; Wang, X.; Wang, Y.; Tao, H.; Wu, Q.; Yang L.; Hu, Z. Adv. Mater. 2011, 24, 347-352.
- (3) Simon P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845-854.