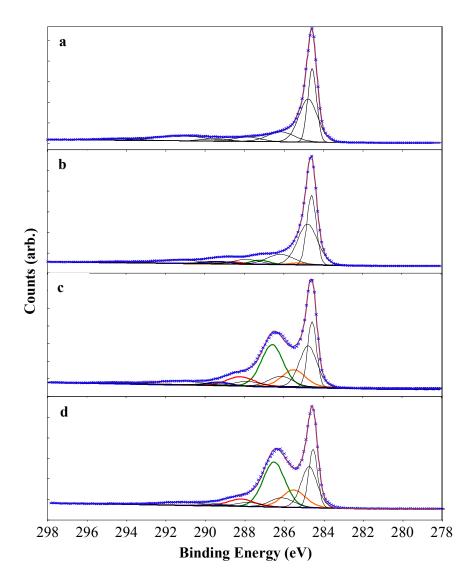

Hierarchical Composite Structures Prepared by Electrophoretic Deposition of Carbon Nanotubes onto Glass Fibers


Qi $An^{\equiv \ddagger}$, *Andrew N. Rider*^{\neq} and *Erik T. Thostenson*^{$\ddagger \ddagger = *$}

Department of Materials Science and Engineering, [†]Department of Mechanical Engineering and [‡]Center for Composite Materials, University of Delaware, Newark, DE 19716
[‡]Defence Science and Technology Organization, Fisherman's Bend, Victoria 3207, Australia

SUPPLEMENTARY DATA

Figure S1. The configuration and dimensions of the test specimen used for measuring the inplane shear strength of the CNT treated E-glass fiber. The 4-ply MWCNT treated laminate was bonded to two thicker outer laminates using EA9309.3NA adhesive.

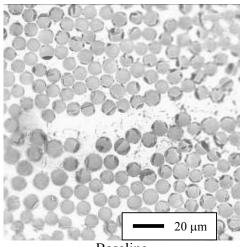
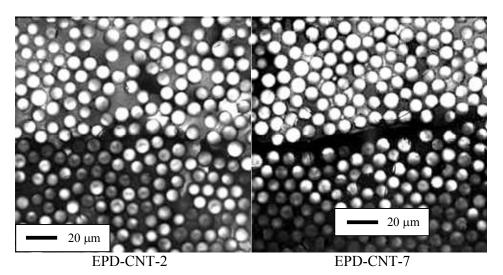
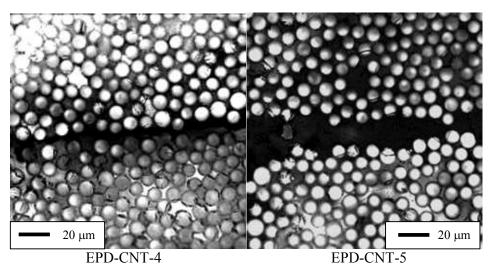

Figure S2. C 1s photolectron sprectra for (a) untreated CNTs, (b) ozone treated CNTs, (c) ozone and PEI treated CNTs and (d) ozone, PEI and GPS treated CNTs

Table S1. C 1s peak-fitting components as shown in Figure S1 for CNTs functionalized using ozone, PEI and GPS treatments


Sample	Atomic Concentration (%)					
Binding Energy (eV)	284.6	285.3- 285.5	286.5- 287.2	288.2- 288.6	289.0- 289.3	291.3
			<u>287.2</u> C-O/	200.0 C=O/	0-C=O/	
Component	Graphite	C-C	C-N	C=N	O-C=N	$\pi \rightarrow \pi^*$
CNT	85.60	0.00	0.00	0.00	0.00	14.03
CNT-OZONE	71.89	1.18	2.85	1.56	2.09	7.47
CNT-OZONE-PEI	36.08	8.39	19.23	5.13	0.78	4.36
CNT-OZONE-PEI-GPS	34.44	9.13	21.90	4.39	0.38	3.48


Table S2. N 1s peak-fitting components for E-glass fabric before and after EPD with deionized water, PEI and GPS and CNTs functionalized using ozone, PEI

Sample	Atomic Concentration (%)				
Binding Energy (eV)	398.0	398.9	399.8- 400.1	400.9- 401.5	402.1- 402.5
H ₂ O EPD of E-GLASS			1.6	0.8	1.1
PEI EPD of E-glass		6.0	1.7	1.0	
EPD of CNT-OZONE- PEI	1.0		8.6	2.6	1.7

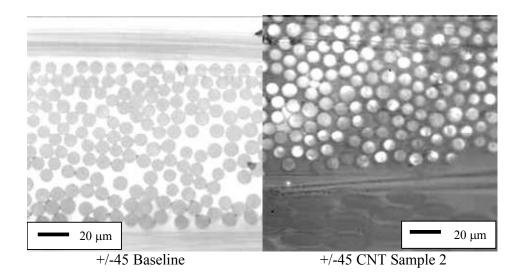


Figure S3. Optical images acquired using transmitted light for thin cross-sections of in-plane shear specimens indicating the interlaminar resin rich region and coating distribution through the laminate thickness

Figure S4. Optical images acquired using transmitted light for thin cross-sections of +/-45 shear specimens indicating the coating distribution through the laminate thickness compared to untreated laminate

Halpin-Tsai and Periodic Microstructure Model Equations Used for Modeling Shear Modulus of CNT Treated E-glass/Epoxy Laminates

The in-plane shear modulus, G_{12} , was estimated using the periodic microstructure model ^{S1}, equation (S1):

$$G_{12} = G_m \left[1 + \frac{v_f (1 - G_m / G_f)}{G_m / G_f + S_3 (1 - G_m / G_f)} \right]$$
(S1)

Where v_f is the fiber volume fraction, G_m in the shear modulus of the epoxy matrix and G_f is the shear modulus of the E-glass fiber and S₃ is determined from equation (S2)

$$S_3 = 0.49247 - 0.47603v_f - 0.05748v_f^2 \tag{S2}$$

In order to calculate the shear modulus of the matrix, it was assumed that the CNT coating present on the fibers was a constituent of the matrix. The CNTs were assumed to be present as a 3-D randomly oriented fibers in the epoxy matrix and G_{random} was estimated from equation (S3)^{S2}.

$$G_{random} = \frac{1}{8}E_{11} + \frac{1}{4}E_{22}$$
(S3)

Where E_{11} and E_{22} are the tensile moduli in the principal and transverse fiber directions, respectively. E_{11} was calculated using equation (S4):

$$E_{11} = \frac{1 + 2(\frac{l_f}{d_f})\eta_L v_f}{1 - \eta_L v_f} E_m$$
(S4)

Where l_f and d_f are the CNT length and diameter, respectively, E_m is the tensile modulus of the matrix and η_L was determined from equation (S5):

$$\eta_L = \frac{\left(\frac{\alpha E_f}{E_m}\right) - 1}{\left(\frac{\alpha E_f}{E_m}\right) + 2\left(\frac{l_f}{d_f}\right)}$$
(S5)

Where α is an orientation factor equal to 1/6 for the case where the CNT dimensions are significantly smaller than the laminate thickness^{S3}.

 E_{22} was calculated using equation (S6):

$$E_{22} = \frac{1 + 2\eta_T v_f}{1 - \eta_T v_f} E_m$$
(S6)

Where η_7 was determined from equation (S7):

$$\eta_T = \frac{\left(\frac{\alpha E_f}{E_m}\right) - 1}{\left(\frac{\alpha E_f}{E_m}\right) + 2} \tag{S7}$$

Table S3. Material property data used for modeling E-glass/epoxy shear modulus

Material Property	CNTs	Epon 862/Epikure W	E-glass
Tensile Modulus E (GPa)	200	2.72	72.4
Poisson ratio (v)		0.33	0.22
Shear Modulus G (GPa)		1.02	29.7
Density (g.cm ⁻³)	2.0	1.2	2.55

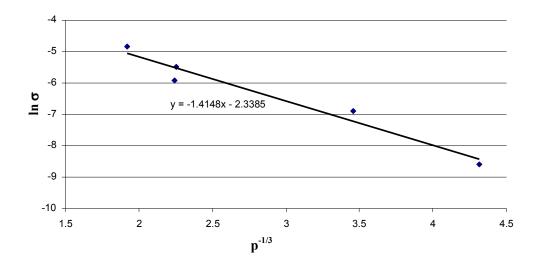


Figure S5. Plot of ln σ vs. p^{-1/3} for CNT treated E-glass/epoxy laminates indicating a linear trend indicative of quantum tunnelling

REFERENCES

- (S1) Luciano, R.; Barbero, E. J. Int. J. Solids Struct. 1994, 31, 2933-2944
- (S2) Halpin, J. C. J Compos Mater 1969, 3, 732–734.
- (S3) Yeh, M. -K.; Tai, N. -H.; Liu, J. -H. Carbon 2006, 44, 1-9.