Reversible Solid State Redox of an Octacyanometallate-Bridged Coordination Polymer by Electrochemical Ion Insertion/extraction

Masashi Okubo¹*, Koichi Kagesawa¹, Yoshifumi Mizuno¹, Daisuke Asakura¹, Eiji Hosono¹, Tetsuichi Kudo¹, Haoshen Zhou¹*, Kotaro Fujii², Shin-ichi Nishimura³, Atsuo Yamada³, Atsushi Okazawa⁴, Norimichi Kojima⁴*

¹National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan

²Tokyo Institute of Technology, Ookayama 2-12-1, Meguroku, Tokyo 152-8551, Japan
³Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan
⁴Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguroku, Tokyo

153-8902, Japan

To whom correspondence should be addressed: m-okubo@aist.go.jp, h.s.zhou@aist.go.jp, cnori@mail.ecc.u-tokyo.ac.jp

Table S1 Rietveld refinement result for MnMo-CCP. The structure is almost isomorphous to $[Mn(H_2O)][Mn(HCOO)_{2/3}(H_2O)_{2/3}]_{3/4}[W(CN)_8] \cdot H_2O$ (T.-W. Wang, *et al.*, *Inorg. Chem.*, (2010) **49**, 7756.). The atomic coordinates and isotropic displacement factor for C4, O1, O1w, O2w, O3w and O4w were not refined, because formic acid and water coordinating to Mn are strongly disordered.

Atom	g	x	у	Z	$B_{\rm eq}$ / Å ²
Мо	1.0	0.0	0.0	0.13761(8)	1.65(5)
C1	1.0	0.8054(5)	= x	0.1577(3)	3.0(1)
C2	0.375	0.787(1)	0.040(2)	0.0786(3)	$=B_{eq}(C1)$
C3	1.0	0.0	0.0	0.2143(3)	$=B_{eq}(C1)$
N1	1.0	0.7015(4)	= x	0.1679(2)	3.0(1)
N2	0.375	0.6714(8)	0.067(2)	0.0535(3)	$= B_{eq}(N1)$
N3	1.0	0.0	0.0	0.2536(2)	$= B_{eq}(N1)$
C4	0.25	0.313	0.313	0.0	1.0
Mn1	0.375	0.5	0.0550(6)	0.0	1.9(1)
Mn2	1.0	0.0	0.0	0.3267(1)	1.37(8)
O1	0.25	0.5	0.695	0.0	1.0
O1w	1.0	0.0	0.0	0.4099	2.0
O2w	0.25	0.5	0.758	0.0	2.0
O3w	0.54(1)	0.5	0.0	0.25	2.0
O4w	0.13(1)	0.5	0.5	0.021(3)	2.0

Space group: I4/mmm

a = 7.5739(2) Å, c = 28.8274(7) Å, V = 1653.7(7) Å³

 $R_{\rm e} = 2.34\%$, $R_{\rm wp} = 3.74\%$, $R_{\rm p} = 2.75\%$, S = 1.60, $R_{\rm Bragg} = 1.85\%$

Figure S1 SEM image for MnMo-CCP. The scale bar is 200 nm.

Figure S2 FT-IR spectra for $K_4[Mo(CN)_8]$, $Cs_3[Mo(CN)_8]$, MnMo-CCP, $Li_{0.7}(MnMo$ -CCP) and Na_{0.7}(MnMo-CCP). Absorption peaks are assigned to the CN stretching modes.

Figure S3 Typical time dependence of the cell voltage and applied current during the insertion of Li-ions by the GITT.

Figure S4 *dx/dE* vs. *E* plot of Li_xMnMo-CCP and Na_xMnMo-CCP.

Figure S5 Ex situ XRD patterns measured during Li-ion insertion/extraction.

Figure S6 The DFT calculated spin density for all possible Mn-Mo pairs from MnMo-CCP. The blue and green densities correspond to positive and negative spins, respectively.

Figure S7 (a) χT vs. *T* plot of MnMo-CCP (black), Li_{0.7}(MnMo-CCP) (blue), and Li₀(MnMo-CCP) (red), (b) χT vs. *T* plot of MnMo-CCP (black), Na_{0.67}(MnMo-CCP) (blue), and Na₀(MnMo-CCP) (red).

Figure S8 (a) Potential profile during Li-ion and Na-ion insertion/extraction in MnMo-CCP at constant specific current of 10 mA/g. (b) cycle stability of MnMo-CCP for Li-ion and Na-ion insertion/extraction.