DNA Binding and Anti-Cancer Activity of Redox-Active Heteroleptic Piano-Stool Ru(II), Rh(III) and Ir(III) Complexes containing 4-(2-Methoxypyridyl)-phenyldipyrromethene

Rakesh Kumar Gupta, ${ }^{\dagger}$ Rampal Pandey, ${ }^{\dagger}$ Gunjan Sharma, ${ }^{\xi}$ Ritika Prasad, ${ }^{\xi}$ Biplob Koch, ${ }^{\xi}$ Saripella Srikrishna, ${ }^{\#}$ Pei-Zhou Li, ${ }^{\dagger}$ Qiang Xu, ${ }^{\dagger}$ and Daya Shankar Pandey ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, \# Department of Biochemistry, and ${ }^{\xi}$ Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi - 221005 (U.P.) India
${ }^{\dagger}$ National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan

Contents

1. Synthesis of ligands, complexes (5), Scheme S1 (Complex Synthesis), Scheme 2 (Tentative Cleavage mechanism) and References.S2-S5
2. Absorption spectra and caliberation Curve for 1-4. S6-S9
3. NMR spectra of the ligand and complexes 1-5. S10-S22
4. Evolution of the CV and DPV of 2 with CT DNA S23
5. Evolution of the CV and DPV of 4 with CT DNA S24
6. HRMS spectra of 1-4 S25-S28
7. Table S4. Electrochemical data of 1-4 S29

Synthesis of 4-(pyridin-3-ylmethoxy)-phenyldipyrromethane. It was prepared following the procedure for 4-(pyridin-2-ylmethoxy)-phenyldipyrromethane except that 4-(pyridin-3-ylmethoxy)-benzaldehyde ($2.13 \mathrm{~g}, 10.0 \mathrm{mmol}$) was used in place of 4-(pyridin-2-ylmethoxy)benzaldehyde ($2.13 \mathrm{~g}, 10.0 \mathrm{mmol}$). Yield: $70 \%(2.29 \mathrm{~g})$. Anal. Calc for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$, requires: C, 77.28; H, 4.94; N, 12.87. Found C, 77.18; H, 4.87; N, 12.89\%. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 5.18$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $5.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, meso), $5.87(\mathrm{~s}, 2 \mathrm{H}$, pyrrolic), $6.14(\mathrm{~d}, 2 \mathrm{H}, J=3.0 \mathrm{~Hz}$, pyrrolic), $6.70(\mathrm{~s}, 2 \mathrm{H}$, pyrrolic), $6.92(\mathrm{~m}, 2 \mathrm{H}$, phenyl), $7.15(\mathrm{~m}, 1 \mathrm{H}$, pyridyl), $7.27(\mathrm{~d}, 2 \mathrm{H}, J=10.2 \mathrm{~Hz}$, phenyl), $7.64(\mathrm{t}, 1 \mathrm{H}$, pyridyl), $7.96(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}$, phenyl), 8.15 (bs, $2 \mathrm{H}, \mathrm{N} H$, pyrrolic), 8.53 (d, $1 \mathrm{H}, J=4.2 \mathrm{~Hz}$, pyridyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} \delta \mathrm{ppm}\right): 43.9(\mathrm{C}-5), 67.6(\mathrm{C}-10), 107.5(\mathrm{C}-2)$, 108.5 (C-3), 117.5 (C-1), 121.2 (C-4), 121.8 (C-11), 128.4 (C-7), 128.8 (C-8), 129.9 (C-6), 131.6 (C-12), 136.6 (C-13), 147.4 (C-14), 149.2 (C-15), 166.9 (C-9). IR (KBr pellets, $\mathrm{cm}^{-1} ; \% \mathrm{~T}$): 584 (58), 671 (53), 735 (29), 823 (54), 999 (56), 1033 (36, vC-O aliphatic , 1148 (54), 1219 (27, $v \mathrm{C}-$ $\mathrm{O}_{\text {aromatic }}$), 1344 (36, $v \mathrm{C}=\mathrm{C}_{\text {pyrrolic }}$), 1389 ($45, v \mathrm{C}=\mathrm{C}_{\text {pyridyl }}$), 1545 (34, $v \mathrm{C}=\mathrm{N}_{\text {pyrrolic }}$), 1610 (27, $\left.\nu \mathrm{C}=\mathrm{N}_{\text {pyridy }}\right), 1655$ (45).

Synthesis of 4-(pyridin-4-ylmethoxy)-phenyldipyrromethane. It was prepared following the procedure for 4-(pyridin-2-ylmethoxy)-phenyldipyrromethane except that 4-(pyridin-4-ylmethoxy)-benzaldehyde ($2.13 \mathrm{~g}, 10.0 \mathrm{mmol}$) was used in place of 4-(pyridin-2-ylmethoxy)benzaldehyde ($2.13 \mathrm{~g}, 10.0 \mathrm{mmol})$. Yield: $75 \%(2.46 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 5.07(\mathrm{~s}, 2 \mathrm{H}$, OCH_{2}), $5.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, meso), $5.89(\mathrm{~s}, 2 \mathrm{H}$, pyrrolic), $6.15(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}$, pyrrolic), $6.69(\mathrm{~s}$, 2 H , pyrrolic), $6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$, phenyl), $7.14(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$, phenyl), $7.34(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.4 Hz , pyridyl), 7.91 (bs, $2 \mathrm{H}, \mathrm{NH}$, pyrrolic), 8.59 (d, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}$, pyridyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 43.5$ (C-5), 68.5 (C-10), $107.0(\mathrm{C}-2), 108.8$ (C-3), 114.2 (C-8), 118.0 (C-1), 129.0 (C-7a), 131.0 (C-6), 131.9 (C-7b), 135.5 (C-12), 147.2 (C-15), 151.2 (C-11), 154.1 (C-13), 157.7 (C-14), 161.6 (C-9). IR (KBr pellets, $\mathrm{cm}^{-1} ; \% \mathrm{~T}$): 586 (56), 670 (48), 733 (20), 820 (50), 997 (54), 1032 (32, $v \mathrm{C}-\mathrm{O}_{\text {aliphatic }}$), 1143 (42), 1210 (23, $v \mathrm{C}-\mathrm{O}_{\text {aromatic }}$), 1340 (34, $v \mathrm{C}=\mathrm{C}_{\text {pyrrolic }}$), 1379 (42, $v \mathrm{C}=\mathrm{C}_{\text {pyridyl }}$), 1543 (32, $v \mathrm{C}=\mathrm{N}_{\text {pyrrolic }}$), 1603 (22, $\left.v \mathrm{C}=\mathrm{N}_{\text {pyridyl }}\right), 1649$ (45).

Synthesis of $\left[\left(\boldsymbol{\eta}^{\mathbf{6}}-\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 4}}\right) \mathbf{R u C l}(\mathbf{4} \mathbf{- O H}-\mathbf{p d p m})\right]$ (5). It was prepared following the procedure for 2 except that 4-(3-methoxypyridyl)-phenyldipyrromethane ($0.328 \mathrm{~g}, 1.0 \mathrm{mmol}$) was used in place of 4-(2-methoxypyridyl)-phenyldipyrromethane ($0.328 \mathrm{~g}, 1.0 \mathrm{mmol}$). Yield: 25\% (0.130
g). Anal. Calc for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{ORu}$: requires: C, $59.34 ; \mathrm{H}, 4.98$; N, 5.54. Found: C, 59.27; H , 5.01; N, 5.51%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.07\left(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}\right.$, p-cymene $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.11$ (s, 3 H , p-cymene CH_{3}), $2.43\left(\mathrm{~m}, 1 \mathrm{H}\right.$, p-cymene $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.28\left(\mathrm{~s}, 4 \mathrm{H}\right.$, p-cymene $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 5.70$ ($\mathrm{s}, 2 \mathrm{H}$, pyrrolic), $6.48(\mathrm{~s}, 2 \mathrm{H}$, pyrrolic), $6.73(\mathrm{~d}, 2 \mathrm{H}, J=4.2 \mathrm{~Hz}$, pyrrolic), $6.83(\mathrm{~s}, 2 \mathrm{H}$, phenyl), 7.14 (s, 2H, phenyl), 7.99 ($\mathrm{s}, 1 \mathrm{H}$, phenol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 12.2\left(p\right.$-cymene $\left.C \mathrm{H}_{3}\right), 22.9$ (p-cymene $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 29.8 (p-cymene $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 43.5 (C-5), 84.4, 84.6, 100.2101 .9 (ring $\mathrm{C}_{6} \mathrm{H}_{4}$) (p-cymene), $107.0(\mathrm{C}-2), 108.4(\mathrm{C}-3), 115.6(\mathrm{C}-1), 117.2(\mathrm{C}-4), 128.9(\mathrm{C}-6), 132.7 \mathrm{C}-7$, 142.2 (C-8), 191.0 (C-9).

$\mathbf{X}=\mathbf{N}, \mathbf{Y}=\mathbf{C}, 4$-(pyridin-3-ylmethoxy)-phenyldipyrromethane $\mathbf{X}=\mathbf{C}, \mathbf{Y}=\mathbf{N}, 4$-(pyridin-4-ylmethoxy)-phenyldipyrromethane

Scheme S1. Synthesis of complexes of $\mathbf{5}$

Scheme S2. Tentative cleavage mechanism of 4-(3-methoxypyridyl)-phenyldipyrromethene or 4-(4-methoxypyridyl)-phenyldipyrromethene.

It has been observed that the reaction between chloro bridged ruthenium complexes $\left[\left\{\left(\eta^{6}-\right.\right.\right.$ arene $\left.) \mathrm{Ru}(\mu-\mathrm{Cl}) \mathrm{Cl}_{2}\right]\left(\eta^{6}\right.$-arene $\left.=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{10} \mathrm{H}_{14}\right)$ and structurally analogous rhodium/iridium dimers $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}\right] \quad[\mathrm{M}=\mathrm{Rh}$, Ir] with 4-(pyridin-2-ylmethoxy)-phenyldipyrromethane with DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}(1: 1, \mathrm{v} / \mathrm{v})$ in presence of triethylamine at rt gave neutral heteroleptic dipyrrinato complexes $\left[\left(\eta^{6}\right.\right.$-arene $) \mathrm{RuCl}(2$-pcdpm $\left.)\right]$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{MCl}-(2-\right.$ pcdpm $)]\left(\eta^{6}\right.$-arene $\left.=\mathrm{C}_{6} \mathrm{H}_{6}, \mathbf{1} ; \mathrm{C}_{10} \mathrm{H}_{14}, \mathbf{2} ; \mathrm{M}=\mathrm{Rh}, \mathbf{3} ; \mathrm{Ir}, \mathbf{4}\right)$. Conversely, 4-(pyridin-3-ylmethoxy)phenyldipyrromethane and 4-(pyridin-4-ylmethoxy)-phenyldipyrromethane undergo etheratic (C-O-C) bond cleavage with representative precursor $\left[\left\{\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{14}\right) \mathrm{Ru}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}\right]$ leads to formation of the same complex $\left[\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{14}\right) \mathrm{RuCl}(4-\mathrm{OH}-\mathrm{pdpm})\right]$, 5. It is well known that such a ethers i.e. benzyl ethers and naphthylmethyl ethers have been acting as protecting groups in organic synthesis owing to their facile oxidative cleavage with either dichlorodicyanoquinone (DDQ) or ceric ammonium nitrate (CAN). ${ }^{1}$ Based on the evidences one may propose a reaction mechanism for cleavage of ether bond (Scheme S2). Initially, one of the benzylic hydrogen was abstracted by DDQ to form the benzylic cation. Further, nucleophilic methoxide ion $\left(\mathrm{MeO}^{-}\right)$ attacks to the electrophilic carbon centre results in the formation of unstable intermediate which undergoes hydrolytic cleavage to form phenol and ketone. In contrary, the insitu oxidised species 2-pcdpm did not undergo etheratic bond cleavage which may be associated to the steric hindrance of the lone pairs of N (pyridyl) and oxygen (C-O-C, etheratic).

References:

1. (a) Crich, D.; Xia, O. V. J. Org. Chem. 2007, 72, 3581. (b) Weissman, S. A.; Zewge, D. Tetrahedron 2005, 61, 7833. (c) Lam, T. B. T.; Kadoya, K.; Iiyama, K. Phytochemistry 2001, 57, 987. (d) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 169. (e) Liao, W.; Locke, R. D.; Matta, K. L. Chem. Commun. 2000, 369. (f) Wuts, P. G. M. In Handbook of Reagents for Organic Synthesis: Reagents for Glycoside, Nucleotide, and Peptide Synthesis; Crich, D., Ed.; Wiley: Chichester, 2005; pp 425-428. (g) Csavas, M.; Szabo, Z. B.; Borbas, A.; Liptak, A. In Handbook of Reagents for Organic Synthesis: Reagents for Glycoside, Nucleotide, and Peptide Synthesis; Crich, D., Ed.; Wiley: Chichester, 2005; pp 459-460. (h) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic Synthesis, 3rd ed.; Wiley: New York, 1999. (i) Kocienski, P. J. Protecting Groups, 3rd ed.; Thieme: Stuttgart, 2005. (i) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4033.

Figure S1. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration ($2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml}$) of $\mathbf{1}$ (b) the calibration curve in n-octanol at $\sim 487 \mathrm{~nm}$

Figure S2. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration ($2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml}$) of $\mathbf{1}$ (b) the calibration curve in water at $\sim 492 \mathrm{~nm}$

Figure S3. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration ($2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml}$) of 2 (b) the calibration curve in n-octanol at $\sim 489 \mathrm{~nm}$

Figure S4. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration ($2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml}$) of 2 (b) the calibration curve in water at $\sim 493 \mathrm{~nm}$

Figure S5. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration ($2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml}$) of $\mathbf{3}$ (b) the calibration curve in n-octanol at $\sim 507 \mathrm{~nm}$

(a)

(b)

Figure S6. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration ($2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml}$) of $\mathbf{3}$ (b) the calibration curve in water at $\sim 498 \mathrm{~nm}$

Figure S7. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration ($2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml}$) of $\mathbf{4}$ (b) the calibration curve in n-octanol at $\sim 309 \mathrm{~nm}$

Figure S8. Spectroscopic determination of lipophilicity (a) the absorption spectra upon varying concentration $(2,4,6,8,10 \mu \mathrm{~g} / \mathrm{ml})$ of $\mathbf{4}(\mathrm{b})$ the calibration curve in water at $\sim 305 \mathrm{~nm}$

Figure S9. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of 4-(pyridin-2-ylmethoxy)phenyldipyrromethane in CDCl_{3}

Figure S10. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of 4-(pyridin-3-ylmethoxy)phenyldipyrromethane in CDCl_{3}

Figure S11. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of 4-(pyridin-4-ylmethoxy)phenyldipyrromethane in CDCl_{3}

Figure S12. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of $\mathbf{1}$ in CDCl_{3}

Figure S13. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ (COSY) NMR spectra of $\mathbf{1}$ in CDCl_{3}

Figure S14. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of $\mathbf{2}$ in CDCl_{3}

Figure S15. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ (COSY) NMR spectra of $\mathbf{2}$ in CDCl_{3}

Figure S16. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of $\mathbf{3}$ in CDCl_{3}

Figure S17. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}(\mathrm{COSY}) \mathrm{NMR}$ spectra of $\mathbf{3}$ in CDCl_{3}

Figure S18. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of $\mathbf{4}$ in CDCl_{3}

Figure S19. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}(\mathrm{COSY}) \mathrm{NMR}$ spectra of $\mathbf{4}$ in CDCl_{3}

Figure S20. ${ }^{1}$ H-NMR spectra of $\mathbf{4}$ in DMSO-d6

Figure S21. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of 5 in CDCl_{3}

Figure S22. Evolution of the CV (a) and DPV (b) of $2(c, 100 \mu \mathrm{M}, \mathrm{MeCN})$ in presence of $(0.0-$ $1.0 \mu \mathrm{M} \mathrm{CT} \mathrm{DNA)} \mathrm{at} \mathrm{room} \mathrm{temperature}$

Figure S23. Evolution of the CV (a) and DPV (b) of $\mathbf{3}(c, 100 \mu \mathrm{M}, \mathrm{MeCN})$ in presence of $(0.0-$ $1.0 \mu \mathrm{M}$ CT DNA) at room temperature

Figure S24. ESI-MS spectra of 1

100
562.1433

Figure S25. ESI-MS spectra of $\mathbf{2}$

Figure S26. ESI-MS spectra of $\mathbf{3}$

Figure S27. ESI-MS spectra of 4

Table S5. Electrochemical data of 1-4 (c, $100 \mu \mathrm{M}$, MeCN)
(a) Changes in cyclic voltammetry after addition of CT DNA $(1.0 \mu \mathrm{M})$ to a solution of 1-4.

Compound	$E_{\mathrm{pa}, \mathrm{dpm} / \mathrm{dpm}^{+}(\mathrm{V}),}$	$E_{\mathrm{pa}} \mathrm{Ru}^{2+} / \mathrm{Ru}^{3+}(\mathrm{V})$ or $\mathrm{M}^{3+} / \mathrm{M}^{4+}(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir})$	$E_{\mathrm{pa}}=$ Complex + CT DNA(V)
$\mathbf{1}$	0.744	0.985	
$\mathbf{1}+$ CT DNA	Disappear	Disappear	0.891
$\mathbf{2}$	0.760	0.982	
$\mathbf{2}+$ CT DNA	Disappear	Disappear	0.897
$\mathbf{3}$	0.803	0.916	
$\mathbf{3}+$ CT DNA	0.967	Disappear	
$\mathbf{4}$	0.662	0.843	
$\mathbf{4}+$ CT DNA	0.751	0.935	

(b) Changes in differential pulse voltammetry after addition of CT DNA $(1.0 \mu \mathrm{M})$ to a solution of 1-4.

Compound	$E_{\mathrm{pa},}, \mathrm{dpm} / \mathrm{dpm}^{+}$ (V),	$E_{\mathrm{pa}, \mathrm{Ru}^{2+} / \mathrm{Ru}^{3+}(\mathrm{V}),}$	$E_{\mathrm{pa}}=$ Complex + CT DNA(V)
$\mathbf{1}$	0.717	0.903	
$\mathbf{1}+$ CT DNA	Disappear	Disappear	0.821
$\mathbf{2}$	0.749	0.936	
$\mathbf{2}+$ CT DNA	Disappear	Disappear	0.820
$\mathbf{3}$	0.672	0.857	
$\mathbf{3}+$ CT DNA	0.724	0.900	
$\mathbf{4}$	0.666	0.855	
$\mathbf{4}+$ CT DNA	0.727	0.881	

