User guide

This word file contains two MATLAB mscript files for optimization of spike and mass ratios respectively:

1. Mg_OptimizeSp.m (pg 2 to 5)
2. Mg_OptimizeW.m (pg 6 to 9)

And one function file which is used by the above mscript files:

```
Mg fsolve equations.m (pg 10)
```

Please save them as three different files in MATLAB, but store them in the same folder.

```
% Mg_OptimizeSp.m
% This file is used for the optimization of spike composition.
% The sample is treated as a reference standard since the value of fsample
does not affect the optimization
% Rx1 and Rx2 refer to the isotope ratio 25Mg/24Mg and 26Mg/24Mg of the
reference standard respectively.
% aMg24x, aMg25x and aMg26x refer to the abundances of Mg-24, Mg-25 and Mg-26
respectively in the reference standard
% aMg24y, aMg25y and aMg26y refer to the abundances of Mg-24, Mg-25 and Mg-26
respectively in the spike.
% Ry1 and Ry2 refer to isotope ratio 25Mg/24Mg and 26Mg/24Mg of the spike
respectively.
% W1 and W2 refer to the mass ratio of spike to sample in Blend 1 and Blend 2
respectively.
% M1 and M2 refer to the isotope mass ratio of 25Mg/24Mg and 26Mg/24Mg
respectively.
% RB1Mix1 and RB2Mix1 refer to the isotope ratios 25Mg/24Mg and 26Mg/24Mg of
Blend1 respectively.
% RB1Mix2 and RB2Mix2 refer to the isotope ratios 25Mg/24Mg and 26Mg/24Mg of
Blend2 respectively.
% M refers to the number of Monte Carlo Simulations used to solve for
fsample, Fmethod(blend1) and Fmethod(blend2)
% Error refers to the calculated combined standard uncertainty of fsample
% A_XX refers to the mole ratio calculated in file: % Mg_fsolve_equations.m,
XX refers to the corresponding blend and isotope ratio
clear all
```

tic
global Rx1 Rx2 aMg24x aMg25x aMg26x
global Ry1 Ry2 aMg24y aMg25y aMg26y
global W1 W2
global M1 M2
global RB1Mix1 RB2Mix1 RB1Mix2 RB2Mix2
global M Error
global A_mix1R1 A_mix1R2 A_mix2R1 A_mix2R2
fid $=$ fopen('Optimum_spike.txt', 'w'); \%save results into file.txt
\%Model ratios
\%Isotope ratio of Reference Std
$\% \mathrm{Rx} 1=25 \mathrm{Mg} / 24 \mathrm{Mg} ; \mathrm{Rx} 2=26 \mathrm{Mg} / 24 \mathrm{Mg}$
Rx1 $=0.12663$;
Rx2 = 0.13932;
$\operatorname{aMg} 24 \mathrm{x}=1 . /(1+\operatorname{Rx} 1+\mathrm{Rx} 2)$;
$\operatorname{aMg} 25 \mathrm{x}=\mathrm{Rx} 1 . * \operatorname{amg} 24 \mathrm{x}$;
aMg26x = Rx2.*aMg24x;
\%Isotopic mass
mMg24 = 23.98504187;
mMg25 = 24.985837 ;
mMg26 $=25.982593$;

```
%Isotopic mass ratios
M1 = mMg25./mMg24;
M2 = mMg26./mMg24;
W1 = 0.5;
W2 = 5;
aMg25y_start = 0.01;
aMg25y_final = 0.99;
aMg26y_start = 0.01;
aMg26y_final = 0.99;
step = 0.01;
M = 1000;
RANDN_1 = randn(M,1); %store randn numbers
RANDN_2 = randn(M,1); %store randn numbers
aMg25y = aMg25y_start;
while aMg25y <= aMg25y_final
aMg26y = aMg26y_start;
while aMg26y <= aMg26y_final %while loop
aMg24y = 1-aMg26y-aMg25y;
if aMg24y> 0.0001
Ry1 = aMg25y./aMg24y;
Ry2 = aMg26y./aMg24y;
%Blend ratio of sample and spike by setting fsample and Fmethod = 0
%mRB1Mix1 refers to the mean of RB1Mix1, to be used as input variables for
%Monte Carlo Simulations (refer to Eqn. S-19). Since C = 1, it is left out
%in the equations below.
%Blend 1
mRB1Mix1 = (aMg25x + aMg25y.*W1)./(aMg24x + aMg24y.*W1);
mRB2Mix1 = (aMg26x + aMg26y.*W1)./(aMg24x + aMg24y.*W1);
%Blend 2
mRB1Mix2 = (aMg25x + aMg25y.*W2)./(aMg24x + aMg24y.*W2);
mRB2Mix2 = (aMg26x + aMg26y.*W2)./(aMg24x + aMg24y.*W2);
%Std dev of Blend ratios are calculated here:
RSD1 = 0.00091; %internal RSD after normalization (rep of TIMS technique)
RSD2 = 0.0018;
```

```
sdRB1Mix1= RSD1/100.*mRB1Mix1;
sdRB2Mix1= RSD2/100.*mRB2Mix1;
sdRB1Mix2= RSD1/100.*mRB1Mix2;
sdRB2Mix2= RSD2/100.*mRB2Mix2;
%MonteCarlo Simulation
%fsolve settings
options = optimset('Display','off','TolFun',le-20); %Take note of Tolerance.
guess = zeros(3,1);
fsample = zeros(M,1);
    for i = 1:M,
    RB1Mix1 = sdRB1Mix1.*(RANDN_1(i)) + mRB1Mix1;
    RB2Mix1 = sdRB2Mix1.*(RANDN_1(i)) + mRB2Mix1;
    RB1Mix2 = sdRB1Mix2.*(RANDN_2(i)) + mRB1Mix2;
    RB2Mix2 = sdRB2Mix2.*(RANDN_2(i)) + mRB2Mix2;
    [x,fval]= fsolve(@Mg_fsolve_equations, guess, options);
    fsample(i) = x(2);
    end
    Error = std(fsample);
    aMg26y = aMg26y + step;
    fprintf(fid,'%g\n', Error);
    fprintf('%g\n', Error);
    else
    break %break loop if aMg24y less than 0.
end
end
    fprintf('the loop is done for , %g\n', aMg25y)
    aMg25y = aMg25y + step;
```

end

```
fclose(fid);
fid = fopen('Optimum_spike.txt');
A = fscanf(fid, '%g');
%Arrange vector A into matrix B
N = (aMg26y_final-aMg26y_start)/step;
B = NaN (N,N);
proto = flipud(tril(ones(N)));
idx = find(proto);
B(idx) = A;
fclose(fid);
X = aMg25y_start:step:(aMg25y_final-step);
Y = aMg26y_start:step:(aMg26y_final-step);
%truncate values greater than 0.001
subB = B(:,1:N) ;
subB (subB>0.0001) = 0.0001 ;
B(:,1:N) = subB;
% Create figure
figure1 = figure;
%create pseudocolor plot
pcolor(X,Y,B)
% Create xlabel
xlabel({'Abundance of ^25Mg(spike)'});
% Create ylabel
ylabel({'Abundance of ^26Mg(spike)'});
colorbar;
toc
```

```
% Mg_OptimizeW.m
% This file is used for the optimization of mass ratios denoted as W.
% The sample is treated as a reference standard since the value of fsample
does not affect the optimization
% Rx1 and Rx2 refer to the isotope ratio 25Mg/24Mg and 26Mg/24Mg of the
reference standard respectively.
% aMg24x, aMg25x and aMg26x refer to the abundances of Mg-24, Mg-25 and Mg-26
respectively in the reference standard
% aMg24y, aMg25y and aMg26y refer to the abundances of Mg-24, Mg-25 and Mg-26
respectively in the spike.
% Ry1 and Ry2 refer to isotope ratio 25Mg/24Mg and 26Mg/24Mg of the spike
respectively.
% W1 and W2 refer to the mass ratio of spike to sample in Blend 1 and Blend 2
respectively.
% M1 and M2 refer to the isotope mass ratio of 25Mg/24Mg and 26Mg/24Mg
respectively.
% RB1Mix1 and RB2Mix1 refer to the isotope ratios 25Mg/24Mg and 26Mg/24Mg of
Blend1 respectively.
% RB1Mix2 and RB2Mix2 refer to the isotope ratios 25Mg/24Mg and 26Mg/24Mg of
Blend2 respectively.
% M refers to the number of Monte Carlo Simulations used to solve for
fsample, Fmethod(blend1) and Fmethod(blend2)
% Error refers to the calculated combined standard uncertainty of fsample
% A_XX refers to the mole ratio calculated in file: % Mg_fsolve_equations.m,
XX refers to the corresponding blend and isotope ratio
clear all
```

tic
global Rx1 Rx2 aMg24x aMg25x aMg26x
global Ry1 Ry2 aMg24y aMg25y aMg26y
global W1 W2
global M1 M2
global RB1Mix1 RB2Mix1 RB1Mix2 RB2Mix2
global M Error
global A_mix1R1 A_mix1R2 A_mix2R1 A_mix2R2
fid $=$ fopen('Optimum_W.txt', 'w'); \%save results into file.txt
Rx1 = 0.12663;
Rx2 = 0.13932;
$\operatorname{aMg} 24 \mathrm{x}=1 . /(1+\mathrm{Rx} 1+\mathrm{Rx} 2)$;
aMg25x = Rx1.*aMg24x;
$\operatorname{aMg} 26 \mathrm{x}=\mathrm{Rx} 2 . * \operatorname{aMg} 24 \mathrm{x}$;
\%Isotopic mass
mMg24 = 23.98504187;
mMg25 = 24.985837;
mMg26 = 25.982593;
\%Isotopic mass ratios
M1 = mMg25./mMg24;
M2 = mMg26./mMg24;

```
%Spike composition
aMg25y = 0.1;
aMg26y = 0.8;
aMg24y = 1- aMg25y - aMg26y;
Ry1 = aMg25y./aMg24y;
Ry2 = aMg26y./aMg24y;
W1_start = 0.1;
W1_end = 10.1;
W2_start = 0.2;
W2_end = 10.2;
step1 = 0.2;
step2 = 0.2;
W1 = W1_start;
M = 1000;
RANDN_1 = randn(M,1); %store randn numbers
RANDN_2 = randn (M,1); %store randn numbers
while W1 <= W1_end;
    W2 = W2_start;
while w2 <= W2_end;
%Blend ratio of sample and spike by setting fsample and Fmethod = 0
%mRB1Mix1 refers to the mean of RB1Mix1, to be used as input variables for
%Monte Carlo Simulations (refer to Eqn. S-19). Since C = 1, it is left out
%in the equations below.
%Blend 1
mRB1Mix1 = (aMg25x + aMg25y.*W1)./(aMg24x + aMg24y.*W1);
mRB2Mix1 = (aMg26x + aMg26y.*W1)./(aMg24x + aMg24y.*W1);
%Blend 2
mRB1Mix2 = (aMg25x + aMg25y.*W2)./(aMg24x + aMg24y.*W2);
mRB2Mix2 = (aMg26x + aMg26y.*W2)./(aMg24x + aMg24y.*W2);
%Std dev of Blend ratios are calculated here:
RSD1 = 0.00091; %internal RSD after normalization (rep of TIMS technique)
RSD2 = 0.0018;
sdRB1Mix1= RSD1/100.*mRB1Mix1;
sdRB2Mix1= RSD2/100.*mRB2Mix1;
```

```
sdRB1Mix2= RSD1/100.*mRB1Mix2;
sdRB2Mix2= RSD2/100.*mRB2Mix2;
%fsolve settings
options = optimset('Display','off','TolFun',le-20); %Take note of Tolerance.
guess = zeros(3,1);
%Measured ratios of 25Mg/24Mg and 26Mg/24Mg are correlated.
fsample = zeros(M,1);
    for i = 1:M,
    RB1Mix1 = sdRB1Mix1.*RANDN_1(i) + mRB1Mix1;
    RB2Mix1 = sdRB2Mix1.*RANDN_1(i) + mRB2Mix1;
    RB1Mix2 = sdRB1Mix2.*RANDN_2(i) + mRB1Mix2;
    RB2Mix2 = sdRB2Mix2.*RANDN_2(i) + mRB2Mix2;
    [x,fval]= fsolve(@Mg_fsolve_equations, guess, options);
    fsample(i) = x(2);
    end
    Error = std(fsample);
    W2 = W2+step2;
    fprintf(fid,'%g\n', Error);
    fprintf('%g\n', Error);
end
W1 = W1+step1;
end
fclose(fid);
fid = fopen('Optimum_W.txt');
A = fscanf(fid, '%g');
%Arrange vector A into matrix B
N = sqrt(length(A));
B = vec2mat (A,N);
fclose(fid);
%truncate values
subB = B(:,1:N);
subB (subB>0.00001) = 0.00001;
```

```
B(:,1:N) = subB;
%create figure
figure1 = figure;
J = 0.1: 0.2: 10.1;
K = 0.2: 0.2: 10.2;
pcolor(J,K,B)
% Create xlabel, inner loop
xlabel({'Mass ratio of spike to sample, W_1'});
% Create ylabel, outer loop
ylabel({'Mass ratio of spike to sample, W_2'});
colorbar;
toc
```

```
function F = Mg_fsolve_equations(x); %#ok<NOSEM>
% This file contains the function used to solve the non-linear equations
involving the unknowns:
% x(1) = Fmethod(blend1)
% x(2) = fsample
% x(3) = Fmethod(blend2)
global A_mix1R1 A_mix1R2 A_mix2R1 A_mix2R2
global RB1Mix1 RB2Mix1 RB1Mix2 RB2Mix2
global Ry1 Ry2 Rx1 Rx2 Difference_mix1 Difference_mix2
global W1 W2
global M1 M2
global Sum_W Sum_Wsq Sum_A Sum_AW intercept
M1 = 1.04172580291602;
M2 = 1.08328320379121;
A_mix1R1 = (RB1Mix1.*M1.^-x(1)-Rx1.*M1.^x(2))./(Ry1 - RB1Mix1.*M1.^-x(1));
A_mix1R2 = (RB2Mix1.*M2.^-x(1)-Rx2.*M2.^x(2))./(Ry2 - RB2Mix1.*M2.^-x(1));
A_mix2R1 = (RB1Mix2.*M1.^-x(3)-Rx1.*M1.^x(2))./(Ry1 - RB1Mix2.*M1.^-x(3));
A_mix2R2 = (RB2Mix2.*M2.^-x(3)-Rx2.*M2.^x(2))./(Ry2 - RB2Mix2.*M2.^-x(3));
Sum_A = A_mix1R1 + A_mix1R2 + A_mix2R1 + A_mix2R2;
Sum_AW = A_mix1R1.*W1 + A_mix1R2.*W1 + A_m\overline{ix}2R1.*W2 + A_mix2R2.*W2;
Sum_Wsq = W1.^2 + W1.^2 + W2.^2 + W2.^2;
Sum_W = W1 + W1 + W2 + W2;
intercept = Sum_A.*Sum_Wsq - Sum_W.*Sum_AW;
Difference_mix1= A_mix1R1 - A_mix1R2;
Difference_mix2= A_mix2R1 - A_mix2R2;
F=[Difference_mix1; Difference_mix2; intercept];
```

