Supporting Information

Regioselective and Stereospecific Copper-Catalyzed Aminoboration of Styrenes with
Bis(pinacolato)diboron and O-Benzoyl- N, N-dialkylhydroxylamines

Naoki Matsuda, Koji Hirano,* Tetsuya Satoh, and Masahiro Miura*
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Contents

Instrumentation and Chemicals	S1-2
Experimental Procedures	S3-S9
Stereochemical Assignment	S10-S11
Detailed Optimization Studies	S12-S14
Complete Citations in References 2 and 10	S15
Characterization Data for Products	S16-S61

Instrumentation and Chemicals

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at $400 \mathrm{MHz}, 100 \mathrm{MHz}$, and 373 MHz respectively, for CDCl_{3} solutions. MS data were obtained by EI, CI, or FAB . GC analysis was carried out using a silicon OV-17 column (i. d. $2.6 \mathrm{~mm} \times 1.5 \mathrm{~m}$) or a CBP-1 capillary column (i. d. 0.5 $\mathrm{mm} \times 25 \mathrm{~m}$). TLC analyses were performed on commercial glass plates bearing $0.25-\mathrm{mm}$ layer of Merck Silica gel $60 \mathrm{~F}_{254}$. Silica gel (60 N , spherical neutral, Kanto Chemical) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-6AD (SHIMADZU, two in-line Shodex, $\mathrm{CHCl}_{3}, 3.5 \mathrm{~mL} / \mathrm{min}$, UV detector).

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. CuCl available from Wako Pure Chemical Co. was washed sequentially with 1 M aq. $\mathrm{HCl}, \mathrm{EtOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ three times at each steps and dried under high vacuum for 6 h before use. Dppbz was also obtained from Wako Pure Chemical Co. (S, S)-Me-Duphos and LiO-t-Bu were purchased from Aldrich. O-Benzoyl- N, N-diethylhydroxylamine (2a) was obtained by the reaction of N, N-diethylhydroxylamine with benzoyl chloride, while other O-benzoyl- N, N-dialkylhydroxylamines $\mathbf{2 b - i}$ were synthesized through the nucleophilic substitution of the corresponding amines with benzoyl
peroxide. ${ }^{1}$ Styrenes $\mathbf{1 c}$ and $\mathbf{1 k}$ were prepared according to the literature. ${ }^{2}$ All reactions were carried out under nitrogen atmosphere.

[^0]
Experimental Procedures

1. General procedure

A typical experiment procedure for copper-catalyzed aminoboration of trans- β-methylstyrene ((E)-1a) with bis(pinacolato)diboron and O-benzoyl- N, N-diethylhydroxylamine (2a) (Table 1, entry 1): $\mathrm{CuCl}(2.5 \mathrm{mg}, 0.025 \mathrm{mmol}$), 1,2-bis(diphenylphosphino)benzene (dppbz, $11 \mathrm{mg}, 0.025 \mathrm{mmol}$), and LiO- $t-\mathrm{Bu}(60 \mathrm{mg}, 0.75 \mathrm{mmol})$ were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of trans- β-methylstyrene ($(E) \mathbf{- 1 a}, 30 \mathrm{mg}, 0.25 \mathrm{mmol}$), bis(pinacolato)diboron ($95 \mathrm{mg}, 0.375 \mathrm{mmol}$), and O-benzoyl- N, N-diethylhydroxylamine ($\mathbf{2 a}, 73 \mathrm{mg}, 0.375 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ was added dropwise. The solution was stirred at ambient temperature for additional 4 h . The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate. Concentration under reduced pressure afforded the crude product. 1-Methylnaphthalene (ca. 25 mg) was then added as an internal standard, and the resulting mixture was analyzed by ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ in CDCl_{3} solution. The yield of $\left(1 S^{*}, 2 R^{*}\right)$ - N, N-diethyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (3aa) was estimated to be 81% by comparison with integrated intensity of 1-methylnaphthalene. After the above ${ }^{1} \mathrm{H}$ NMR analysis, the volatiles were evaporated, and the residue was purified by gel permeation chromatography (GPC) to give $\left(1 S^{*}, 2 R^{*}\right)$ - N, N-diethyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (3aa, $52 \mathrm{mg}, 0.17 \mathrm{mmol}$) in 66% yield.

2. Sequential aminoboration/conversion into borate salt (Scheme 3)

Synthesis of 3aa-BF $\mathbf{3}^{2} \mathbf{C u C l}(2.5 \mathrm{mg}, 0.025 \mathrm{mmol})$, 1,2-bis(diphenylphosphino)benzene (dppbz, $11 \mathrm{mg}, 0.025 \mathrm{mmol}$), and $\mathrm{LiO}-t-\mathrm{Bu}(60 \mathrm{mg}, 0.75 \mathrm{mmol})$ were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of trans- β-methylstyrene ($(E)-\mathbf{1 a}, 30 \mathrm{mg}, 0.25 \mathrm{mmol}$), bis(pinacolato)diboron (95 $\mathrm{mg}, 0.375 \mathrm{mmol}$), and O-benzoyl- N, N-diethylhydroxylamine ($\mathbf{2 a}, 73 \mathrm{mg}, 0.375 \mathrm{mmol}$) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h . The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate and concentrated in vacuo to give the crude
aminoborated product. The crude aminoborated product was dissolved in THF/ $\mathrm{H}_{2} \mathrm{O}(1.0 / 0.2 \mathrm{~mL})$ and $\mathrm{KHF}_{2}(156 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added. After the resulting mixture was stirred at ambient temperature for 2 h , the mixture was concentrated in vacuo. The dried solids were triturated with acetone and filtered to remove inorganic salts. The resulting filtrate was concentrated, and the residual solids was collected and rinsed with to $\mathrm{Et}_{2} \mathrm{O}$ give $\left(1 S^{*}, 2 R^{*}\right)$-1- N, N-diethylammonio-1-phenyl-2-(trifluoroboryl)propane (3aa-BF $\mathbf{3}_{3}, 54 \mathrm{mg}, 0.21 \mathrm{mmol}$) in 83\% yield.

3. Sequential aminoboration/oxidation to $\mathbf{1 , 2 - a m i n o a l c o h o l}$ (Scheme 4)

Synthesis of 4aa: $\mathrm{CuCl}(2.5 \mathrm{mg}, 0.025 \mathrm{mmol}), 1,2-\mathrm{bis}($ diphenylphosphino)benzene (dppbz, 11 $\mathrm{mg}, 0.025 \mathrm{mmol}$), and LiO-t-Bu ($60 \mathrm{mg}, 0.75 \mathrm{mmol}$) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of trans- β-methylstyrene $((E)-1 \mathbf{1 a}, 30 \mathrm{mg}, 0.25 \mathrm{mmol}$), bis(pinacolato)diboron ($95 \mathrm{mg}, 0.375$ mmol), and O-benzoyl- N, N-diethylhydroxylamine ($\mathbf{2 a}, 73 \mathrm{mg}, 0.375 \mathrm{mmol}$) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h . The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate and concentrated in vacuo to give the crude aminoborated product. To the crude aminoborated product in THF (1.5 mL) and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added $\mathrm{NaBO}_{3} \cdot$ $\mathrm{OH}_{2}(349 \mathrm{mg}, 3.5 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 5 h . The resulting mixture was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layer was dried over sodium sulfate. An aqueous solution of $4 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$ was added to the organic layer. The aqueous layer was washed four times with $\mathrm{Et}_{2} \mathrm{O}$, neutralized with 6 M NaOH aq. $(40 \mathrm{~mL})$, and then extracted four times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over sodium sulfate and concentrated in vacuo to give $\left(1 R^{*}, 2 R^{*}\right)$-1-(N, N-diethylamino)-1-phenylpropan-2-ol (4aa, $28 \mathrm{mg}, 0.13 \mathrm{mmol}$) in 54% yield.

4. Sequential aminoboration/amination to 1,2-diamine (Scheme 4)

Synthesis of 5aa: $\mathrm{CuCl}(2.5 \mathrm{mg}, 0.025 \mathrm{mmol}), ~ 1,2-\mathrm{bis}($ diphenylphosphino)benzene (dppbz, 11 $\mathrm{mg}, 0.025 \mathrm{mmol}$), and $\mathrm{LiO}-t-\mathrm{Bu}(60 \mathrm{mg}, 0.75 \mathrm{mmol}$) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a
solution of trans- β-methylstyrene $((E) \mathbf{- 1 a}, 30 \mathrm{mg}, 0.25 \mathrm{mmol})$, bis(pinacolato)diboron $(95 \mathrm{mg}, 0.375$ mmol), and O-benzoyl- N, N-diethylhydroxylamine ($\mathbf{2 a}, 73 \mathrm{mg}, 0.375 \mathrm{mmol}$) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h . The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, the combined organic layer was dried over sodium sulfate, and concentrated in vacuo to give the crude aminoborated product. O-Methylhydroxylamine (2.70 M THF solution, $0.56 \mathrm{~mL}, 1.50 \mathrm{mmol}$) in THF (2.0 mL) were placed in an another 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. $n-\operatorname{BuLi}(1.6 \mathrm{M}$ hexane solution, $0.91 \mathrm{~mL}, 1.50 \mathrm{mmol})$ was added to the flask at $-78^{\circ} \mathrm{C}$, and the suspension was stirred for 30 min at $-78^{\circ} \mathrm{C}$. A THF $(1.0 \mathrm{~mL})$ solution of the crude aminoborated product prepared in advance was then added dropwise to the solution, and the solution was stirred at $60^{\circ} \mathrm{C}$ for additional 24 h . The resulting mixture was allowed to cool to room temperature, and $\mathrm{Boc}_{2} \mathrm{O}(0.34 \mathrm{~mL}, 1.50 \mathrm{mmol})$ was then added via a syringe. After being stirred at room temperature for 2 h , the resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate. Concentration in vacuo and purification by silica gel column chromatography with n-hexane/ethyl acetate ($10: 1, \mathrm{v} / \mathrm{v}$) as an eluent gave tert-butyl [(1R*,2R*)-1-(N, N-diethylamino)-1-phenylpropan-2-yl]carbamate (5aa, 41 $\mathrm{mg}, 0.13 \mathrm{mmol}$) in 52% yield.

5. Enantioselective aminoboration (Scheme 5)

Synthesis of $(1 S, 2 S)-\mathbf{4 a a}: \quad \mathrm{CuCl} \quad(2.5 \quad \mathrm{mg}, \quad 0.025 \mathrm{mmol})$, (-)-1,2-bis[(2S,5S)-2,5-dimethylphospholano]benzene ((S, S)-Me-Duphos, $7.7 \mathrm{mg}, 0.025 \mathrm{mmol}$), and LiO- $t-\mathrm{Bu}(60 \mathrm{mg}, 0.75 \mathrm{mmol})$ were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of trans- β-methylstyrene ($(E) \mathbf{- 1 a}, 30 \mathrm{mg}, 0.25 \mathrm{mmol}$), bis(pinacolato)diboron ($95 \mathrm{mg}, 0.375 \mathrm{mmol}$), and O-benzoyl- N, N-diethylhydroxylamine ($\mathbf{2 a}, 73 \mathrm{mg}, 0.375 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ was added dropwise. The solution was stirred at ambient temperature for additional 4 h . The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate. Concentration under reduced pressure afforded the crude product. 1-Methylnaphthalene (ca. 25 mg) was then added as an internal standard, and the resulting mixture was analyzed by ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ in CDCl_{3} solution. The yield of (1S,2R)-N,N-diethyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (1S,
$2 R$)-3aa) was estimated to be 83% by comparison with integrated intensity of 1-methylnaphthalene. After the above ${ }^{1} \mathrm{H}$ NMR analysis, the volatiles were evaporated. The enantiomer ratio was determined after the conversion of the residue into the corresponding aminoalcohol under identical conditions in page S4.

4aa (74% two-step yield): The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-3 column, 99.8/0.2 n-hexane/2-propanol, 1.0 $\mathrm{mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=9.0 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}$, UV detection at $231.9 \mathrm{~nm}, 30^{\circ} \mathrm{C}$.)

$(1 S, 2 S)-\mathbf{4 a a}$

Peak \#	Ret. Time	Area	Area \%
1	8.277	795692	8.14
2	9.008	8976570	91.86

4ab (27% yield in the oxidation step, not optimized): The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OJ column, 99.9/0.1 n-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=21.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=15.5 \mathrm{~min}, \mathrm{UV}$ detection at $214.6 \mathrm{~nm}, 30^{\circ} \mathrm{C}$.)
rac-4ab

Peak \#	Ret. Time	Area	Area \%
1	17.869	5803167	49.93
2	24.774	5818437	50.07

$(1 S, 2 S)-\mathbf{4 a b}$

Peak \#
1
2
Ret. Time
15.457
21.69

Area
1171454
14214121

Area \%
7.61
92.39

4bb (29% yield in the oxidation step, not optimized): The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-3 column, 99.9/0.1 n-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=17.9 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=20.4 \mathrm{~min}, \mathrm{UV}$ detection at $220.0 \mathrm{~nm}, 30^{\circ} \mathrm{C}$.)

rac-4bb

Peak \#	Ret. Time	Area	Area \%
1	17.876	33804181	49.69
2	20.084	34220689	50.31

(1S,2S)-4bb

Peak \#	Ret. Time
1	17.924
2	20.354

Area
Area \%
16708513
1906053
89.76
10.24

Stereochemical Assignment

1. Assignment of relative stereochemistry

Assignment of syn-3aa (Table 1, entry 1): The aminoboration of trans-b-methylstyrene $((E)$-1a) with bis(pinacolato)diboron and O-benzoyl- N, N-diethylhydroxylamine (2a) was carried out according to the general procedure, and the crude material obtained was oxidized as follows. To the crude aminoborated product in THF $(1.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added $\mathrm{NaBO}_{3} \cdot \mathrm{OH}_{2}(349 \mathrm{mg}, 3.5$ mmol). The resulting mixture was stirred at ambient temperature for 5 h . The resulting mixture was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layer was dried over sodium sulfate. An aqueous solution of $4 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$ was added to the organic layer. The aqueous layer was washed four times with $\mathrm{Et}_{2} \mathrm{O}$, neutralized with 6 M NaOH aq. (40 mL), and then extracted four times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over sodium sulfate, and concentrated in vacuo to give ($1 R^{*}, 2 R^{*}$)-1-(N, N-diethylamino)-1-phenylpropan-2-ol (4aa, $28 \mathrm{mg}, 0.13$ mmol, syn/anti $=>99: 1$) in 54% yield as an analytically pure form. The relative stereochemistry of 4aa was confirmed by the literature. ${ }^{3}$

The stereochemistry of other aminoborated products from E-alkenes is tentatively assigned by the result of 3aa.

Assignment of anti-3ab (Scheme 2): The aminoboration of cis-b-methylstyrene ((Z)-1a) with bis(pinacolato)diboron and O-benzoyl- N, N-benzylhydroxylamine (2b) was carried out according to the general procedure to form anti-3ab in 52% yield. The isolated anti-3ab was oxidized under the same conditions as those for syn-3aa. The crude material was purified by silica gel column chromatography with n-hexane/ethyl acetate (3:1, v/v) as an eluent to give $\left(1 R^{*}, 2 R^{*}\right)$-1-(N, N-dibenzylamino)-1-phenylpropan-2-ol (anti-4ab, $52 \mathrm{mg}, 0.16 \mathrm{mmol}$, syn/anti $=$ $<1: 99)$ in 63% yield. The relative stereochemistry of anti-4ab was confirmed by the literature. ${ }^{4}$

Assignment of cis-3me (Scheme 2): $\mathbf{C u C l} \quad(2.5 \mathrm{mg}, 0.025 \mathrm{mmol})$, 1,2-bis(diphenylphosphino)benzene (dppbz, $11 \mathrm{mg}, 0.025 \mathrm{mmol}$), and $\mathrm{NaO}-t-\mathrm{Bu}(48 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15

[^1]\min at ambient temperature. Finally, a solution of indene ($\mathbf{1 m}, 29 \mathrm{mg}, 0.25 \mathrm{mmol}$), bis(pinacolato)diboron ($76 \mathrm{mg}, 0.30 \mathrm{mmol}$), 1-piperidinyl benzoate ($2 \mathrm{e}, 62 \mathrm{mg}, 0.30 \mathrm{mmol}$), and 1-methylnaphthalene (ca. 25 mg , internal standard) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h . The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, the combined organic layer was dried over sodium sulfate, and concentrated in vacuo to give the crude aminoborated product. The crude material was oxidized under the same conditions as those for syn-3aa to give $\left(1 R^{*}, 2 S^{*}\right)$-1-(piperidin-1-yl)-2,3-dihydroinden-2-ol (4me, $24 \mathrm{mg}, 0.11 \mathrm{mmol}$, cis/trans $=>99: 1$) in 45% overall yield. The relative stereochemistry of $\mathbf{4 m e}$ was confirmed by the literature. ${ }^{5}$

2. Determination of the absolute configuration

$10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(16 \mathrm{mg}, 0.015 \mathrm{mmol}),(1 S, 2 S)-4 \mathbf{a b}(50 \mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{MeOH}(1.0 \mathrm{~mL})$ were placed in a 20 mL two-necked reaction flask, and the flask was flushed with hydrogen. The suspension was stirred at ambient temperature for 23 h . The resulting mixture was filtered through a syringe filter (Whatman, Puradisc ${ }^{\mathrm{TM}} 13 \mathrm{~mm}$), and the filtrate was concentrated. To the residue 1 M $\mathrm{HCl}\left(5 \mathrm{~mL}, \mathrm{Et}_{2} \mathrm{O}\right.$ solution) was added, and the solution was stirred at ambient temperature for 2 h . The mixture was concentrated in vacuo to give ($1 S, 2 S$)-1-amino-1-phenylpropan-2-ol hydrochloride $((1 S, 2 S)-6,27 \mathrm{mg}, 0.14 \mathrm{mmol})$ in 96% yield. The absolute configuration of $(1 S, 2 S)-\mathbf{6}$ was determined by comparison of the optical rotation with the reported value. ${ }^{6}$

[^2]
Detailed Optimization Studies

Table S1. Optimization Studies for Copper-Catalyzed Aminoboration of trans- β-Methylstyrene $\left((E)\right.$-1a) with Bis(pinacolato)diboron and O-Benzoyl- N, N-diethylhydroxylamine (2a). ${ }^{[a]}$

entry	Cu source//ligand	base	solvent	yield [\%] ${ }^{[b]}$
1	$\mathrm{CuCl} / \mathrm{IMes} \bullet \mathrm{HCl}$	LiO-t-Bu	THF	27
2	$\mathrm{CuCl} / \mathrm{IPr} \cdot \mathrm{HCl}$	LiO-t-Bu	THF	0
3	$\mathrm{CuCl} / \mathrm{SIMes} \bullet \mathrm{HBF}_{4}$	LiO-t-Bu	THF	25
4	$\mathrm{CuCl} / \mathrm{SIPr} \bullet \mathrm{HCl}$	LiO-t-Bu	THF	0
5	$\mathrm{CuCl} / \mathrm{IMes}$	LiO-t-Bu	THF	43
6	$\mathrm{CuCl} / \mathrm{It}$-Bu	LiO-t-Bu	THF	0
7	CuCl/dppbz	LiO-t-Bu	THF	78
8	$\mathrm{CuCl} / \mathrm{dppm}$	LiO-t-Bu	THF	0
9	$\mathrm{CuCl} /$ dppe	LiO-t-Bu	THF	44
10	$\mathrm{CuCl} / \mathrm{dppp}$	LiO-t-Bu	THF	28
11	$\mathrm{CuCl} / \mathrm{dppb}$	LiO-t-Bu	THF	trace
12	$\mathrm{CuCl} /$ dpppen	LiO-t-Bu	THF	trace
13	$\mathrm{CuCl} /$ binap	LiO-t-Bu	THF	trace
14	$\mathrm{CuCl} / \mathrm{dppf}$	LiO-t-Bu	THF	49
15	$\mathrm{CuCl} /$ xantphos	LiO-t-Bu	THF	19
16	$\mathrm{CuCl} / 2 \mathrm{PPh}_{3}$	LiO-t-Bu	THF	0
17	$\mathrm{CuCl} / \mathrm{dppbz}$	LiO-t-Bu	1,4-dioxane	0
18	$\mathrm{CuCl} / \mathrm{dppbz}$	LiO-t-Bu	DME	53

19	$\mathrm{CuCl} / \mathrm{dppbz}$	LiO-t-Bu	CPME	35
20	CuCl/dppbz	NaO-t-Bu	THF	82
21	$\mathrm{CuCl} / \mathrm{dppbz}$	$\mathrm{NaO}-t-\mathrm{Bu}$	toluene	34
22	$\mathrm{CuCl} / \mathrm{dppbz}$	$\mathrm{KO}-t-\mathrm{Bu}$	THF	36
23	$\mathrm{CuCl} / \mathrm{dppbz}$	NaOMe	THF	49
24	$\mathrm{CuCl}_{2} / \mathrm{dppbz}$	$\mathrm{LiO}-t-\mathrm{Bu}$	THF	67
25	CuI/dppbz	LiO-t-Bu	THF	33
26	$\mathrm{CuBr} \bullet \mathrm{SMe}_{2} / \mathrm{dppbz}$	$\mathrm{LiO}-t-\mathrm{Bu}$	THF	75
27	CuOAc/dppbz	LiO- t - Bu	THF	trace
28	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{dppbz}$	LiO-t-Bu	THF	61
29	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{dppbz}$	LiO-t-Bu	THF	41
30^{c}	CuCl/dppbz	LiO-t-Bu	THF	81 (66)
$31^{\text {c }}$	$\mathrm{CuCl} / \mathrm{dppbz}$	$\mathrm{NaO}-t-\mathrm{Bu}$	THF	57
$32^{\text {c }}$	none/dppbz	LiO-t-Bu	THF	0
33^{c}	$\mathrm{CuCl} /$ none	LiO-t-Bu	THF	0
$34^{\text {c }}$	none/none	LiO- t - Bu	THF	0

[a] Reaction conditions: Cu source (0.025 mmol), ligand (0.025 mmol), (E)-1a (0.25 mmol), 2a (0.30 mmol), bis(pinacolato)diboron (0.30 mmol), base (0.50 mmol), solvent $(1.5 \mathrm{~mL}), \mathrm{N}_{2}, \mathrm{rt}, 2-4 \mathrm{~h}$. [b] Yield estimated by ${ }^{1} \mathrm{H}$ NMR. Yield of isolated product given in parenthesis. [c] With 0.375 mmol of $\mathbf{2 a}$ and bis(pinacolato)diboron and 0.75 mmol of base.

We chose trans- β-methylstyrene $((E) \mathbf{- 1 a})$ and O-benzoyl- N, N-diethylhydroxylamine (2a) as model substrates and first investigated ligand effects in the presence of a CuCl salt and a $\mathrm{LiO}-t-\mathrm{Bu}$ base in THF (Table S1, entries 1-16). Some mesityl-substituted NHCs formed a detectable amount of the desired aminoborated product 3aa (entries 1, 3, and 5), while more bulky NHCs, IPr and $\mathrm{I} t$-Bu showed no activity (entries 2, 4, and 6). Subsequent survey of phosphorous ligands (entries 7-14) revealed that bidentate biphosphines bearing a relatively small bite angle were more effective. In particular, 1,2-bis(diphenylphosphino)benzene (dppbz) was promising (entry 7). On the other hand, a monodentate ligand, PPh_{3}, resulted in no formation of $\mathbf{3 a a}$ (entry 15). Solvent screening showed that other ethereal solvents were also tolerated, but THF was still superior (entries 17-19). As an alternative base, $\mathrm{NaO}-t$ - Bu gave a comparable result (entry 20), whereas other alkoxide bases were inferior (entries 22 and 23). Evaluation of copper salts identified CuCl to be the best catalyst precursor (entries 24-29). Finally, an increase in the amount of 2a, bis(pinacolato)diboron, and LiO- t - Bu improved the yield to 86% (entry 30), while no positive effect was observed in the case of $\mathrm{NaO}-t$ - Bu (entry 31). On the basis of above studies, we determined conditions indicated of entries 20 and 30 to be optimal. Additionally notable is that in all cases syn-isomer was obtained exclusively. On the other hand, in the absence of $\mathrm{CuCl}, \mathrm{dppbz}$, or $\mathrm{CuCl} / \mathrm{dppbz}$, the aminoborated product was not detected at all (entries 32-34).

Complete Citations in References 2 and 10

(2) Pd: (a) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. (b) Burks, H. E.; Liu, S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766. Pt: (c) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018. (d) Iverson, C. N.; Smith, M. R., III Organometallics 1997, 16, 2757. (e) Marder, T. B.; Norman, N. C.; Rice, C. R. Tetrahedron Lett. 1998, 39, 155. (f) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134. (g) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210. Rh: (h) Dai, C.; Robins, E. G.; Scott, A. J.; Clegg, W.; Yufit, D. S.; Howard, J. A. K.; Marder, T. B. Chem. Commun. 1998, 1983. (i) Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard, J. A. K.; Marder, T. B. J. Organomet. Chem. 2002, 652, 77. (j) Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702. Au: (k) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1336. Ag: (1) Ramírez, J.; Corberán, R; Sanaú, M.; Peris, E.; Fernandez, E. Chem. Commun. 2005, 3056. Cu: (m) Yoshida, H.; Kawashima, S.; Takemoto, Y.; Okada, K.; Ohshita, J.; Takaki, K. Angew. Chem., Int., Ed. 2012, 51, 235. Organocatalytic process: (n) Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2011, 50, 7158.
(10) (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (b) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. (c) Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem., Int. Ed. 2011, 50, 2778. (d) Corberán, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2011, 50, 7079. (e) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7859. (f) Jung, H.-Y.; Yun, J. Org. Lett. 2012, 14, 2606. (g) Park, J. K.; Ondrusek, B. A.; McQuade, D. T. Org. Lett. 2012, 14, 4790. (h) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem.-Eur. J. 2012, 18, 4179. (i) Yuan, W.; Ma, S. Org. Biomol. Chem. 2012, 10, 7266. (j) Moure, A. L.; Arrayás, R. G.; Cárdenas, D. J.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 2012, 134, 7219. (k) Yuan, W.; Ma, S. Adv. Synth. Catal. 2012, 354, 1867.

Characterization Data for Products

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds are attached in the last part.
($1 S^{*}, 2 R^{*}$)- N, N-Diethyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amin e (3aa) oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{~s}$, $12 \mathrm{H}), 1.87-1.97(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{qd}, J=12.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.04,13.85$, 25.04, 25.25, 43.61, 66.66, 82.93, 126.86, 127.84, 129.42, 137.30; HRMS (CI) m/z ([M+H] $)$ calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{BNO}_{2}: 318.2604$, found: 318.2600 .
($1 S^{*}, \mathbf{2} R^{*}$)- N, N-Dibenzyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-ami ne (syn-3ab) m.p. 144.0-145.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H})$, $1.37(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{qd}, J=12.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (d, $J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.09,25.36,25.51,54.37,65.80,83.24$, $126.79,127.10,127.96,128.08,129.38,129.79,136.46,140.14$; HRMS $(\mathrm{CI}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{BNO}_{2}$: 442.2917, found: 442.2913.
$\left(1 S^{*}, 2 S^{*}\right)$ - N, N-Dibenzyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-ami ne (anti-3ab) m.p. 113.0-114.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.77(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{qd}, J=12.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.35(\mathrm{~m}, 11 \mathrm{H}), 7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 13.62, 24.14, $24.39,53.23,64.56, ~ 82.83,126.81,127.12,127.77,128.41,129.03,129.84,138.15$, 140.75; HRMS (CI) m/z ([M+H] $)$ calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{BNO}_{2}$: 442.2917, found: 442.2919.
($1 S^{*}, 2 R^{*}$)- N-Benzyl- N-methyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (3ac) m.p. $65.0-66.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H})$, $1.31(\mathrm{~s}, 6 \mathrm{H}), 2.01(\mathrm{qd}, J=12.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 12.91,24.99$ (two signals are overlapped.), 37.83, 58.81, 71.76, 83.14, 126.81, 127.13, 127.94 (two signals are overlapped.), 129.54, 129.63, 136.54, 140.11; HRMS (CI) m/z ([M+H] ${ }^{+}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{BNO}_{2}: 366.2604$, found: 366.2596 .
N-Butyl- N-[$\left(1 S^{*}, 2 R^{*}\right)$-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]-4-pente n-1-amine (3ad) oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.71(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, 1.21-1.62 (m, 6H), 1.29 ($\mathrm{s}, 12 \mathrm{H}$), 1.88-2.10 (m, 5H), 2.48-2.58 (m, 2H), $3.74(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.00(\mathrm{dd}, 16.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{tdd}, J=16.9,10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.28,14.44,21.07,25.18,25.20$, $28.11,31.13,32.10,50.28,50.52,67.48,82.97,114.33,126.85,127.83,129.49,137.40,139.31$; HRMS (EI) $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{BNO}_{2}: 385.3152$, found: 385.3152 .

4-[(1S*, 2R*)-1-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]morpholine (3ag) m.p. $59.0-60.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H})$, $1.92(\mathrm{qd}, J=11.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.68(\mathrm{~m}$ $4 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.56,24.93,25.36$ (two signals are overlapped.), 67.37, 73.02, 83.07, 127.32, 127.98, 129.41, 135.95; HRMS (CI) m/z ([M+H] $)$ calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{BNO}_{3}: 332.2397$, found: 332.2398.
tert-Butyl $\quad 4-\left[\left(1 S^{*}, 2 R^{*}\right)\right.$-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl] piperazine-1-carboxylate (3ah) m.p. 142.0-143.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.74$ (d, $J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.92(\mathrm{qd}, J=12.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}$, $2 \mathrm{H}), 3.34(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.73,24.92,25.41,28.56,49.22,73.00$ (two signals are overlapped.), $79.54,83.05,127.33,128.00,129.33,135.82,154.82 ;$ HRMS (EI) m/z (M ${ }^{+}$) calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{BN}_{2} \mathrm{O}_{4}: 430.3003$, found: 430.3007 .

2-[(1S*, 2R*)-1-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]-1,2,3,4-tetrahydr oisoquinoline (3ai) m.p. 55.0-56.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}$, $12 \mathrm{H}), 2.06(\mathrm{qd}, J=11.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.61,24.62,25.05,29.77,46.40,52.70$, $72.50,82.98,125.32,125.68,126.61,127.27,127.99,128.51,129.39,134.82,136.03,136.18 ;$ HRMS $(\mathrm{CI}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BNO}_{2}: 378.2604$, found: 378.2603.
($1 S^{*}, 2 R^{*}$)- N, N-Dibenzyl-1-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)p ropan-1-amine (3bb) m.p. $159.5-161.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{qd}, J=12.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17-7.28 (m, 6H), $7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.13,25.35,25.50,54.38$, $55.35,65.15,83.20,113.26,126.76,128.06,128.57,129.38,130.75,140.21,158.61$; HRMS (CI) m/z $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{BNO}_{3}$: 472.3023, found: 472.3018.

A 96:4 mixture of and

($1 S^{*}, 2 S^{*}$)- N, N-dibenzyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)

-1-[4-(trifluoromethyl)phenyl]propan-1-amine (syn- and anti-3cb) m.p. 165.0-166.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.96 \times 3 \mathrm{H}$ for $\boldsymbol{s y n} \boldsymbol{- 3 c b}$), $0.77(\mathrm{~s}, 0.04 \times 6 \mathrm{H}$ for anti-3cb), $0.85(\mathrm{~s}$, $0.04 \times 6 \mathrm{H}$ for $\boldsymbol{a n t i} \mathbf{- 3 c b}), 1.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.04 \times 3 \mathrm{H}$ for $\boldsymbol{a n t i} \mathbf{- 3 c b}), 1.36(\mathrm{~s}, 0.96 \times 6 \mathrm{H}$ for $\boldsymbol{s y n} \boldsymbol{- 3 c b}), 1.38$ (s, $0.96 \times 6 \mathrm{H}$ for $\boldsymbol{s y n} \boldsymbol{y c b}$), $2.03(\mathrm{qd}, J=12.4,7.3 \mathrm{~Hz}, 0.04 \times 1 \mathrm{H}$ for $\boldsymbol{a n t i}-\mathbf{3 c b}), 2.10(\mathrm{qd}, J=12.4,7.3 \mathrm{~Hz}$, $0.96 \times 1 \mathrm{H}$ for $\boldsymbol{s y n} \mathbf{- 3 c b}$), $2.90(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 0.96 \times 2 \mathrm{H}$ for $\boldsymbol{s y n} \mathbf{- 3 c b}), 2.93(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 0.04 \times 2 \mathrm{H}$ for anti-3cb), $3.74(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.04 \times 1 \mathrm{H}$ for $\boldsymbol{a n t i} \mathbf{- 3 c b}), 3.93(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.96 \times 1 \mathrm{H}$ for $\boldsymbol{s y n} \mathbf{- 3 c b})$, $3.95(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 0.04 \times 2 \mathrm{H}$ for $\boldsymbol{a n t i} \mathbf{- 3 c b}), 3.96(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 0.96 \times 2 \mathrm{H}$ for $\boldsymbol{s y n} \mathbf{- 3 c b}), 7.19-7.31(\mathrm{~m}$, $8 \mathrm{H}), 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for $\boldsymbol{s y n} \boldsymbol{n c b}: \delta$ 13.94, 25.37, 25.49, 54.37, 65.43, $83.41,124.56$ ($\mathrm{q}, ~ J=272.2 \mathrm{~Hz}$), 124.97 ($\mathrm{q}, J=3.8 \mathrm{~Hz}$), 127.01, 128.22, 129.31 ($\mathrm{q}, ~ J=32.6 \mathrm{~Hz}$), 129.32, 129.88, 139.64, 140.92; ${ }^{19} \mathrm{~F}$ NMR ($373 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.14$ (s); HRMS $(\mathrm{CI}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{BF}_{3} \mathrm{NO}_{2}: 510.2791$, found: 510.2799.
N, N-Dibenzyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3db) m.p. 99.0-100.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{~s}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{dd}, J=14.9,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.57(\mathrm{dd}, J=14.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=$ $10.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.31(\mathrm{~m}, 11 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.73$, $24.97,53.84,59.05,83.19,126.78,126.93,127.89,128.25,128.90,128.99,140.73,141.42$; HRMS (EI) $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BNO}_{2}: 427.2683$, found: 427.2685.
$\mathbf{N , N}$-Dibenzyl-1-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3eb) m.p. 97.5-99.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.37$ (dd, $J=15.1$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{dd}, J=15.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$
$(\mathrm{s}, 3 \mathrm{H}), 4.04(\mathrm{dd}, J=10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.75,25.00,53.74,55.39,58.32,83.16,113.15,126.75,128.23$, 128.97, 129.89, 133.60, 140.79, 158.53; HRMS (CI) m/z ([M+H $\left.]^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{BNO}_{3}$: 458.2866, found: 458.2864 .
$\boldsymbol{N , N - D i b e n z y l - 2 - (4 , 4 , 5 , 5 - t e t r a m e t h y l - 1 , 3 , 2 - d i o x a b o r o l a n - 2 - y l) - 1 - [4 - (t r i f l u o r o m e t h y l) p h e n y l] e t h ~}$ anamine (3fb) m.p. 118.0-119.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{dd}$, $J=15.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=15.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.12(\mathrm{dd}, J=10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.72$, $24.91,53.85,58.66,83.38,124.55(\mathrm{q}, ~ J=272.2 \mathrm{~Hz}), 124.85(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 127.02,128.38,128.96$, 129.06, 129.14 ($\mathrm{q}, J=31.6 \mathrm{~Hz}$), 140.21, $146.10 ;{ }^{19} \mathrm{~F}$ NMR ($373 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.15 (s); HRMS (EI) $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BF}_{3} \mathrm{NO}_{2}$: 495.2556, found: 495.2554.

N, N-Dibenzyl-1-(2-bromophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine

 (3gb) m.p. 66.0-67.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ (s, 6H), 1.02 (s, 6 H), 1.40 (dd, $J=15.1$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{dd}, J=15.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (d, $J=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.60$ (dd, $J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.28(\mathrm{~m}, 11 \mathrm{H}), 7.47(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.60,24.77,55.02,61.10,83.22$, $126.23,126.61,127.02,128.04,128.38,128.92,129.85,133.05,140.77,142.43$; HRMS (EI) m/z (M ${ }^{+}$) calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{BBrNO}_{2}$: 505.1788, found: 505.1790.\mathbf{N}, \mathbf{N}-Dibenzyl-1-(naphthalen-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3hb) oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.66(\mathrm{dd}, J=15.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=10.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.41-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.54(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.82(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $24.78,24.91,53.86,59.00,83.22,125.60,125.89,126.84$ (two signals are overlapped.), 127.50, 127.70, 127.90, 128.07, 128.27, 129.06, 132.77, 133.16, 139.85, 140.67; HRMS (EI) m/z (M ${ }^{+}$) calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{BNO}_{2}: 477.2839$, found: 477.2836.
pan-1-amine (3ia) m.p. $50.0-51.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.30(\mathrm{~s}$, $6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 1.91(\mathrm{qd}, J=12.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{ddd}, J=12.4,10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{qd}, J=$ $12.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{dd}, J=8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=10.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.86,25.11$ (two signals are overlapped.), 43.47, 58.82, 62.16, 73.46, 83.21, 127.09, 127.95, 129.00, 137.26; HRMS (CI) m/z ([M+H] $]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{BNO}_{3}: 348.2710$, found: 348.2707.
$\left(1 S^{*}, 2 S^{*}\right)$ - N, N-Dibenzyl-3-methoxy-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pr opan-1-amine (3ib) m.p. 135.0-136.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H})$, 2.57 (ddd, $J=12.3,10.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.97$ (dd, $J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.108$ ($\mathrm{s}, 3 \mathrm{H}$), $3.111(\mathrm{dd}, J=10.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.38(\mathrm{~m}, 9 \mathrm{H}), 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.40$, $25.68,54.15,58.72,61.58,73.96,83.58,126.88,127.37,128.09,128.12,129.41,129.48,136.31$, 139.88; HRMS (EI) m/z (M^{+}) calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BNO}_{3}: 471.2945$, found: 471.2938.

An 88:12 mixture of N, N-dibenzyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) octan-2-amine (3jb) and N, N-dibenzyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octan-1amine (3jb') oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for mixture: $\delta 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.29(\mathrm{~m}$, $10 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.36-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.63(\mathrm{~m}, 0.88 \times 1 \mathrm{H}$ for $\mathbf{3 j b}), 2.39(\mathrm{dd}, J=11.9,7.3 \mathrm{~Hz}$, $0.12 \times 1 \mathrm{H}$ for $\mathbf{3 j b}$ '), $2.58(\mathrm{dd}, ~ J=11.9,8.2 \mathrm{~Hz}, 0.12 \times 1 \mathrm{H}$ for $\mathbf{3 j b}$ '), $2.83-2.90(\mathrm{~m}, 0.88 \times 1 \mathrm{H}$ for $\mathbf{3 j b}), 3.38$ $(\mathrm{d}, J=13.7 \mathrm{~Hz}, 0.88 \times 2 \mathrm{H}$ for $\mathbf{3 j b}), 3.45\left(\mathrm{~d}, ~ J=13.7 \mathrm{~Hz}, 0.12 \times 2 \mathrm{H}\right.$ for $\left.\mathbf{3 j b}{ }^{\prime}\right), 3.57(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, $0.12 \times 2 \mathrm{H}$ for $\mathbf{3 j b}$ '), $3.64(\mathrm{~d}, ~ J=13.7 \mathrm{~Hz}, 0.88 \times 2 \mathrm{H}$ for $\mathbf{3 j b}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $4 \mathrm{H}), 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for 3jb: $\delta 14.35,22.89,24.96,25.14,26.94$, $29.42,32.07,33.81,53.52,54.69,83.08,126.68,128.68,129.21,140.98$; HRMS (EI) m/z (M ${ }^{+}$) calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{BNO}_{2}: 435.3309$, found: 435.3305 .
($1 S^{*}, 2 R^{*}$)- N, N-Dibenzyl-1-(3-chlorophenyl)-3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborola n-2-yl)butan-1-amine (3kb) m.p. 139.0-140.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{dd}, J=12.8,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dm}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.21,23.77$,
$25.98,26.08,27.19,54.54,62.63,83.43,126.81,127.24,127.78,128.09,129.12,129.37,129.70$, 134.00, 138.52, 139.60; HRMS (CI) m/z ([M+H] $)$ calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{BClNO}_{2}$: 504.2841, found: 504.2834.

A
90:10
N, N-dibenzyl-1-cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3lb) and $\boldsymbol{N}, \boldsymbol{N}$-dibenzyl-2-cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3lb') oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for 3lb: $\delta 0.67-0.83(\mathrm{~m}, 3 \mathrm{H}), 1.02-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H})$, $1.35-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.67(\mathrm{~m}, 5 \mathrm{H}), 2.28-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.71(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) for 3lb: $\delta 24.99,25.02,26.85,31.11,31.14,42.02,54.17,59.99,83.06$, 126.66, 128.10, 129.36, 140.94; $\mathrm{HRMS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{BNO}_{2}$: 434.3231, found: 434.3232.
($1 S^{*}, 2 R^{*}$)-\{2-[1-(N, N-Diethylammonio)-1-phenyl]propyl\}trifluoroborate (3aa-BF3) m.p. $132.0-133.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48$ $(\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.15-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.94(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{qd}, J=12.8,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{qd}, J=12.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.58(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.94,11.43,13.13,13.15,45.69,45.72,72.22,129.28,130.16,130.90,130.92$; ${ }^{19} \mathrm{~F}$ NMR (373 MHz, CDCl_{3}) $\delta-143.14(\mathrm{~s}) ; \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}-\mathrm{F}]^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BF}_{2} \mathrm{~N}$: 240.1735 , found: 240.1730 .
$\left(1 S^{*}, 2 R^{*}\right)-\left\{2-\left[1-\left(N\right.\right.\right.$-Benzyl- N-methylammonio)-1-phenyl]propyl\}trifluoroborate $\quad\left(3 a c-\mathbf{B F}_{3}\right)$ (diastereomixture associated with the chirality on nitrogen) m.p. 141.0-142.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}), 0.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}), 1.48(\mathrm{~m}, 0.5 \times 1 \mathrm{H}), 1.68(\mathrm{~m}$, $0.5 \times 1 \mathrm{H}), 2.43(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 2.56(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 3.09(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 3.66(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $0.5 \times 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H})$, $4.80(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 7.26-7.52(\mathrm{~m}, 10 \mathrm{H}), 8.52(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.11$, $13.13,13.35,13.37,31.16,34.22,39.46,54.50,61.00,78.96,129.03,129.13,129.19,129.27,129.42$, $129.62,129.84,130.10,130.42,130.45$ (three signals are overlapped.), 130.57, 130.63 (three signals are overlapped.); ${ }^{19} \mathrm{~F}$ NMR (373 MHz, CDCl_{3}) $\delta-143.53(\mathrm{~s}),-142.66(\mathrm{~s}) ; \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}-\mathrm{F}]^{+}\right)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BF}_{2} \mathrm{~N}$: 288.1735 , found: 288.1737 .
($\mathbf{1} \boldsymbol{S}^{\boldsymbol{*}}, \mathbf{2} \boldsymbol{R}^{\boldsymbol{*}}$)-[2-(1-Phenyl-1-piperidiniumyl)propyl]trifluoroborate (3ae-BF $\mathbf{3}_{3}$) m.p. 148.0-149.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.71(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.53(\mathrm{~m}, 1 \mathrm{H})$, 1.76-1.94 (m, 5H), 2.18-2.29 (m, 1H), 2.58-2.67 (m, 1H), $3.47(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.67(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $13.14,13.16,22.18,24.13,24.76,48.35,54.02,78.03,129.21,130.11,131.21,131.23 ;{ }^{19} \mathrm{~F}$ NMR (373 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-144.30(\mathrm{~s})$; HRMS (FAB) m/z ([M-F] ${ }^{+}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BF}_{2} \mathrm{~N}$: 252.1735, found: 252.1739 .
$\left(\mathbf{1} \boldsymbol{S}^{\boldsymbol{*}}, \mathbf{2} \boldsymbol{R}^{\boldsymbol{*}}\right.$)-[2-(1-Azepaniumyl-1-phenyl)propyl]trifluoroborate (3af-BF $\mathbf{3}_{\mathbf{3}}$) m.p. 136.0-137.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.94(\mathrm{~m}, 6 \mathrm{H}), 2.46(\mathrm{~m}$, $1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.72(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.89(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 13.02,13.04,24.91,25.19,25.51,25.60,49.41,56.89,79.10,129.16$, 130.06, 131.29, 131.31; ${ }^{19} \mathrm{~F}$ NMR ($373 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-143.69 (s); HRMS (FAB) m/z ([M-F] ${ }^{+}$) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{~N}: 266.1892$, found: 266.1890.
$\left(1 S^{*}, 2 S^{*}\right)$-\{2-[1-(N, N-Diethylammonio)-1-phenyl-3-methoxy]propyl]trifluoroborate (3ia-BF \mathbf{B}_{3}) m.p. 109.0-110.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.70(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.27(\mathrm{~m}, 1 \mathrm{H})$, $3.55(\mathrm{dd}, J=10.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{bs}, 1 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.44$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.65,11.18,45.71,45.92,58.83,70.43,72.63,72.65,128.99$, 129.90, 130.92 (two signals are overlapped.); ${ }^{19} \mathrm{~F}$ NMR ($373 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-140.24$ (s); HRMS (FAB) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}-\mathrm{F}]^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{NO}: 270.1841$, found: 270.1847.
($\mathbf{1} \boldsymbol{R}^{*}, \mathbf{2} \boldsymbol{R}^{*}$)-1-($\boldsymbol{N}, \boldsymbol{N}$-Diethylamino)-1-phenylpropan-2-ol (4aa) oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.10(\mathrm{qd}, J=12.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{qd}, J=12.8$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{qd}, J=10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{bs}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.30,19.81,43.50,64.03,70.90,127.76$, 128.28, 129.75, 135.61; HRMS (CI) m/z ([M+H] $)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}$: 208.1701, found: 208.1701.
($1 \boldsymbol{R}^{*}, \mathbf{2} R^{*}$)-1-(N, N-Dibenzylamino)-1-phenylpropan-2-ol (syn-4ab) oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=$
$13.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{qd}, J=10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{bs}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}$, 2H), 7.30-7.45 (m, 11H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.84,53.84,64.40,69.46,127.51,128.11$, 128.52, 128.82, 129.24, 130.11, 134.33, 138.95; HRMS (CI) m/z ([M+H $]^{+}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}$: 332.2014 , found: 332.2012 .
($\mathbf{1} \boldsymbol{R}^{*}, \mathbf{2} \boldsymbol{S}^{*}$)-1-($\boldsymbol{N}, \boldsymbol{N}$-Dibenzylamino)-1-phenylpropan-2-ol (anti-4ab) m.p. $115.0-116.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ $(\mathrm{d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{qd}, J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.46(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.91,54.76,67.10,69.53,127.22,128.02,128.58,128.64,128.98,130.17,135.33,139.77$; HRMS (CI) m/z ([M+H] $)$ calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}: 332.2014$, found: 332.2015.
($\mathbf{1} \boldsymbol{R}^{*}, \mathbf{2} \boldsymbol{R}^{*}$)-1-($\boldsymbol{N}, \boldsymbol{N}$-Dibenzylamino)-1-(4-methoxyphenyl)propan-2-ol (4bb) oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.93(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{qd}, J=10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{bs}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.87$, 53.83, 55.44, 64.56, 68.81, 113.87, 126.31, 127.48, 128.80, 129.24, 131.14, 139.03, 159.38; HRMS (CI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{2}: 362.2120$, found: 362.2116 .
($\mathbf{1} \mathbf{R}^{*}, \mathbf{2} \mathbf{S}^{*}$)-1-(Piperidin-1-yl)-2,3-dihydroinden-2-ol (4me) m.p. 102.0-103.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.67(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=16.5$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=16.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{ddd}, J=8.2,7.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01(\mathrm{bs}, 1 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.29,26.82$, 41.99, 52.81, 69.16, 70.97, 125.68, 126.57, 126.59, 128.60, 139.16, 141.90; HRMS (EI) m/z (M ${ }^{+}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}: 217.1467$, found: 217.1470.
tert-Butyl $\left[\left(1 R^{*}, 2 R^{*}\right)\right.$-1-(N, N-diethylamino)-1-phenylpropan-2-yl]carbamate (5aa) oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.11(\mathrm{qd}, J=13.3$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{qd}, J=13.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.03(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{bs}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.60,18.97,28.72$, 43.04, 46.61, 68.31, 79.04, 127.62, 128.23, 129.51, 136.52, 156.64; HRMS (CI) m/z ([M+H] $]^{+}$) calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}: 307.2386$, found: 307.2384 .
[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3aa]

$\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR Spectra of syn-3ab]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of anti-3ab]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ac]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ad $]$

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ag]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ah]

$\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ai $]$

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3} \mathbf{b b}$]

[${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of a $96: 4$ mixture of syn- and anti-3cb]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 d b}$]

$\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3eb]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of $\left.\mathbf{3 f b}\right]$

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 g b}$]

$\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\left.\mathbf{3} \mathbf{h b}\right]$

$\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ia]

$\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ib]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of an 88:12 mixture of $\mathbf{3 j b}$ and $\left.\mathbf{3 j b}{ }^{\prime}\right]$

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 k b}$]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of a 90:10 mixture of 31b and 31b']

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of $\left.\mathbf{3 a a}-\mathbf{B F}_{3}\right]$

No.	ppm	Hz	Height
1	130.92	13159.0	2.17
2	130.90	13157.0	2.88
3	130.16	13083.2	18.81
4	129.28	12995.1	17.19
5	72.22	7259.6	11.39
6	45.72	4595.1	11.94
7	45.69	4592.2	14.63
8	13.15	1321.9	5.19
9	13.13	1320.0	4.58
10	11.43	1149.4	10.60
11	10.94	1099.5	13.16

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of $\left.\mathbf{3 a c}-\mathbf{B F}_{3}\right]$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of $\left.\mathbf{3 a e}-\mathbf{B F}_{3}\right]$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of $\left.\mathbf{3 a f}-\mathbf{B F}_{3}\right]$

No.	ppm	Hz	Height
1	131.31	13198.3	6.94
2	131.29	13196.3	7.98
3	130.06	13072.7	33.89
4	129.16	12982.6	48.13
5	79.10	7950.7	28.71
6	56.89	5718.4	31.13
7	49.41	4966.9	29.90
8	25.60	2573.7	32.25
9	25.51	2564.1	36.48
10	25.19	2531.5	30.99
11	24.91	2503.7	27.77
12	13.04	1310.4	12.28
13	13.02	1308.5	11.94

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of $\left.\mathbf{3 i a}-\mathbf{B F}_{3}\right]$

No.	ppm	Hz	Height
1	130.92	13159.9	8.21
2	129.90	13057.4	8.27
3	128.99	12965.3	35.20
4	72.65	7302.7	4.42
5	72.63	7300.8	4.82
6	70.43	7079.4	10.05
7	58.83	5913.0	15.79
8	45.92	4616.1	8.26
9	45.71	4594.1	11.05
10	11.18	1123.5	5.23
11	10.65	1070.8	5.63

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4aa]

$\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\left.\boldsymbol{s y n} \mathbf{- 4 a b}\right]$

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of anti-4ab]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 b b}$]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4 me]

No.	ppm	Hz	Height
1	141.90	14263.1	31.54
2	139.16	13988.0	24.87
3	128.60	12926.1	57.51
4	126.59	12723.8	28.63
5	126.57	12721.9	68.15
6	125.68	12632.8	67.30
7	70.97	7133.1	38.56
8	69.16	6951.9	63.26
9	52.81	5308.2	5.57
10	41.99	4220.3	59.96
11	26.82	2695.4	44.54
12	24.29	2441.4	58.04

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 5aa]

[^0]: ${ }^{1}$ (a) Berman, A. M.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 5680. (b) Berman, A. M.; Johnson, J. Org. Chem. 2006, 71, 219.
 ${ }^{2}$ Kabalka, G. W.; Tejedor, D.; Li, N.-S.; Malladi, R. R.; Trotman, S. Tetrahedron 1998, 54, 15525.

[^1]: ${ }^{3}$ Xie, J.-H.; Liu, S.; Kong, W.-L.; Bai, W.-J.; Wang, X.-C.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 4222.
 ${ }^{4}$ Schwerdtfeger, J.; Kolczewski, S.; Weber, B.; Fröhlich, R.; Hoppe, D. Snthesis 1999, 9, 1573.

[^2]: ${ }^{5}$ Soh, J. Y.-T.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 6904.
 ${ }^{6}$ Yuste, F.; Ortiz, B.; Carrasco, A.; Peralta, M.; Quintero, L.; Sánchez-Obregón, R.; Walls, F.; Ruano, J. L. G. Tetrahedron: Asymmetry 2000, 11, 3079.

