Supporting Information

Regioselective and Stereospecific Copper-Catalyzed Aminoboration of Styrenes with Bis(pinacolato)diboron and *O*-Benzoyl-*N*,*N*-dialkylhydroxylamines

Naoki Matsuda, Koji Hirano,* Tetsuya Satoh, and Masahiro Miura*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Contents

Instrumentation and Chemicals	S1-2
Experimental Procedures	S3–S9
Stereochemical Assignment	S10–S11
Detailed Optimization Studies	S12–S14
Complete Citations in References 2 and 10	S15
Characterization Data for Products	S16-S61

Instrumentation and Chemicals

¹H, ¹³C, and ¹⁹F NMR spectra were recorded at 400 MHz, 100 MHz, and 373 MHz respectively, for CDCl₃ solutions. MS data were obtained by EI, CI, or FAB. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel $60F_{254}$. Silica gel (60 N, spherical neutral, Kanto Chemical) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-6AD (SHIMADZU, two in-line Shodex, CHCl₃, 3.5 mL/min, UV detector).

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. CuCl available from Wako Pure Chemical Co. was washed sequentially with 1M aq. HCl, EtOH, and Et₂O three times at each steps and dried under high vacuum for 6 h before use. Dppbz was also obtained from Wako Pure Chemical Co. (*S*,*S*)-Me-Duphos and LiO-*t*-Bu were purchased from Aldrich. *O*-Benzoyl-*N*,*N*-diethylhydroxylamine (**2a**) was obtained by the reaction of *N*,*N*-diethylhydroxylamine with benzoyl chloride, while other *O*-benzoyl-*N*,*N*-dialkylhydroxylamines **2b–i** were synthesized through the nucleophilic substitution of the corresponding amines with benzoyl

Styrenes 1c and 1k were prepared according to the literature.² All reactions were carried peroxide.1 out under nitrogen atmosphere.

⁽a) Berman, A. M.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 5680. (b) Berman, A. M.; Johnson, J. 1 *Org. Chem.* **2006**, *71*, 219. ² Kabalka, G. W.; Tejedor, D.; Li, N.-S.; Malladi, R. R.; Trotman, S. *Tetrahedron* **1998**, *54*, 15525.

Experimental Procedures

1. General procedure

A typical experiment procedure for copper-catalyzed aminoboration of *trans-β*-methylstyrene ((E)-1a) with bis(pinacolato) diboron and O-benzoyl-N, N-diethylhydroxylamine (2a) (Table 1, entry 1): CuCl (2.5 mg, 0.025 mmol), 1,2-bis(diphenylphosphino)benzene (dppbz, 11 mg, 0.025 mmol), and LiO-t-Bu (60 mg, 0.75 mmol) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of trans- β -methylstyrene ((E)-1a, 30 mg, 0.25 mmol), bis(pinacolato)diboron (95 mg, 0.375 mmol), and O-benzoyl-N,N-diethylhydroxylamine (2a, 73 mg, 0.375 mmol) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h. The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate. Concentration under reduced pressure afforded the crude product. 1-Methylnaphthalene (ca. 25 mg) was then added as an internal standard, and the resulting mixture was $^{1}\mathrm{H}$ **NMR** CDCl₃ solution. The of analyzed by in vield $(1S^*, 2R^*)$ -N,N-diethyl-1-phenyl-2-(4, 4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (3aa) was estimated to be 81% by comparison with integrated intensity of 1-methylnaphthalene. After the above ¹H NMR analysis, the volatiles were evaporated, and the residue was purified by gel permeation chromatography (GPC) to give $(1S^*, 2R^*)$ -N,N-diethyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (**3aa**, 52 mg, 0.17 mmol) in 66% yield.

2. Sequential aminoboration/conversion into borate salt (Scheme 3)

Synthesis of **3aa-BF₃**: CuCl (2.5 mg, 0.025 mmol), 1,2-bis(diphenylphosphino)benzene (dppbz, 11 mg, 0.025 mmol), and LiO-*t*-Bu (60 mg, 0.75 mmol) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of *trans-* β -methylstyrene ((*E*)-**1a**, 30 mg, 0.25 mmol), bis(pinacolato)diboron (95 mg, 0.375 mmol), and *O*-benzoyl-*N*,*N*-diethylhydroxylamine (**2a**, 73 mg, 0.375 mmol) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h. The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate and concentrated in vacuo to give the crude

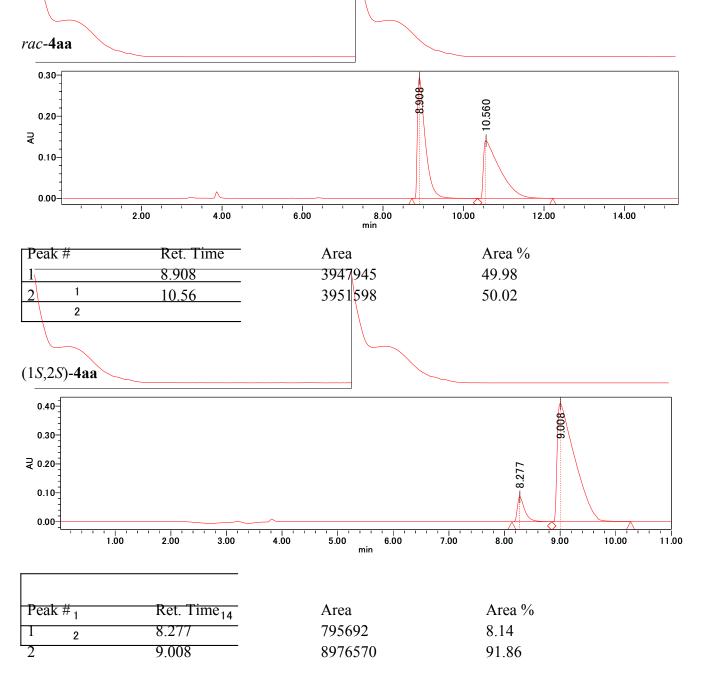
aminoborated product. The crude aminoborated product was dissolved in THF/H₂O (1.0/0.2 mL) and KHF₂ (156 mg, 2.0 mmol) was added. After the resulting mixture was stirred at ambient temperature for 2 h, the mixture was concentrated in vacuo. The dried solids were triturated with acetone and filtered to remove inorganic salts. The resulting filtrate was concentrated, and the residual solids was collected and rinsed with Et_2O to give (1*S**,2*R**)-1-*N*,*N*-diethylammonio-1-phenyl-2-(trifluoroboryl)propane (**3aa-BF₃**, 54 mg, 0.21 mmol) in 83% yield.

3. Sequential aminoboration/oxidation to 1,2-aminoalcohol (Scheme 4)

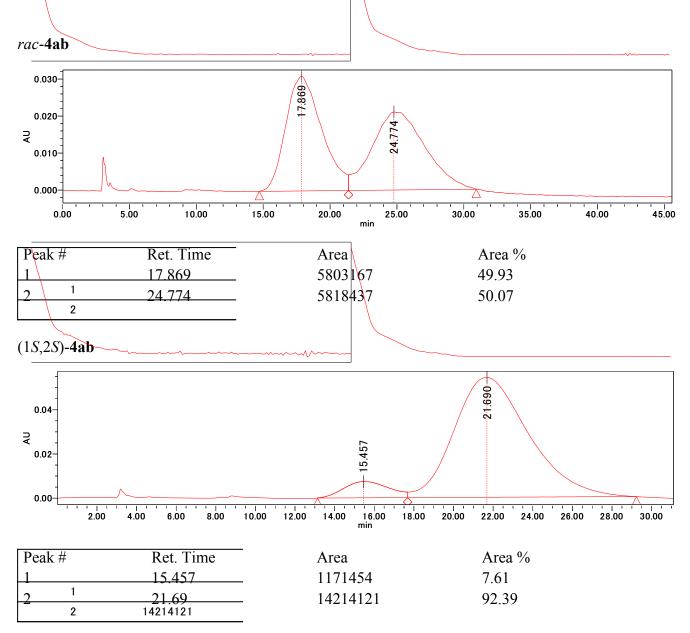
Synthesis of **4aa**: CuCl (2.5 mg, 0.025 mmol), 1,2-bis(diphenylphosphino)benzene (dppbz, 11 mg, 0.025 mmol), and LiO-t-Bu (60 mg, 0.75 mmol) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of *trans-\beta*-methylstyrene ((*E*)-1a, 30 mg, 0.25 mmol), bis(pinacolato)diboron (95 mg, 0.375 mmol), and O-benzoyl-N,N-diethylhydroxylamine (2a, 73 mg, 0.375 mmol) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h. The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate and concentrated in vacuo to give the crude aminoborated product. To the crude aminoborated product in THF (1.5 mL) and H₂O (1.5 mL) was added NaBO₃. OH₂ (349 mg, 3.5 mmol). The resulting mixture was stirred at ambient temperature for 5 h. The resulting mixture was quenched with sat. $Na_2S_2O_3$ aq. The mixture was extracted with Et_2O_3 , and the combined organic layer was dried over sodium sulfate. An aqueous solution of 4 M HCl (60 mL) was added to the organic layer. The aqueous layer was washed four times with Et₂O, neutralized with 6 M NaOH aq. (40 mL), and then extracted four times with Et₂O. The combined organic layer was dried sodium sulfate in over and concentrated give vacuo to $(1R^*, 2R^*)$ -1-(N, N-diethylamino)-1-phenylpropan-2-ol (4aa, 28 mg, 0.13 mmol) in 54% yield.

4. Sequential aminoboration/amination to 1,2-diamine (Scheme 4)

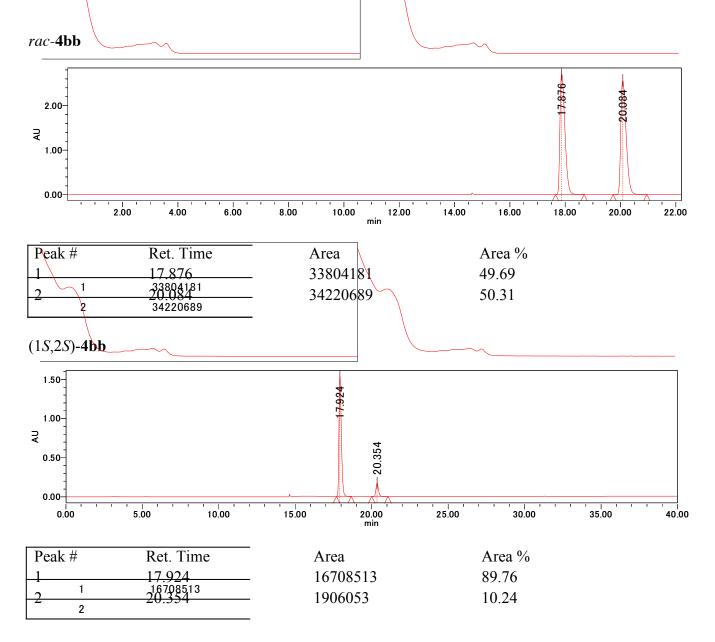
Synthesis of **5aa**: CuCl (2.5 mg, 0.025 mmol), 1,2-bis(diphenylphosphino)benzene (dppbz, 11 mg, 0.025 mmol), and LiO-*t*-Bu (60 mg, 0.75 mmol) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a


solution of *trans-\beta*-methylstyrene ((*E*)-1a, 30 mg, 0.25 mmol), bis(pinacolato)diboron (95 mg, 0.375 mmol), and O-benzoyl-N,N-diethylhydroxylamine (2a, 73 mg, 0.375 mmol) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h. The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, the combined organic layer was dried over sodium sulfate, and concentrated in vacuo to give the crude aminoborated product. O-Methylhydroxylamine (2.70 M THF solution, 0.56 mL, 1.50 mmol) in THF (2.0 mL) were placed in an another 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. *n*-BuLi (1.6 M hexane solution, 0.91 mL, 1.50 mmol) was added to the flask at -78 °C, and the suspension was stirred for 30 min at -78 °C. A THF (1.0 mL) solution of the crude aminoborated product prepared in advance was then added dropwise to the solution, and the solution was stirred at 60 °C for additional 24 h. The resulting mixture was allowed to cool to room temperature, and Boc₂O (0.34 mL, 1.50 mmol) was then added via a syringe. After being stirred at room temperature for 2 h, the resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate. Concentration in vacuo and purification by silica gel column chromatography with *n*-hexane/ethyl acetate (10:1, v/v) as an eluent gave *tert*-butyl $[(1R^*, 2R^*)-1-(N, N-\text{diethylamino})-1-\text{phenylpropan-2-yl}]$ carbamate (5aa, 41 mg, 0.13 mmol) in 52% yield.

5. Enantioselective aminoboration (Scheme 5)


Synthesis of (1*S*,2*S*)-4aa: CuCl (2.5)0.025 mmol), mg, (-)-1,2-bis[(2S,5S)-2,5-dimethylphospholano]benzene ((S,S)-Me-Duphos, 7.7 mg, 0.025 mmol), and LiO-t-Bu (60 mg, 0.75 mmol) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15 min at ambient temperature. Finally, a solution of trans- β -methylstyrene ((E)-1a, 30 mg, 0.25 mmol), bis(pinacolato)diboron (95 mg, 0.375 mmol), and O-benzoyl-N,N-diethylhydroxylamine (2a, 73 mg, 0.375 mmol) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h. The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate. Concentration under reduced pressure afforded the crude product. 1-Methylnaphthalene (ca. 25 mg) was then added as an internal standard, and the resulting mixture was ^{1}H analyzed bv **NMR** in CDCl₃ solution. The yield of (1S,2R)-N,N-diethyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (1S,

2R)-**3aa**) was estimated to be 83% by comparison with integrated intensity of 1-methylnaphthalene. After the above ¹H NMR analysis, the volatiles were evaporated. The enantiomer ratio was determined after the conversion of the residue into the corresponding aminoalcohol under identical conditions in page S4.


4aa (74% two-step yield): The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-3 column, 99.8/0.2 *n*-hexane/2-propanol, 1.0 mL/min, major isomer: $t_R = 9.0$ min, minor isomer: $t_R = 8.3$ min, UV detection at 231.9 nm, 30 °C.)

4ab (27% yield in the oxidation step, not optimized): The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OJ column, 99.9/0.1 *n*-hexane/2-propanol, 1.0 mL/min, major isomer: $t_R = 21.7$ min, minor isomer: $t_R = 15.5$ min, UV detection at 214.6 nm, 30 °C.)

4bb (29% yield in the oxidation step, not optimized): The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-3 column, 99.9/0.1 *n*-hexane/2-propanol, 1.0 mL/min, major isomer: $t_R = 17.9$ min, minor isomer: $t_R = 20.4$ min, UV detection at 220.0 nm, 30 °C.)

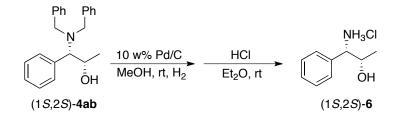
Stereochemical Assignment

1. Assignment of relative stereochemistry

Assignment of *syn-***3aa** (Table 1, entry 1): The aminoboration of *trans-b*-methylstyrene ((*E*)-**1a**) with bis(pinacolato)diboron and *O*-benzoyl-*N*,*N*-diethylhydroxylamine (**2a**) was carried out according to the general procedure, and the crude material obtained was oxidized as follows. To the crude aminoborated product in THF (1.5 mL) and H₂O (1.5 mL) was added NaBO₃·OH₂ (349 mg, 3.5 mmol). The resulting mixture was stirred at ambient temperature for 5 h. The resulting mixture was quenched with sat. Na₂S₂O₃ aq. The mixture was extracted with Et₂O, the combined organic layer was dried over sodium sulfate. An aqueous solution of 4 M HCl (60 mL) was added to the organic layer. The aqueous layer was washed four times with Et₂O, neutralized with 6 M NaOH aq. (40 mL), and then extracted four times with Et₂O. The combined organic layer was dried over sodium sulfate, and concentrated in vacuo to give (1*R**,2*R**)-1-(*N*,*N*-diethylamino)-1-phenylpropan-2-ol (**4aa**, 28 mg, 0.13 mmol, *syn/anti* = >99:1) in 54% yield as an analytically pure form. The relative stereochemistry of **4aa** was confirmed by the literature.³

The stereochemistry of other aminoborated products from E-alkenes is tentatively assigned by the result of **3aa**.

Assignment of *anti*-**3ab** (Scheme 2): The aminoboration of *cis-b*-methylstyrene ((Z)-**1a**) with bis(pinacolato)diboron and O-benzoyl-N,N-benzylhydroxylamine (2b) was carried out according to the general procedure to form anti-3ab in 52% yield. The isolated anti-3ab was oxidized under the same conditions as those for syn-3aa. The crude material was purified by silica gel column *n*-hexane/ethyl chromatography with acetate (3:1,v/v) as an eluent to give $(1R^*, 2R^*)$ -1-(N, N-dibenzylamino)-1-phenylpropan-2-ol (anti-4ab, 52 mg, 0.16 mmol, syn/anti = <1:99) in 63% yield. The relative stereochemistry of *anti*-**4ab** was confirmed by the literature.⁴


Assignment of *cis*-**3me** (Scheme 2): CuCl (2.5 mg, 0.025 mmol), 1,2-bis(diphenylphosphino)benzene (dppbz, 11 mg, 0.025 mmol), and NaO-*t*-Bu (48 mg, 0.50 mmol) were placed in a 20 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. THF (0.50 mL) was then added to the flask, and the suspension was stirred for 15

³ Xie, J.-H.; Liu, S.; Kong, W.-L.; Bai, W.-J.; Wang, X.-C.; Wang, L.-X.; Zhou, Q.-L. *J. Am. Chem. Soc.* **2009**, *131*, 4222.

⁴ Schwerdtfeger, J.; Kolczewski, S.; Weber, B.; Fröhlich, R.; Hoppe, D. Snthesis 1999, 9, 1573.

min at ambient temperature. Finally, a solution of indene (**1m**, 29 mg, 0.25 mmol), bis(pinacolato)diboron (76 mg, 0.30 mmol), 1-piperidinyl benzoate (**2e**, 62 mg, 0.30 mmol), and 1-methylnaphthalene (ca. 25 mg, internal standard) in THF (1.0 mL) was added dropwise. The solution was stirred at ambient temperature for additional 4 h. The resulting mixture was quenched with water. The mixture was extracted with ethyl acetate, the combined organic layer was dried over sodium sulfate, and concentrated in vacuo to give the crude aminoborated product. The crude material was oxidized under the same conditions as those for *syn*-**3aa** to give (1*R**,2*S**)-1-(piperidin-1-yl)-2,3-dihydroinden-2-ol (**4me**, 24 mg, 0.11 mmol, *cis/trans* = >99:1) in 45% overall yield. The relative stereochemistry of **4me** was confirmed by the literature.⁵

2. Determination of the absolute configuration

10 wt% Pd/C (16 mg, 0.015 mmol), (1*S*,2*S*)-**4ab** (50 mg, 0.15 mmol), and MeOH (1.0 mL) were placed in a 20 mL two-necked reaction flask, and the flask was flushed with hydrogen. The suspension was stirred at ambient temperature for 23 h. The resulting mixture was filtered through a syringe filter (Whatman, PuradiscTM 13mm), and the filtrate was concentrated. To the residue 1 M HCl (5 mL, Et₂O solution) was added, and the solution was stirred at ambient temperature for 2 h. The mixture was concentrated in vacuo to give (1*S*,2*S*)-1-amino-1-phenylpropan-2-ol hydrochloride ((1*S*,2*S*)-**6**, 27 mg, 0.14 mmol) in 96% yield. The absolute configuration of (1*S*,2*S*)-**6** was determined by comparison of the optical rotation with the reported value.⁶

⁵ Soh, J. Y.-T.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 6904.

⁶ Yuste, F.; Ortiz, B.; Carrasco, A.; Peralta, M.; Quintero, L.; Sánchez-Obregón, R.; Walls, F.; Ruano, J. L. G. *Tetrahedron: Asymmetry* **2000**, *11*, 3079.

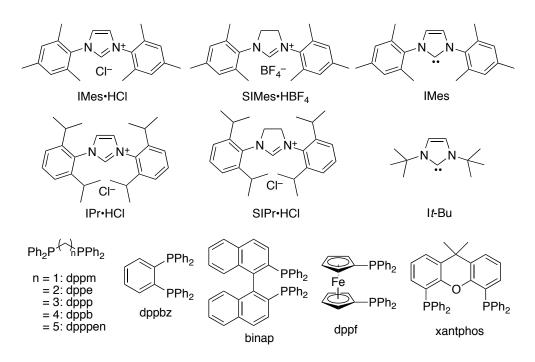

Detailed Optimization Studies

Table S1. Optimization Studies for Copper-Catalyzed Aminoboration of $trans-\beta$ -Methylstyre	ne						
((E)-1a) with Bis(pinacolato)diboron and O-Benzoyl-N,N-diethylhydroxylamine (2a). ^[a]							

	Et Ph + N-OBz + pinB-Bpin Et (<i>E</i>)- 1a 2a	10 mol % Cu so 10 mol % ligan 2.0 equiv ba solvent, rt, 2-	d se Ph	Bpin
entry	Cu source/ligand	base	solvent	yield [%] ^[b]
1	CuCl/IMes•HCl	LiO-t-Bu	THF	27
2	CuCl/IPr•HCl	LiO-t-Bu	THF	0
3	CuCl/SIMes•HBF ₄	LiO-t-Bu	THF	25
4	CuCl/SIPr•HCl	LiO-t-Bu	THF	0
5	CuCl/IMes	LiO-t-Bu	THF	43
6	CuCl/It-Bu	LiO-t-Bu	THF	0
7	CuCl/dppbz	LiO-t-Bu	THF	78
8	CuCl/dppm	LiO-t-Bu	THF	0
9	CuCl/dppe	LiO-t-Bu	THF	44
10	CuCl/dppp	LiO-t-Bu	THF	28
11	CuCl/dppb	LiO-t-Bu	THF	trace
12	CuCl/dpppen	LiO-t-Bu	THF	trace
13	CuCl/binap	LiO-t-Bu	THF	trace
14	CuCl/dppf	LiO-t-Bu	THF	49
15	CuCl/xantphos	LiO-t-Bu	THF	19
16	CuCl/2PPh ₃	LiO-t-Bu	THF	0
17	CuCl/dppbz	LiO-t-Bu	1,4-dioxane	0
18	CuCl/dppbz	LiO-t-Bu	DME	53

19	CuCl/dppbz	LiO-t-Bu	CPME	35
20	CuCl/dppbz	NaO-t-Bu	THF	82
21	CuCl/dppbz	NaO- <i>t</i> -Bu	toluene	34
22	CuCl/dppbz	KO- <i>t</i> -Bu	THF	36
23	CuCl/dppbz	NaOMe	THF	49
24	CuCl ₂ /dppbz	LiO-t-Bu	THF	67
25	CuI/dppbz	LiO-t-Bu	THF	33
26	CuBr•SMe ₂ /dppbz	LiO-t-Bu	THF	75
27	CuOAc/dppbz	LiO-t-Bu	THF	trace
28	Cu(OAc) ₂ /dppbz	LiO-t-Bu	THF	61
29	Cu(OTf) ₂ /dppbz	LiO-t-Bu	THF	41
30 ^c	CuCl/dppbz	LiO-t-Bu	THF	81 (66)
31°	CuCl/dppbz	NaO- <i>t</i> -Bu	THF	57
32 ^c	none/dppbz	LiO-t-Bu	THF	0
33 ^c	CuCl/none	LiO-t-Bu	THF	0
34 ^{<i>c</i>}	none/none	LiO-t-Bu	THF	0

[a] Reaction conditions: Cu source (0.025 mmol), ligand (0.025 mmol), (*E*)-**1a** (0.25 mmol), **2a** (0.30 mmol), bis(pinacolato)diboron (0.30 mmol), base (0.50 mmol), solvent (1.5 mL), N₂, rt, 2–4 h. [b] Yield estimated by ¹H NMR. Yield of isolated product given in parenthesis. [c] With 0.375 mmol of **2a** and bis(pinacolato)diboron and 0.75 mmol of base.

We chose *trans-\beta*-methylstyrene ((*E*)-**1a**) and *O*-benzoyl-*N*,*N*-diethylhydroxylamine (**2a**) as model substrates and first investigated ligand effects in the presence of a CuCl salt and a LiO-t-Bu base in THF (Table S1, entries 1–16). Some mesityl-substituted NHCs formed a detectable amount of the desired aminoborated product 3aa (entries 1, 3, and 5), while more bulky NHCs, IPr and It-Bu showed no activity (entries 2, 4, and 6). Subsequent survey of phosphorous ligands (entries 7-14) revealed that bidentate biphosphines bearing a relatively small bite angle were more effective. In particular, 1,2-bis(diphenylphosphino)benzene (dppbz) was promising (entry 7). On the other hand, a monodentate ligand, PPh_3 , resulted in no formation of **3aa** (entry 15). Solvent screening showed that other ethereal solvents were also tolerated, but THF was still superior (entries 17–19). As an alternative base, NaO-t-Bu gave a comparable result (entry 20), whereas other alkoxide bases were inferior (entries 22 and 23). Evaluation of copper salts identified CuCl to be the best catalyst precursor (entries 24–29). Finally, an increase in the amount of **2a**, bis(pinacolato)diboron, and LiO-t-Bu improved the yield to 86% (entry 30), while no positive effect was observed in the case of NaO-t-Bu (entry 31). On the basis of above studies, we determined conditions indicated of entries 20 and 30 to be optimal. Additionally notable is that in all cases *syn*-isomer was obtained exclusively. On the other hand, in the absence of CuCl, dppbz, or CuCl/dppbz, the aminoborated product was not detected at all (entries 32-34).

Complete Citations in References 2 and 10

(2) Pd: (a) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. (b) Burks, H. E.; Liu, S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766. Pt: (c) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018. (d) Iverson, C. N.; Smith, M. R., III Organometallics 1997, 16, 2757. (e) Marder, T. B.; Norman, N. C.; Rice, C. R. Tetrahedron Lett. 1998, 39, 155. (f) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134. (g) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210. Rh:
(h) Dai, C.; Robins, E. G.; Scott, A. J.; Clegg, W.; Yufit, D. S.; Howard, J. A. K.; Marder, T. B. Chem. Commun. 1998, 1983. (i) Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard, J. A. K.; Marder, T. B. J. Organomet. Chem. 2002, 652, 77. (j) Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702. Au: (k) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1336. Ag: (l) Ramírez, J.; Corberán, R; Sanaú, M.; Peris, E.; Fernandez, E. Chem. Commun. 2005, 3056. Cu: (m) Yoshida, H.; Kawashima, S.; Takemoto, Y.; Okada, K.; Ohshita, J.; Takaki, K. Angew. Chem., Int., Ed. 2012, 51, 235. Organocatalytic process: (n) Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2011, 50, 7158.

(10) (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (b) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. (c) Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem., Int. Ed. 2011, 50, 2778. (d) Corberán, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2011, 50, 7079. (e) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7859. (f) Jung, H.-Y.; Yun, J. Org. Lett. 2012, 14, 2606. (g) Park, J. K.; Ondrusek, B. A.; McQuade, D. T. Org. Lett. 2012, 14, 4790. (h) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem.–Eur. J. 2012, 18, 4179. (i) Yuan, W.; Ma, S. Org. Biomol. Chem. 2012, 10, 7266. (j) Moure, A. L.; Arrayás, R. G.; Cárdenas, D. J.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 2012, 134, 7219. (k) Yuan, W.; Ma, S. Adv. Synth. Catal. 2012, 354, 1867.

Characterization Data for Products

¹H and ¹³C NMR spectra for all compounds are attached in the last part.

(1*S**,2*R**)-*N*,*N*-Diethyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amin e (3aa) oil; ¹H NMR (400 MHz, CDCl₃) δ 0.73 (d, *J* = 7.3 Hz, 3H), 1.06 (t, *J* = 7.3 Hz, 6H), 1.29 (s, 12H), 1.87-1.97 (m, 3H), 2.67 (qd, *J* = 12.8, 7.3 Hz, 2H), 3.78 (d, *J* = 12.4 Hz, 1H), 7.15 (d, *J* = 7.3 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.30 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.04, 13.85, 25.04, 25.25, 43.61, 66.66, 82.93, 126.86, 127.84, 129.42, 137.30; HRMS (CI) m/z ([M+H]⁺) calcd for C₁₉H₃₃BNO₂: 318.2604, found: 318.2600.

(1*S**,2*R**)-*N*,*N*-Dibenzyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-ami ne (*syn*-3ab) m.p. 144.0-145.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.66 (d, *J* = 7.3 Hz, 3H), 1.36 (s, 6H), 1.37 (s, 6H), 2.10 (qd, *J* = 12.4, 7.3 Hz, 1H), 2.94 (d, *J* = 13.7 Hz, 2H), 3.85 (d, *J* = 12.4 Hz, 1H), 3.95 (d, *J* = 13.7 Hz, 2H), 7.14 (d, *J* = 7.3 Hz, 2H), 7.18-7.23 (m, 2H), 7.25-7.31 (m, 5H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.42 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.09, 25.36, 25.51, 54.37, 65.80, 83.24, 126.79, 127.10, 127.96, 128.08, 129.38, 129.79, 136.46, 140.14; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₉H₃₇BNO₂: 442.2917, found: 442.2913.

 $(1S^*, 2S^*)$ -*N*,*N*-Dibenzyl-1-phenyl-2-(4, 4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-ami ne (*anti*-3ab) m.p. 113.0-114.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.77 (s, 6H), 0.86 (s, 6H), 1.28 (d, *J* = 7.3 Hz, 3H), 2.03 (qd, *J* = 12.4, 7.3 Hz, 1H), 2.97 (d, *J* = 13.7 Hz, 2H), 3.66 (d, *J* = 12.4 Hz, 1H), 3.92 (d, *J* = 13.7 Hz, 2H), 7.13-7.35 (m, 11H), 7.42 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 13.62, 24.14, 24.39, 53.23, 64.56, 82.83, 126.81, 127.12, 127.77, 128.41, 129.03, 129.84, 138.15, 140.75; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₉H₃₇BNO₂: 442.2917, found: 442.2919.

(1*S**,2*R**)-*N*-Benzyl-*N*-methyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine (3ac) m.p. 65.0-66.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.77 (d, *J* = 7.3 Hz, 3H), 1.30 (s, 6H), 1.31 (s, 6H), 2.01 (qd, *J* = 12.4, 7.3 Hz, 1H), 2.05 (s, 3H), 3.07 (d, *J* = 12.4 Hz, 1H), 3.43 (d, *J* = 12.4 Hz, 1H), 3.77 (d, *J* = 12.4 Hz, 1H), 7.19-7.30 (m, 6H), 7.34-7.37 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 12.91, 24.99 (two signals are overlapped.), 37.83, 58.81, 71.76, 83.14, 126.81, 127.13, 127.94 (two signals are overlapped.), 129.54, 129.63, 136.54, 140.11; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₃H₃₃BNO₂: 366.2604, found: 366.2596. *N*-Butyl-*N*-[(1*S**,2*R**)-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]-4-pente n-1-amine (3ad) oil; ¹H NMR (400 MHz, CDCl₃) δ 0.71 (d, *J* = 7.3 Hz, 3H), 0.90 (t, *J* = 7.3 Hz, 3H), 1.21-1.62 (m, 6H), 1.29 (s, 12H), 1.88-2.10 (m, 5H), 2.48-2.58 (m, 2H), 3.74 (d, *J* = 12.4 Hz, 1H), 4.93 (dd, *J* = 10.1, 1.8 Hz, 1H), 5.00 (dd, 16.9, 1.8 Hz, 1H), 5.83 (tdd, *J* = 16.9, 10.1, 6.4 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 2H), 7.21-7.33 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 13.28, 14.44, 21.07, 25.18, 25.20, 28.11, 31.13, 32.10, 50.28, 50.52, 67.48, 82.97, 114.33, 126.85, 127.83, 129.49, 137.40, 139.31; HRMS (EI) m/z (M⁺) calcd for C₂₄H₄₀BNO₂: 385.3152, found: 385.3152.

4-[(1*S****,2***R****)-1-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]morpholine (3ag)** m.p. 59.0-60.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.75 (d, *J* = 7.3 Hz, 3H), 1.31 (s, 6H), 1.32 (s, 6H), 1.92 (qd, *J* = 11.9, 7.3 Hz, 1H), 2.27 (m, 2H), 2.51 (m, 2H), 3.55 (d, *J* = 11.9 Hz, 1H), 3.58-3.68 (m 4H), 7.13 (d, *J* = 7.3 Hz, 2H), 7.25 (t, *J* = 7.3 Hz, 1H), 7.33 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.56, 24.93, 25.36 (two signals are overlapped.), 67.37, 73.02, 83.07, 127.32, 127.98, 129.41, 135.95; HRMS (CI) m/z ([M+H]⁺) calcd for C₁₉H₃₁BNO₃: 332.2397, found: 332.2398.

tert-Butyl 4-[(1*S**,2*R**)-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl] piperazine-1-carboxylate (3ah) m.p. 142.0-143.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.74 (d, *J* = 7.3 Hz, 3H), 1.30 (s, 6H), 1.31 (s, 6H), 1.38 (s, 9H), 1.92 (qd, *J* = 12.2, 7.3 Hz, 1H), 2.19 (m, 2H), 2.46 (m, 2H), 3.34 (m, 4H), 3.60 (d, *J* = 12.2 Hz, 1H), 7.11 (d, *J* = 7.3 Hz, 2H), 7.25 (t, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.73, 24.92, 25.41, 28.56, 49.22, 73.00 (two signals are overlapped.), 79.54, 83.05, 127.33, 128.00, 129.33, 135.82, 154.82; HRMS (EI) m/z (M⁺) calcd for C₂₄H₃₉BN₂O₄: 430.3003, found: 430.3007.

2-[(1*S****,2***R****)-1-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]-1,2,3,4-tetrahydr oisoquinoline (3ai)** m.p. 55.0-56.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (d, *J* = 7.3 Hz, 3H), 1.13 (s, 12H), 2.06 (qd, *J* = 11.9, 7.3 Hz, 1H), 2.26-2.34 (m, 1H), 2.72-2.79 (m, 1H), 2.85-2.92 (m, 2H), 3.57 (d, *J* = 14.7 Hz, 1H), 3.68 (d, *J* = 14.7 Hz, 1H), 3.76 (d, *J* = 11.9 Hz, 1H), 6.95-7.04 (m, 4H), 7.23-7.26 (m, 3H), 7.33 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.61, 24.62, 25.05, 29.77, 46.40, 52.70, 72.50, 82.98, 125.32, 125.68, 126.61, 127.27, 127.99, 128.51, 129.39, 134.82, 136.03, 136.18; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₄H₃₃BNO₂: 378.2604, found: 378.2603.

(1*S**,2*R**)-*N*,*N*-Dibenzyl-1-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)p ropan-1-amine (3bb) m.p. 159.5-161.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.65 (d, *J* = 7.3 Hz, 3H), 1.36 (s, 6H), 1.37 (s, 6H), 2.05 (qd, *J* = 12.2, 7.3 Hz, 1H), 2.93 (d, *J* = 13.6 Hz, 2H), 3.81 (d, *J* = 12.2 Hz, 1H), 3.83 (s, 3H), 3.92 (d, *J* = 13.6 Hz, 2H), 6.92 (d, *J* = 7.3 Hz, 2H), 7.06 (d, *J* = 7.3 Hz, 2H), 7.17-7.28 (m, 6H), 7.42 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.13, 25.35, 25.50, 54.38, 55.35, 65.15, 83.20, 113.26, 126.76, 128.06, 128.57, 129.38, 130.75, 140.21, 158.61; HRMS (CI) m/z ([M+H]⁺) calcd for C₃₀H₃₉BNO₃: 472.3023, found: 472.3018.

A 96:4 mixture of (1*S**,2*R**) and (1*S**,2*S**)-*N*,*N*-dibenzyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)

-1-[4-(trifluoromethyl)phenyl]propan-1-amine (*syn-* and *anti-*3cb) m.p. 165.0-166.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.65 (d, J = 7.3 Hz, 0.96×3H for *syn-*3cb), 0.77 (s, 0.04×6H for *anti-*3cb), 0.85 (s, 0.04×6H for *anti-*3cb), 1.30 (d, J = 7.3 Hz, 0.04×3H for *anti-*3cb), 1.36 (s, 0.96×6H for *syn-*3cb), 1.38 (s, 0.96×6H for *syn-*3cb), 2.03 (qd, J = 12.4, 7.3 Hz, 0.04×1H for *anti-*3cb), 2.10 (qd, J = 12.4, 7.3 Hz, 0.96×2H for *syn-*3cb), 2.10 (qd, J = 12.4, 7.3 Hz, 0.96×1H for *syn-*3cb), 2.90 (d, J = 13.7 Hz, 0.96×2H for *syn-*3cb), 2.93 (d, J = 13.7 Hz, 0.04×2H for *anti-*3cb), 3.74 (d, J = 12.4 Hz, 0.04×1H for *anti-*3cb), 3.93 (d, J = 12.4 Hz, 0.96×1H for *syn-*3cb), 3.95 (d, J = 13.7 Hz, 0.04×2H for *anti-*3cb), 3.96 (d, J = 13.7 Hz, 0.96×2H for *syn-*3cb), 7.19-7.31 (m, 8H), 7.41 (d, J = 7.3 Hz, 4H), 7.64 (d, J = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) for *syn-*3cb: δ 13.94, 25.37, 25.49, 54.37, 65.43, 83.41, 124.56 (q, J = 272.2 Hz), 124.97 (q, J = 3.8 Hz), 127.01, 128.22, 129.31 (q, J = 32.6 Hz), 129.32, 129.88, 139.64, 140.92; ¹⁹F NMR (373 MHz, CDCl₃) δ -62.14 (s); HRMS (CI) m/z ([M+H]⁺) calcd for C₃₀H₃₆BF₃NO₂: 510.2791, found: 510.2799.

N,*N*-Dibenzyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3db) m.p. 99.0-100.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.04 (s, 6H), 1.10 (s, 6H), 1.41 (dd, *J* = 14.9, 10.4 Hz, 1H), 1.57 (dd, *J* = 14.9, 6.3 Hz, 1H), 3.27 (d, *J* = 14.0 Hz, 2H), 3.70 (d, *J* = 14.0 Hz, 2H), 4.08 (dd, *J* = 10.4, 6.3 Hz, 1H), 7.17-7.31 (m, 11H), 7.37 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 24.73, 24.97, 53.84, 59.05, 83.19, 126.78, 126.93, 127.89, 128.25, 128.90, 128.99, 140.73, 141.42; HRMS (EI) m/z (M⁺) calcd for C₂₈H₃₄BNO₂: 427.2683, found: 427.2685.

N,*N*-Dibenzyl-1-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3eb) m.p. 97.5-99.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (s, 6H), 1.11 (s, 6H), 1.37 (dd, *J* = 15.1, 10.1 Hz, 1H), 1.55 (dd, *J* = 15.1, 6.4 Hz, 1H), 3.26 (d, *J* = 13.7 Hz, 2H), 3.68 (d, *J* = 13.7 Hz, 2H), 3.79

(s, 3H), 4.04 (dd, J = 10.1, 6.4 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.16-7.28 (m, 8H), 7.37 (d, J = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 24.75, 25.00, 53.74, 55.39, 58.32, 83.16, 113.15, 126.75, 128.23, 128.97, 129.89, 133.60, 140.79, 158.53; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₉H₃₇BNO₃: 458.2866, found: 458.2864.

N,*N*-Dibenzyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-[4-(trifluoromethyl)phenyl]eth anamine (3fb) m.p. 118.0-119.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (s, 6H), 1.11 (s, 6H), 1.40 (dd, *J* = 15.1, 10.1 Hz, 1H), 1.59 (dd, *J* = 15.1, 6.0 Hz, 1H), 3.29 (d, *J* = 13.7 Hz, 2H), 3.68 (d, *J* = 13.7 Hz, 2H), 4.12 (dd, *J* = 10.1, 6.0 Hz, 1H), 7.20 (t, *J* = 7.3 Hz, 2H), 7.28 (t, *J* = 7.3 Hz, 4H), 7.35 (d, *J* = 7.3 Hz, 4H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 24.72, 24.91, 53.85, 58.66, 83.38, 124.55 (q, *J* = 272.2 Hz), 124.85 (q, *J* = 3.8 Hz), 127.02, 128.38, 128.96, 129.06, 129.14 (q, *J* = 31.6 Hz), 140.21, 146.10; ¹⁹F NMR (373 MHz, CDCl₃) δ -62.15 (s); HRMS (EI) m/z (M⁺) calcd for C₂₉H₃₃BF₃NO₂: 495.2556, found: 495.2554.

N,*N*-Dibenzyl-1-(2-bromophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3gb) m.p. 66.0-67.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.97 (s, 6H), 1.02 (s, 6H), 1.40 (dd, *J* = 15.1, 11.0 Hz, 1H), 1.49 (dd, *J* = 15.1, 6.0 Hz, 1H), 3.57 (d, *J* = 14.2 Hz, 2H), 3.73 (d, *J* = 14.2 Hz, 2H), 4.60 (dd, *J* = 11.0, 6.0 Hz, 1H), 7.02 (td, *J* = 7.8, 1.8 Hz, 1H), 7.10-7.28 (m, 11H), 7.47 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.51 (dd, *J* = 7.8, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.60, 24.77, 55.02, 61.10, 83.22, 126.23, 126.61, 127.02, 128.04, 128.38, 128.92, 129.85, 133.05, 140.77, 142.43; HRMS (EI) m/z (M⁺) calcd for C₂₈H₃₃BBrNO₂: 505.1788, found: 505.1790.

N,*N*-Dibenzyl-1-(naphthalen-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3hb) oil; ¹H NMR (400 MHz, CDCl₃) δ 1.00 (s, 6H), 1.07 (s, 6H), 1.51 (dd, *J* = 15.1, 10.5 Hz, 1H), 1.66 (dd, *J* = 15.1, 6.0 Hz, 1H), 3.39 (d, *J* = 13.7 Hz, 2H), 3.68 (d, *J* = 13.7 Hz, 2H), 4.25 (dd, *J* = 10.5, 6.0 Hz, 1H), 7.19 (t, *J* = 7.3 Hz, 2H), 7.28 (t, *J* = 7.3 Hz, 4H), 7.37 (d, *J* = 7.3 Hz, 4H), 7.41-7.46 (m, 2H), 7.54 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.69 (s, 1H), 7.80-7.82 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 24.78, 24.91, 53.86, 59.00, 83.22, 125.60, 125.89, 126.84 (two signals are overlapped.), 127.50, 127.70, 127.90, 128.07, 128.27, 129.06, 132.77, 133.16, 139.85, 140.67; HRMS (EI) m/z (M⁺) calcd for C₃₂H₃₆BNO₂: 477.2839, found: 477.2836.

pan-1-amine (3ia) m.p. 50.0-51.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (t, J = 7.3 Hz, 6H), 1.30 (s, 6H), 1.31 (s, 6H), 1.91 (qd, J = 12.8, 7.3 Hz, 2H), 2.38 (ddd, J = 12.4, 10.5, 5.5 Hz, 1H), 2.67 (qd, J = 12.8, 7.3 Hz, 2H), 3.07 (dd, J = 8.3, 5.5 Hz, 1H), 3.17 (s, 3H), 3.27 (dd, J = 10.5, 8.3 Hz, 1H), 3.90 (d, J = 12.4 Hz, 1H), 7.16 (d, J = 7.3 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.86, 25.11 (two signals are overlapped.), 43.47, 58.82, 62.16, 73.46, 83.21, 127.09, 127.95, 129.00, 137.26; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₀H₃₅BNO₃: 348.2710, found: 348.2707.

(1*S**,2*S**)-*N*,*N*-Dibenzyl-3-methoxy-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pr opan-1-amine (3ib) m.p. 135.0-136.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.38 (s, 6H), 1.39 (s, 6H), 2.57 (ddd, *J* = 12.3, 10.9, 5.9 Hz, 1H), 2.91 (d, *J* = 13.6 Hz, 2H), 2.97 (dd, *J* = 8.2, 5.9 Hz, 1H), 3.108 (s, 3H), 3.111 (dd, *J* = 10.9, 8.2 Hz, 1H), 3.95 (d, *J* = 12.3 Hz, 1H), 3.96 (d, *J* = 13.6 Hz, 2H), 7.15 (d, *J* = 7.3 Hz, 2H), 7.18-7.38 (m, 9H), 7.41 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 25.40, 25.68, 54.15, 58.72, 61.58, 73.96, 83.58, 126.88, 127.37, 128.09, 128.12, 129.41, 129.48, 136.31, 139.88; HRMS (EI) m/z (M⁺) calcd for C₃₀H₃₈BNO₃: 471.2945, found: 471.2938.

An 88:12 mixture of *N*,*N*-dibenzyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) octan-2-amine (3jb) and *N*,*N*-dibenzyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octan-1-amine (3jb') oil; ¹H NMR (400 MHz, CDCl₃) for mixture: $\delta 0.85$ (t, J = 7.3 Hz, 3H), 1.17-1.29 (m, 10H), 1.22 (s, 12H), 1.36-1.48 (m, 1H), 1.54-1.63 (m, 0.88×1H for 3jb), 2.39 (dd, J = 11.9, 7.3 Hz, 0.12×1H for 3jb'), 2.58 (dd, J = 11.9, 8.2 Hz, 0.12×1H for 3jb'), 2.83-2.90 (m, 0.88×1H for 3jb), 3.38 (d, J = 13.7 Hz, 0.88×2H for 3jb), 3.45 (d, J = 13.7 Hz, 0.12×2H for 3jb'), 3.57 (d, J = 13.7 Hz, 0.12×2H for 3jb'), 3.64 (d, J = 13.7 Hz, 0.88×2H for 3jb), 7.18 (t, J = 7.3 Hz, 2H), 7.26 (t, J = 7.3 Hz, 4H), 7.36 (d, J = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) for 3jb: $\delta 14.35$, 22.89, 24.96, 25.14, 26.94, 29.42, 32.07, 33.81, 53.52, 54.69, 83.08, 126.68, 128.68, 129.21, 140.98; HRMS (EI) m/z (M⁺) calcd for C₂₈H₄₂BNO₂: 435.3309, found: 435.3305.

(1*S**,2*R**)-*N*,*N*-Dibenzyl-1-(3-chlorophenyl)-3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborola n-2-yl)butan-1-amine (3kb) m.p. 139.0-140.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.66 (d, *J* = 6.9 Hz, 3H), 0.90 (d, *J* = 6.9 Hz, 3H), 1.28-1.34 (m, 1H), 1.37 (s, 6H), 1.40 (s, 6H), 2.11 (dd, *J* = 12.8, 4.1 Hz, 1H), 2.89 (d, *J* = 13.7 Hz, 2H), 3.98 (d, *J* = 13.7 Hz, 2H), 4.08 (d, *J* = 12.8 Hz, 1H), 6.99 (dm, *J* = 6.4 Hz, 1H), 7.18-7.31 (m, 9H), 7.41 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 18.21, 23.77, 25.98, 26.08, 27.19, 54.54, 62.63, 83.43, 126.81, 127.24, 127.78, 128.09, 129.12, 129.37, 129.70, 134.00, 138.52, 139.60; HRMS (CI) m/z ($[M+H]^+$) calcd for C₃₁H₄₀BCINO₂: 504.2841, found: 504.2834.

A 90:10 mixture of *N,N-dibenzyl-1-cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3lb) and N,N-dibenzyl-2-cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine (3lb') oil;* ¹H NMR (400 MHz, CDCl₃) for **3lb**: δ 0.67-0.83 (m, 3H), 1.02-1.17 (m, 3H), 1.22 (s, 6H), 1.25 (s, 6H), 1.35-1.43 (m, 1H), 1.56-1.67 (m, 5H), 2.28-2.31 (m, 1H), 2.58-2.63 (m, 1H), 3.29 (d, *J* = 13.7 Hz, 2H), 3.71 (d, *J* = 13.7 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 4H), 7.37 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) for **3lb**: δ 24.99, 25.02, 26.85, 31.11, 31.14, 42.02, 54.17, 59.99, 83.06, 126.66, 128.10, 129.36, 140.94; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₈H₄₁BNO₂: 434.3231, found: 434.3232.

(1*S**,2*R**)-{2-[1-(*N*,*N*-Diethylammonio)-1-phenyl]propyl}trifluoroborate (3aa-BF₃) m.p. 132.0-133.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.73 (d, *J* = 7.3 Hz, 3H), 1.36 (t, *J* = 7.3 Hz, 3H), 1.48 (m, 1H), 1.59 (t, *J* = 7.3 Hz, 3H), 2.15-2.26 (m, 1H), 2.83-2.94 (m, 1H), 3.11 (qd, *J* = 12.8, 7.3 Hz, 1H), 3.58 (qd, *J* = 12.8, 7.3 Hz, 1H), 4.41 (d, *J* = 12.3 Hz, 1H), 7.27-7.45 (m, 5H), 7.58 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 10.94, 11.43, 13.13, 13.15, 45.69, 45.72, 72.22, 129.28, 130.16, 130.90, 130.92; ¹⁹F NMR (373 MHz, CDCl₃) δ -143.14 (s); HRMS (FAB) m/z ([M-F]⁺) calcd for C₁₃H₂₁BF₂N: 240.1735, found: 240.1730.

(1*S**,2*R**)-{2-[1-(*N*-Benzyl-*N*-methylammonio)-1-phenyl]propyl}trifluoroborate (3ac-BF₃) (diastereomixture associated with the chirality on nitrogen) m.p. 141.0-142.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.74 (d, *J* = 7.3 Hz, 0.5×3H), 0.77 (d, *J* = 7.3 Hz, 0.5×3H), 1.48 (m, 0.5×1H), 1.68 (m, 0.5×1H), 2.43 (s, 0.5×3H), 2.56 (s, 0.5×3H), 3.09 (d, *J* = 12.8 Hz, 0.5×1H), 3.66 (d, *J* = 12.8 Hz, 0.5×1H), 4.40 (d, *J* = 12.8 Hz, 0.5×1H), 4.46 (d, *J* = 12.8 Hz, 0.5×1H), 4.50 (d, *J* = 12.8 Hz, 0.5×1H), 4.80 (d, *J* = 12.8 Hz, 0.5×1H), 7.26-7.52 (m, 10H), 8.52 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.11, 13.13, 13.35, 13.37, 31.16, 34.22, 39.46, 54.50, 61.00, 78.96, 129.03, 129.13, 129.19, 129.27, 129.42, 129.62, 129.84, 130.10, 130.42, 130.45 (three signals are overlapped.), 130.57, 130.63 (three signals are overlapped.); ¹⁹F NMR (373 MHz, CDCl₃) δ -143.53 (s), -142.66 (s); HRMS (FAB) m/z ([M-F]⁺) calcd for C₁₇H₂₁BF₂N: 288.1735, found: 288.1737. (1*S**,2*R**)-[2-(1-Phenyl-1-piperidiniumyl)propyl]trifluoroborate (3ae-BF₃) m.p. 148.0-149.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.71 (d, *J* = 7.3 Hz, 3H), 1.12-1.23 (m, 1H), 1.45-1.53 (m, 1H), 1.76-1.94 (m, 5H), 2.18-2.29 (m, 1H), 2.58-2.67 (m, 1H), 3.47 (d, *J* = 12.8 Hz, 1H), 3.71 (d, *J* = 12.8 Hz, 1H), 4.17 (d, *J* = 12.8 Hz, 1H), 7.27-7.46 (m, 5H), 7.67 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.14, 13.16, 22.18, 24.13, 24.76, 48.35, 54.02, 78.03, 129.21, 130.11, 131.21, 131.23; ¹⁹F NMR (373 MHz, CDCl₃) δ -144.30 (s); HRMS (FAB) m/z ([M-F]⁺) calcd for C₁₄H₂₁BF₂N: 252.1735, found: 252.1739.

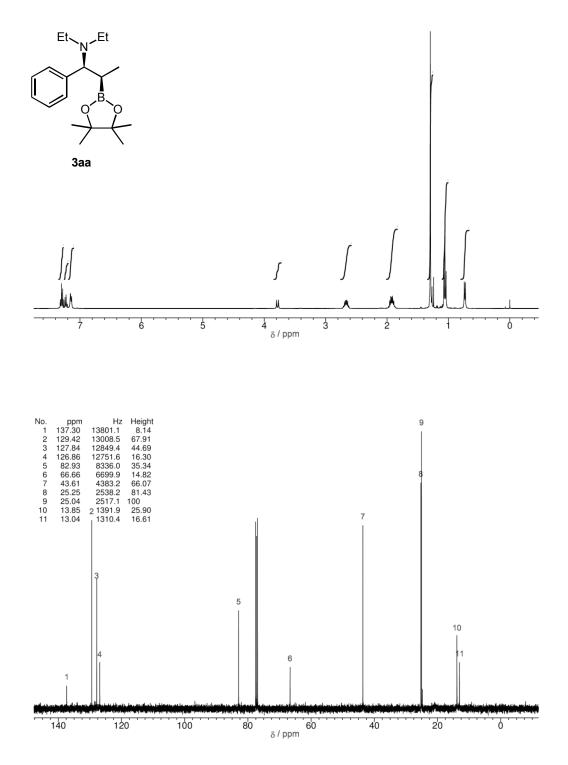
(1*S**,2*R**)-[2-(1-Azepaniumyl-1-phenyl)propyl]trifluoroborate (3af-BF₃) m.p. 136.0-137.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.70 (d, *J* = 7.3 Hz, 3H), 1.45-1.55 (m, 3H), 1.73-1.94 (m, 6H), 2.46 (m, 1H), 2.92 (m, 1H), 3.59-3.72 (m, 2H), 4.28 (d, *J* = 12.4 Hz, 1H), 7.37-7.45 (m, 5H), 7.89 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.02, 13.04, 24.91, 25.19, 25.51, 25.60, 49.41, 56.89, 79.10, 129.16, 130.06, 131.29, 131.31; ¹⁹F NMR (373 MHz, CDCl₃) δ -143.69 (s); HRMS (FAB) m/z ([M-F]⁺) calcd for C₁₅H₂₃BF₂N: 266.1892, found: 266.1890.

(1*S**,2*S**)-{2-[1-(*N*,*N*-Diethylammonio)-1-phenyl-3-methoxy]propyl]trifluoroborate (3ia-BF₃) m.p. 109.0-110.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.3 Hz, 3H), 1.55 (t, *J* = 7.3 Hz, 3H), 1.70 (m, 1H), 2.34-2.44 (m, 1H), 2.97-3.04 (m, 1H), 3.05 (s, 3H), 3.13-3.19 (m, 1H), 3.23-3.27 (m, 1H), 3.55 (dd, *J* = 10.6, 6.0 Hz, 2H), 4.77 (d, *J* = 11.0 Hz, 1H), 7.18 (bs, 1H), 7.37-7.40 (m, 2H), 7.42-7.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 10.65, 11.18, 45.71, 45.92, 58.83, 70.43, 72.63, 72.65, 128.99, 129.90, 130.92 (two signals are overlapped.); ¹⁹F NMR (373 MHz, CDCl₃) δ -140.24 (s); HRMS (FAB) m/z ([M-F]⁺) calcd for C₁₄H₂₃BF₂NO: 270.1841, found: 270.1847.

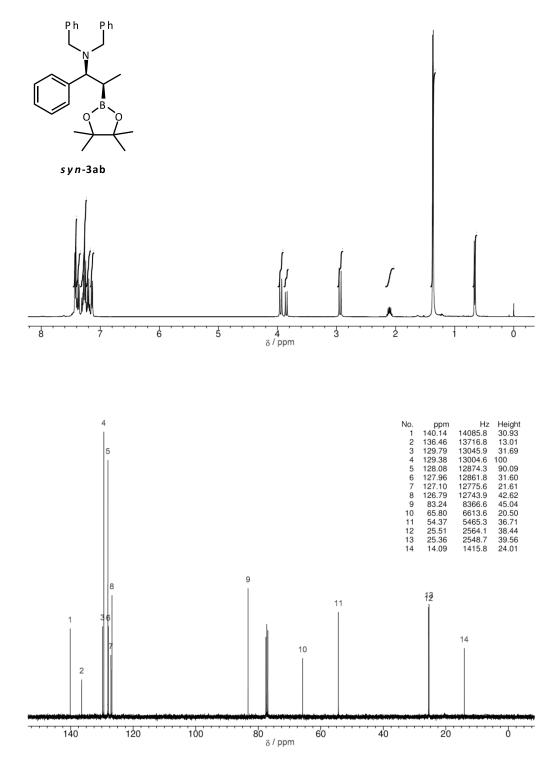
 $(1R^*, 2R^*)$ -1-(N, N-Diethylamino)-1-phenylpropan-2-ol (4aa) oil; ¹H NMR (400 MHz, CDCl₃) δ 1.03 (d, J = 6.0 Hz, 3H), 1.10 (t, J = 7.3 Hz, 6H), 2.10 (qd, J = 12.8, 7.3 Hz, 2H), 2.71 (qd, J = 12.8, 7.3 Hz, 2H), 3.40 (d, J = 10.1 Hz, 1H), 4.15 (qd, J = 10.1, 6.0 Hz, 1H), 4.59 (bs, 1H), 7.14 (d, J = 7.8Hz, 2H), 7.26-7.35 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 14.30, 19.81, 43.50, 64.03, 70.90, 127.76, 128.28, 129.75, 135.61; HRMS (CI) m/z ([M+H]⁺) calcd for C₁₃H₂₂NO: 208.1701, found: 208.1701.

 $(1R^*, 2R^*)$ -1-(N, N-Dibenzylamino)-1-phenylpropan-2-ol (syn-4ab) oil; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (d, J = 6.0 Hz, 3H), 3.03 (d, J = 13.3 Hz, 2H), 3.40 (d, J = 10.1 Hz, 1H), 3.95 (d, J = 13.3 Hz, 2H), 3.40 (d, J = 10.1 Hz, 1H), 3.95 (d, J = 10.1 Hz,

13.3 Hz, 2H), 4.37 (qd, J = 10.1, 6.0 Hz, 1H), 4.39 (bs, 1H), 7.20 (d, J = 7.3 Hz, 2H), 7.24-7.28 (m, 2H), 7.30-7.45 (m, 11H); ¹³C NMR (100 MHz, CDCl₃) δ 19.84, 53.84, 64.40, 69.46, 127.51, 128.11, 128.52, 128.82, 129.24, 130.11, 134.33, 138.95; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₃H₂₆NO: 332.2014, found: 332.2012.

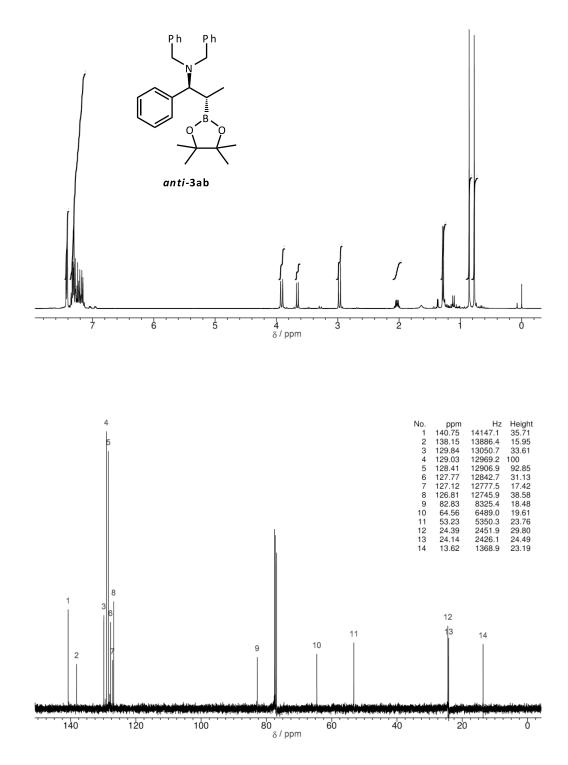

 $(1R^*, 2S^*)$ -1-(N, N-Dibenzylamino)-1-phenylpropan-2-ol (*anti*-4ab) m.p. 115.0-116.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (d, J = 6.4 Hz, 3H), 3.07 (d, J = 13.7 Hz, 2H), 3.50 (d, J = 8.7 Hz, 1H), 3.85 (d, J = 13.7 Hz, 2H), 4.49 (qd, J = 8.7, 6.4 Hz, 1H), 7.22-7.46 (m, 15H); ¹³C NMR (100 MHz, CDCl₃) δ 20.91, 54.76, 67.10, 69.53, 127.22, 128.02, 128.58, 128.64, 128.98, 130.17, 135.33, 139.77; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₃H₂₆NO: 332.2014, found: 332.2015.

 $(1R^*, 2R^*)$ -1-(N, N-Dibenzylamino)-1-(4-methoxyphenyl)propan-2-ol (4bb) oil; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (d, J = 6.0 Hz, 3H), 3.02 (d, J = 13.3 Hz, 2H), 3.36 (d, J = 10.1 Hz, 1H), 3.85 (s, 3H), 3.93 (d, J = 13.3 Hz, 2H), 4.31 (qd, J = 10.1, 6.0 Hz, 1H), 4.43 (bs, 1H), 6.96 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 7.24-7.28 (m, 2H), 7.29-7.36 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 19.87, 53.83, 55.44, 64.56, 68.81, 113.87, 126.31, 127.48, 128.80, 129.24, 131.14, 139.03, 159.38; HRMS (CI) m/z ([M+H]⁺) calcd for C₂₄H₂₈NO₂: 362.2120, found: 362.2116.

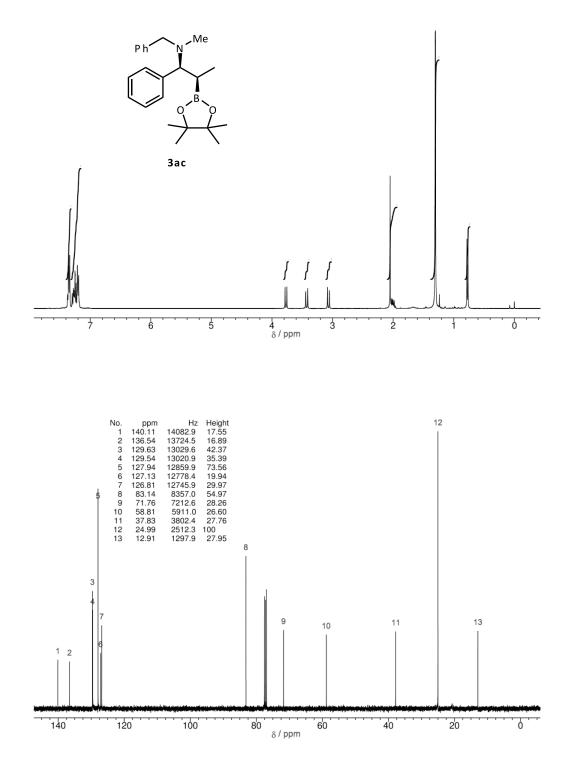

(1*R**,2*S**)-1-(Piperidin-1-yl)-2,3-dihydroinden-2-ol (4me) m.p. 102.0-103.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.43 (m, 2H), 1.51-1.67 (m, 4H), 2.37 (m, 2H), 2.55 (m, 2H), 2.76 (dd, *J* = 16.5, 7.8 Hz, 1H), 3.29 (dd, *J* = 16.5, 8.2 Hz, 1H), 4.04 (d, *J* = 7.8 Hz, 1H), 4.44 (ddd, *J* = 8.2, 7.8, 7.8 Hz, 1H), 5.01 (bs, 1H), 7.19-7.27 (m, 3H), 7.31-7.33 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.29, 26.82, 41.99, 52.81, 69.16, 70.97, 125.68, 126.57, 126.59, 128.60, 139.16, 141.90; HRMS (EI) m/z (M⁺) calcd for C₁₄H₁₉NO: 217.1467, found: 217.1470.

tert-Butyl [(1*R**,2*R**)-1-(*N*,*N*-diethylamino)-1-phenylpropan-2-yl]carbamate (5aa) oil; ¹H NMR (400 MHz, CDCl₃) δ 1.01 (d, *J* = 6.0 Hz, 3H), 1.04 (t, *J* = 6.9 Hz, 6H), 1.48 (s, 9H), 2.11 (qd, *J* = 13.3, 6.9 Hz, 2H), 2.61 (qd, *J* = 13.3, 6.9 Hz, 2H), 3.48 (d, *J* = 10.1 Hz, 1H), 3.95-4.03 (m, 1H), 5.45 (bs, 1H), 7.18 (d, *J* = 7.3 Hz, 2H), 7.26-7.34 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 13.60, 18.97, 28.72, 43.04, 46.61, 68.31, 79.04, 127.62, 128.23, 129.51, 136.52, 156.64; HRMS (CI) m/z ([M+H]⁺) calcd for C₁₈H₃₁N₂O₂: 307.2386, found: 307.2384.

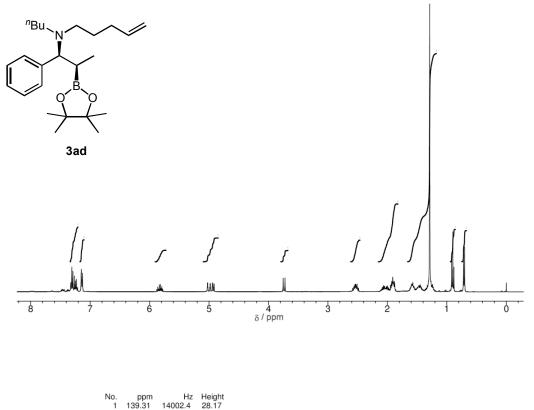
[¹H and ¹³C NMR Spectra of **3aa**]

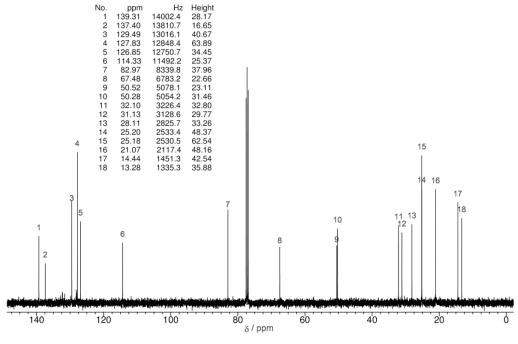


[¹H and ¹³C NMR Spectra of *syn*-3ab]

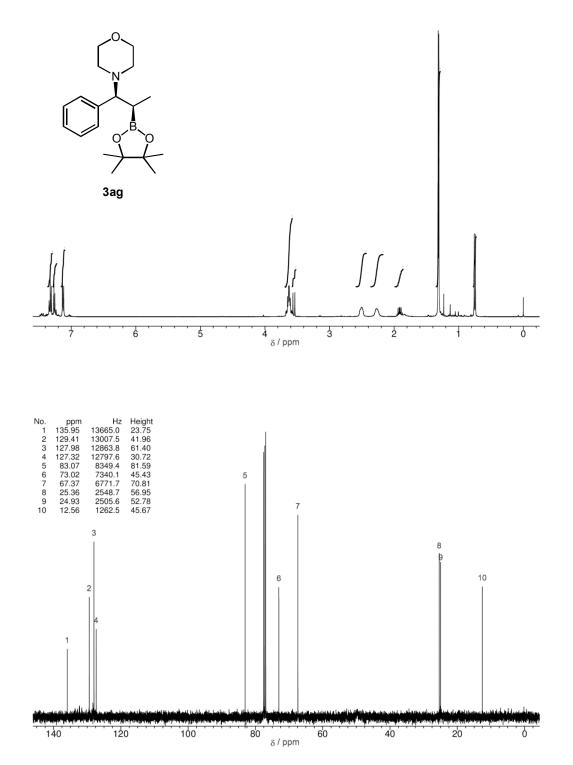


S25

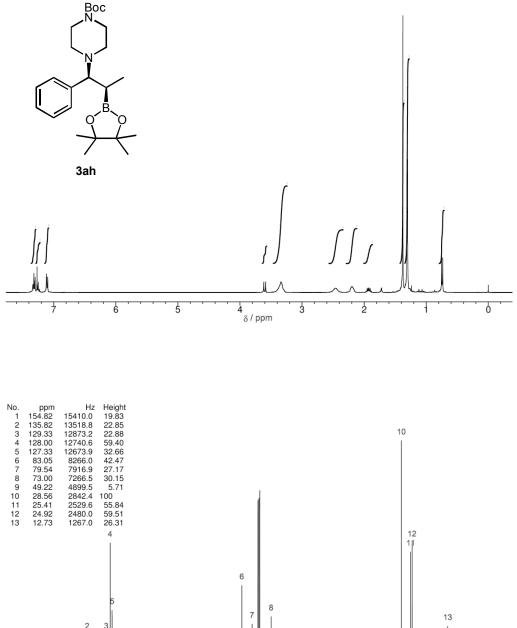

[¹H and ¹³C NMR Spectra of *anti-3ab*]

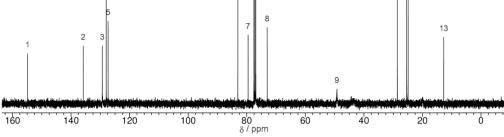


[¹H and ¹³C NMR Spectra of **3ac**]

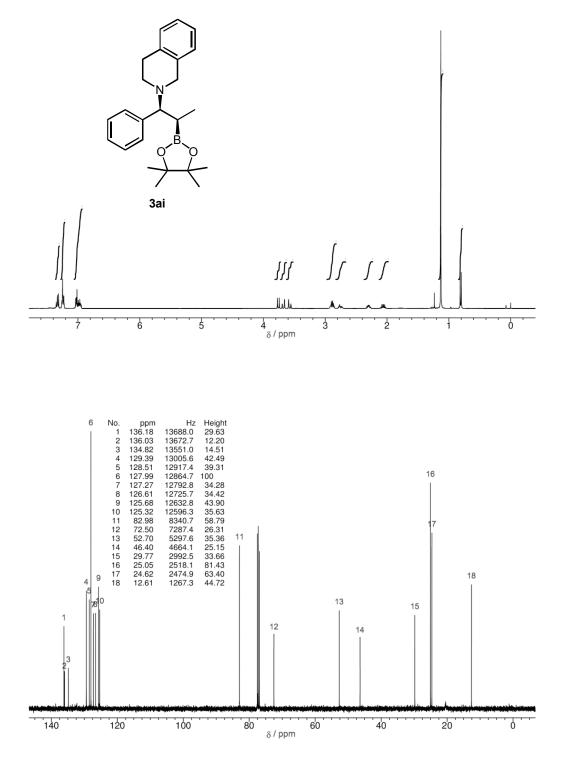


[¹H and ¹³C NMR Spectra of **3ad**]

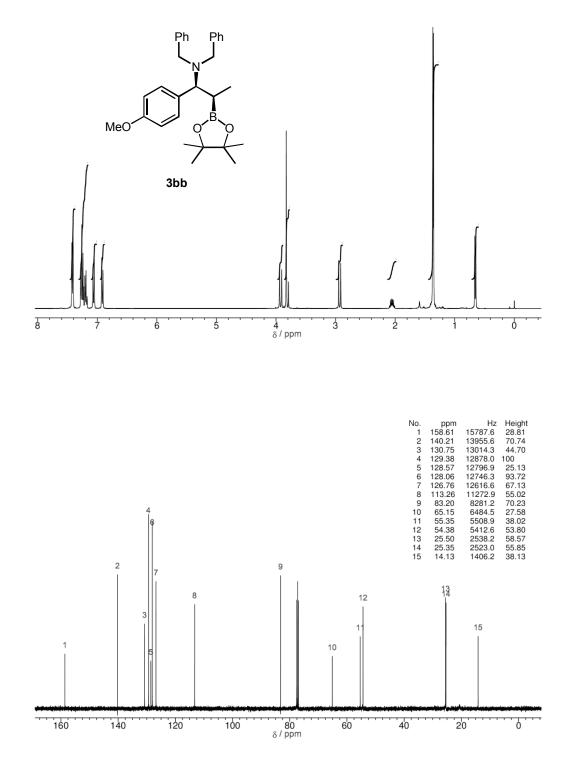


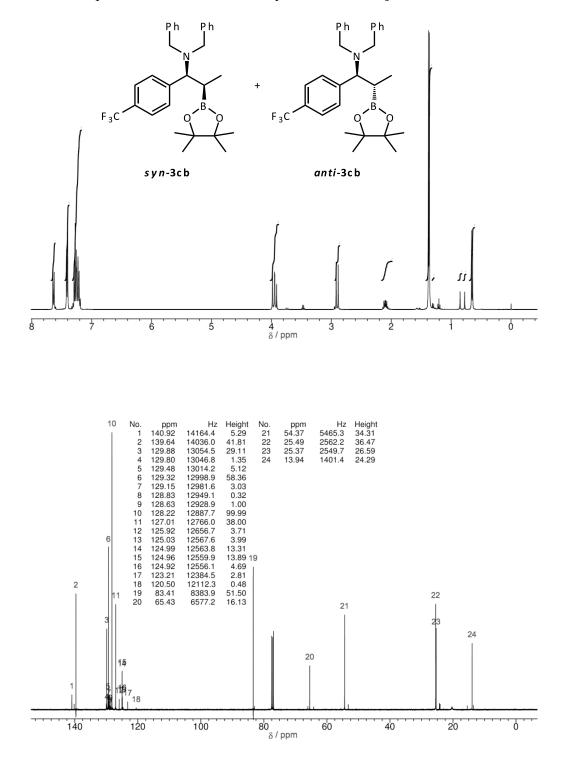


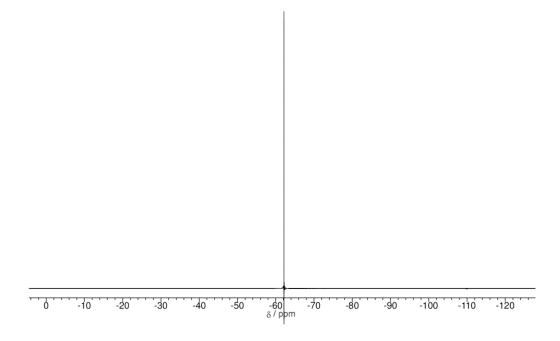
[¹H and ¹³C NMR Spectra of **3ag**]

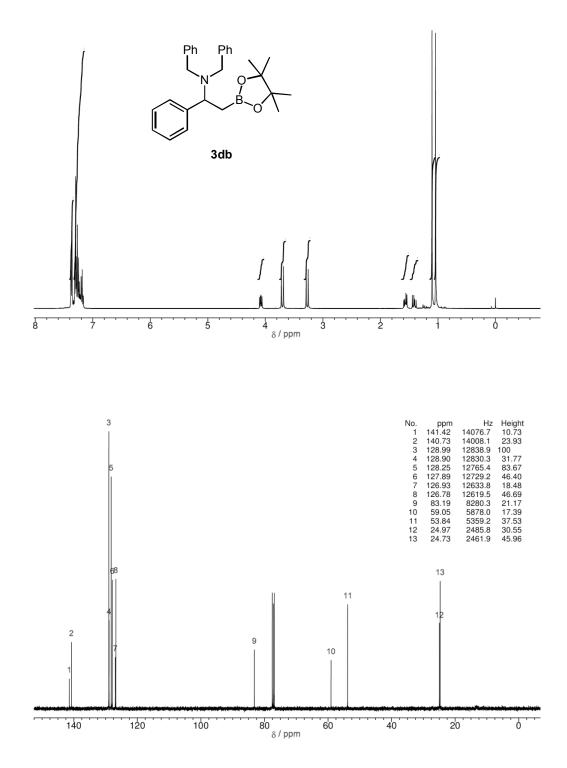


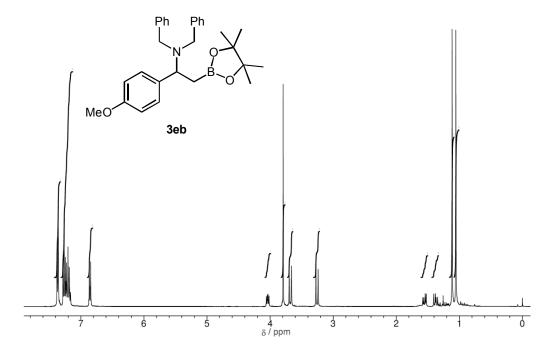
[¹H and ¹³C NMR Spectra of **3ah**]

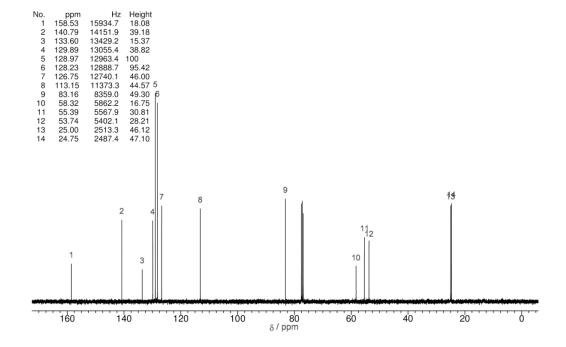



[¹H and ¹³C NMR Spectra of **3ai**]

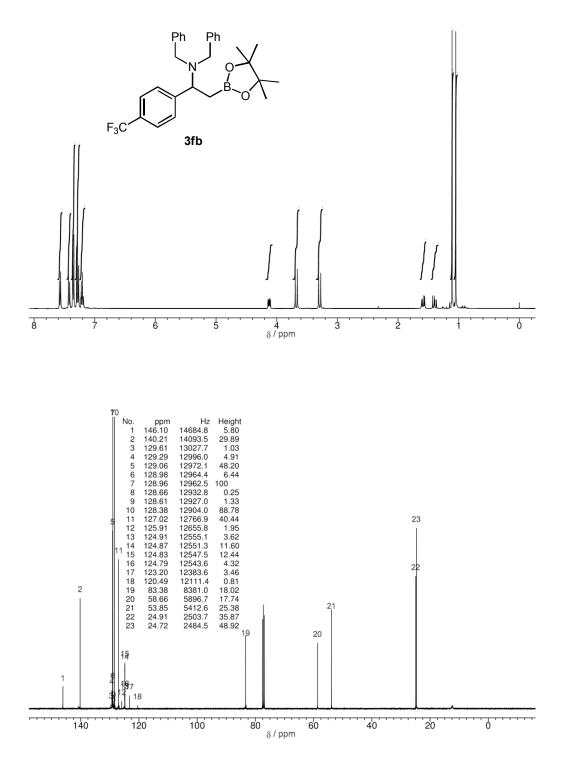

[¹H and ¹³C NMR Spectra of **3bb**]


[¹H, ¹³C, and ¹⁹F NMR Spectra of a 96:4 mixture of *syn-* and *anti-*3cb]

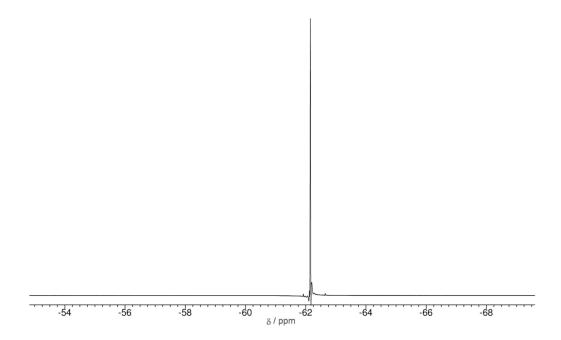

S33

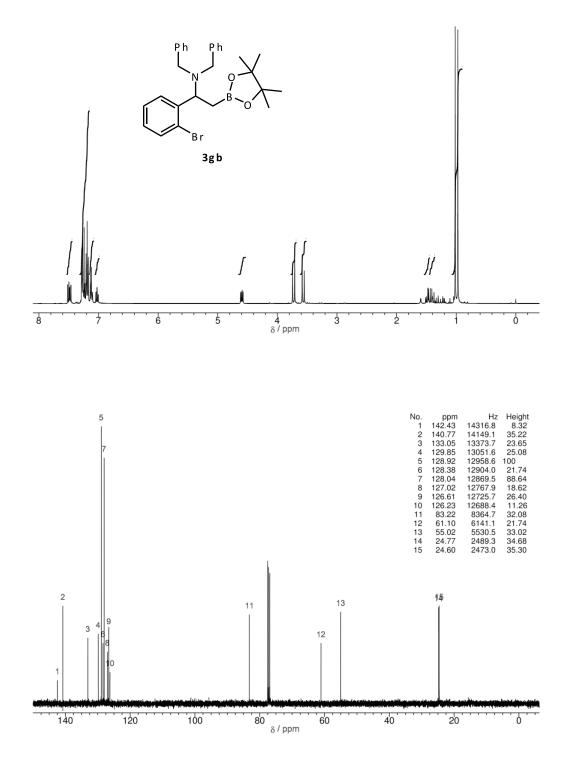


[¹H and ¹³C NMR Spectra of **3db**]

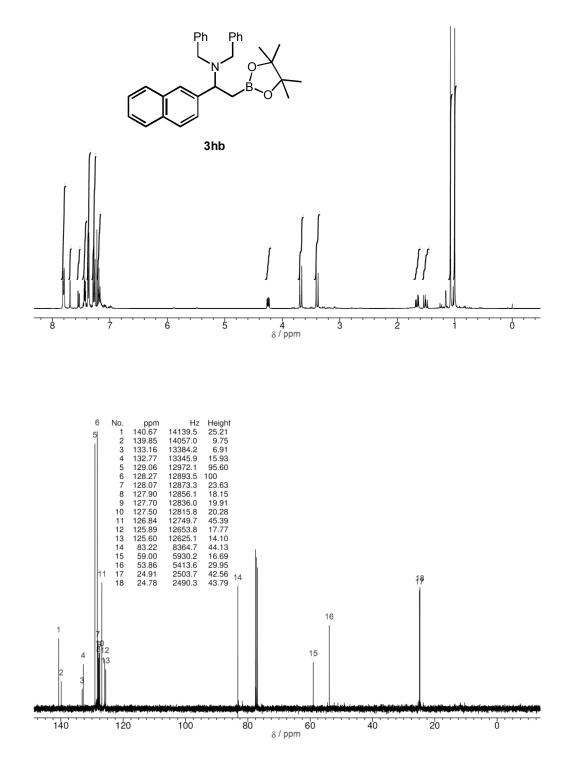


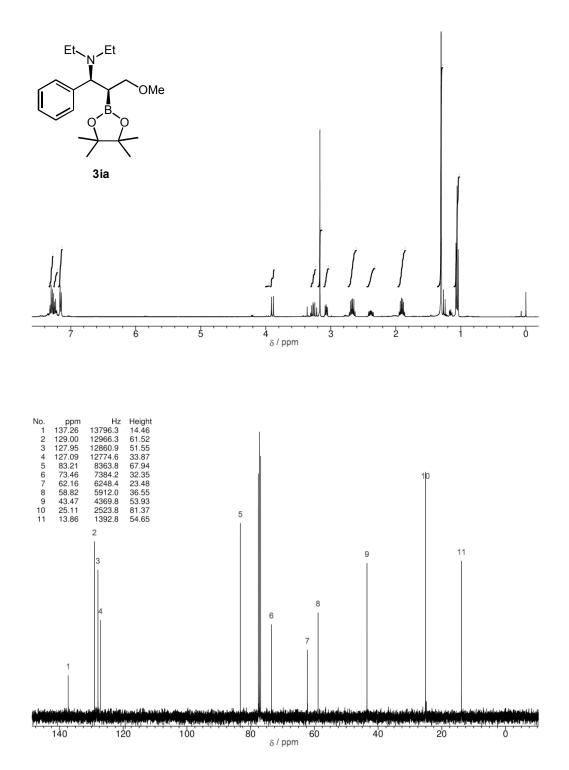
[¹H and ¹³C NMR Spectra of **3eb**]

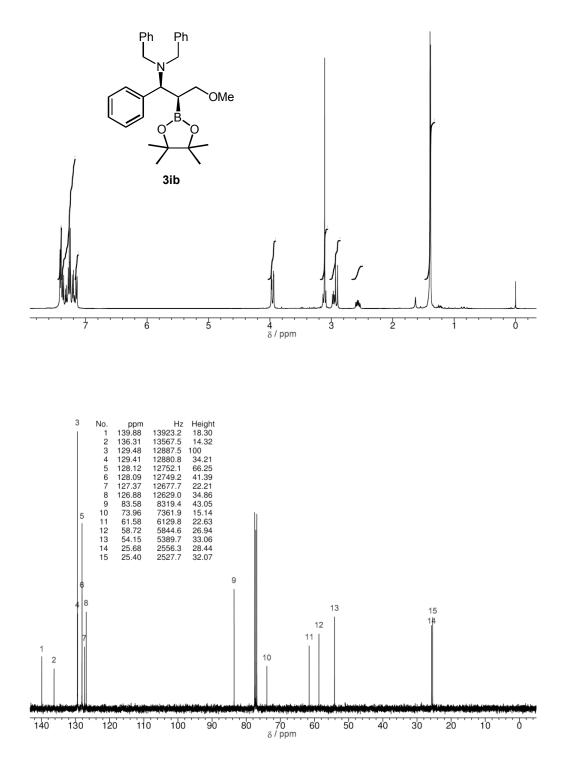




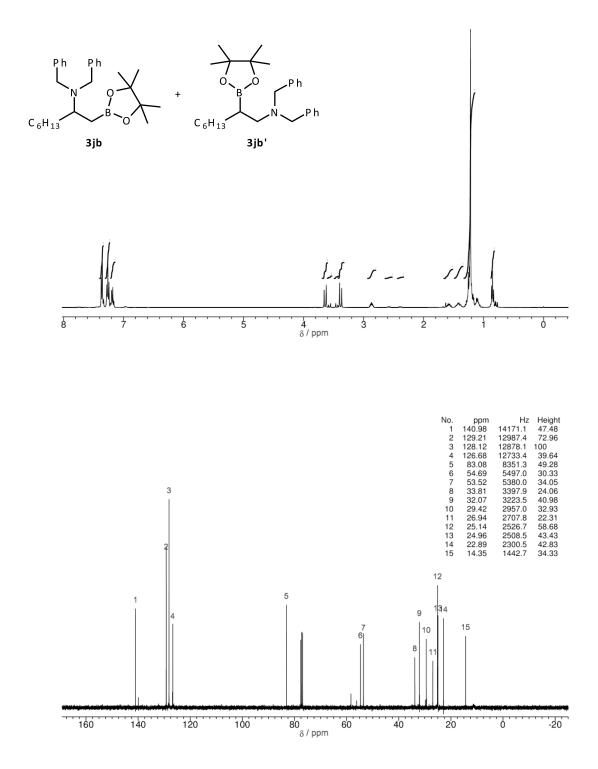
[¹H, ¹³C, and ¹⁹F NMR Spectra of **3fb**]


S37

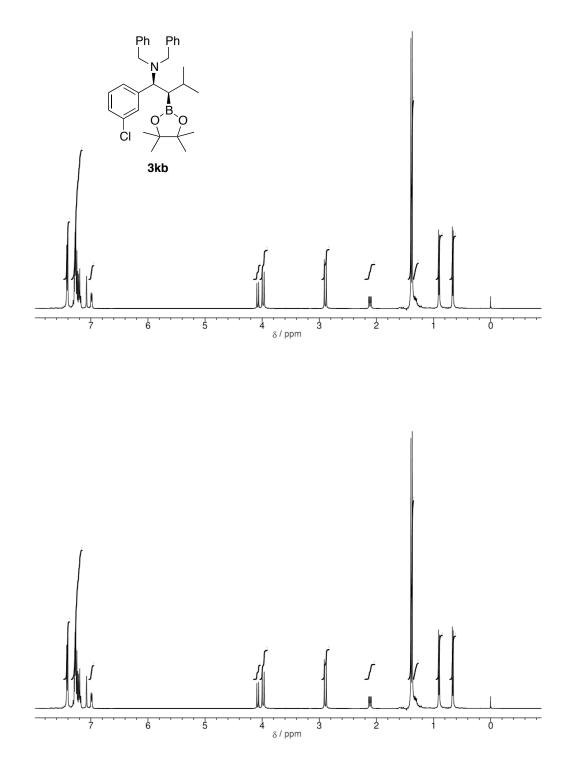



S39

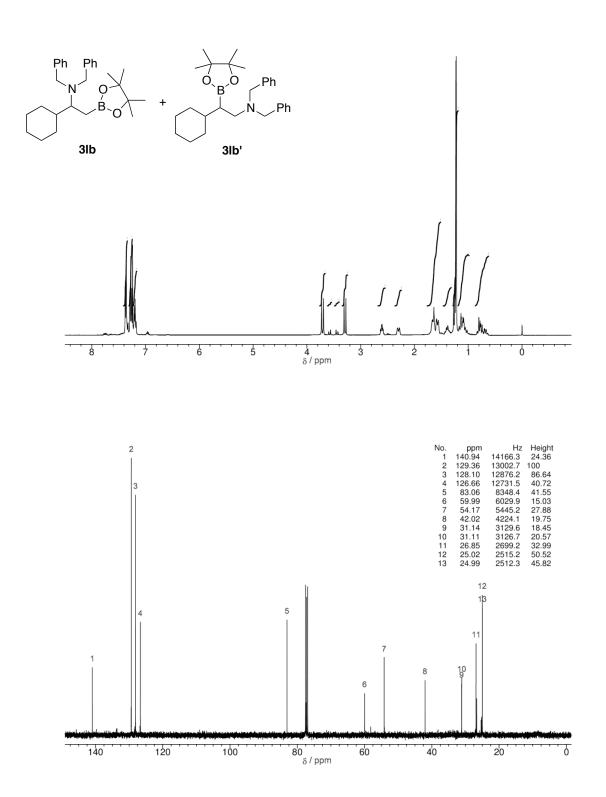
[¹H and ¹³C NMR Spectra of **3hb**]

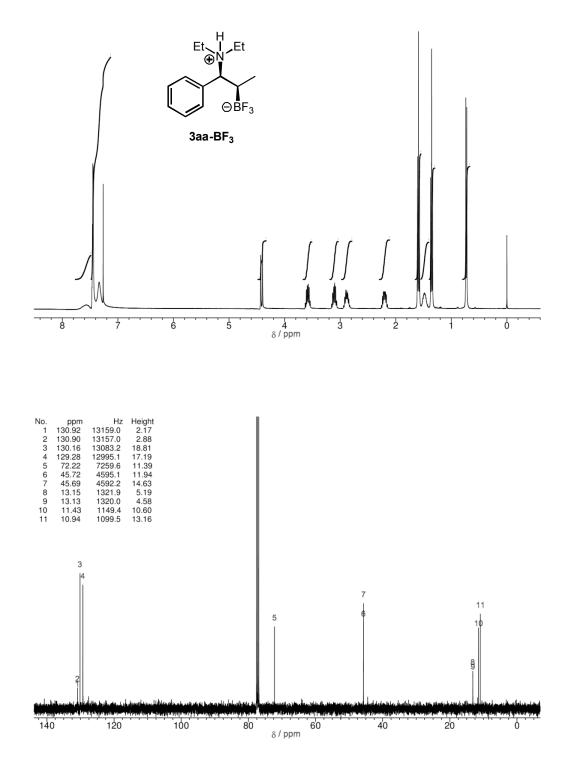


[¹H and ¹³C NMR Spectra of **3ib**]

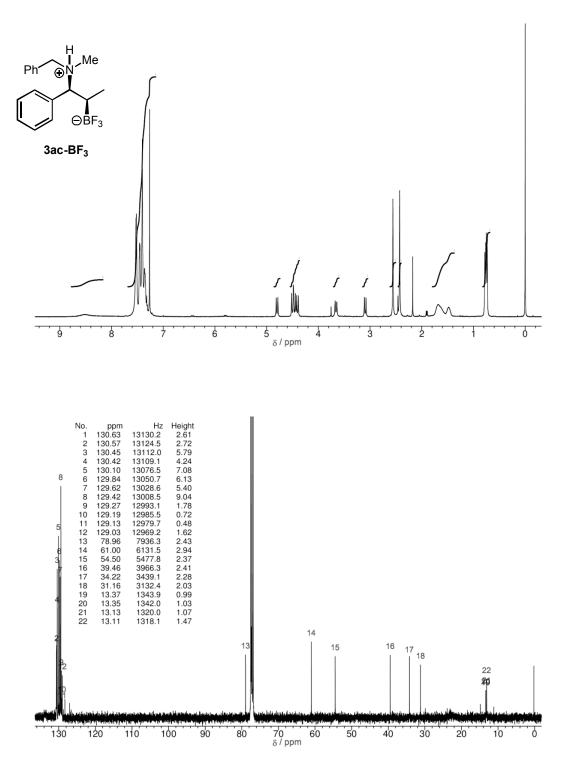


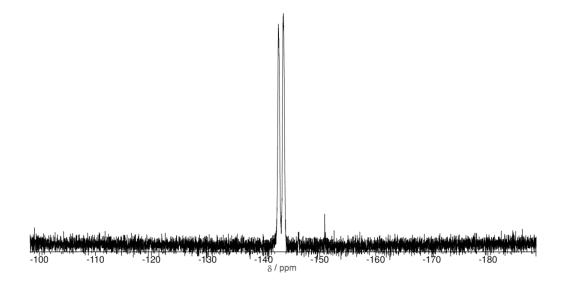
S42

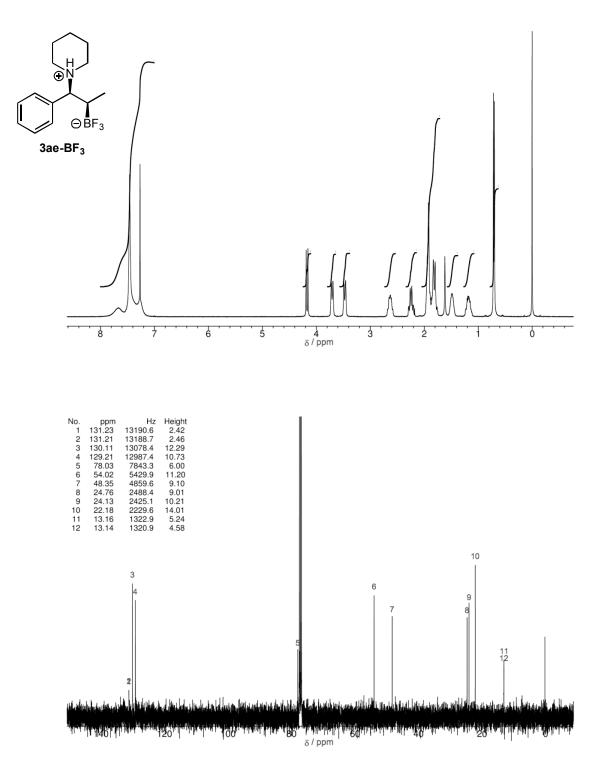


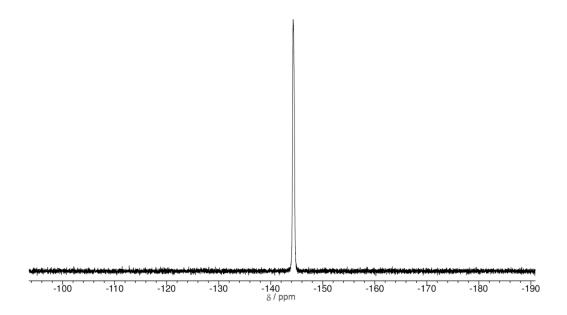

[¹H and ¹³C NMR Spectra of **3kb**]

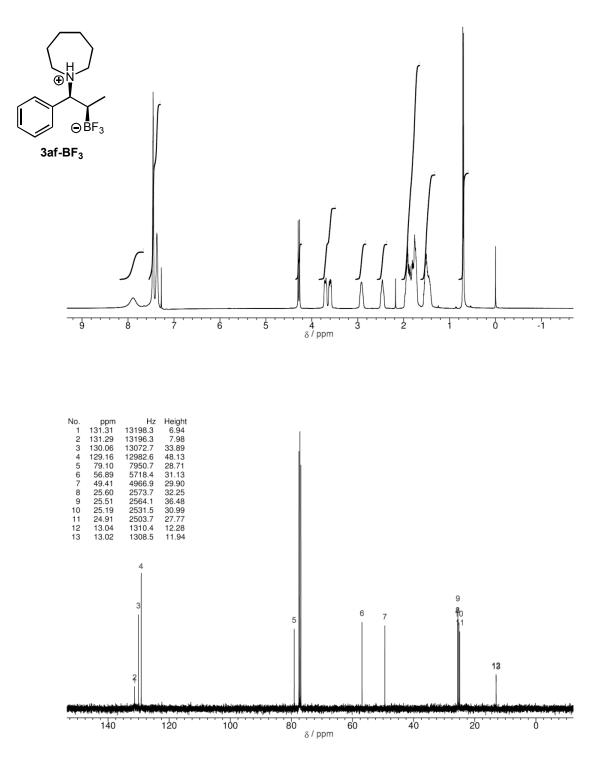
[¹H and ¹³C NMR Spectra of a 90:10 mixture of **3lb** and **3lb'**]

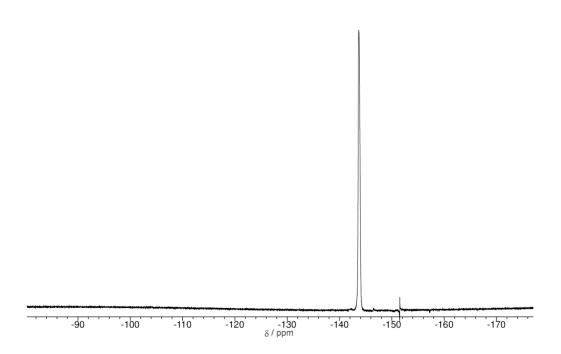


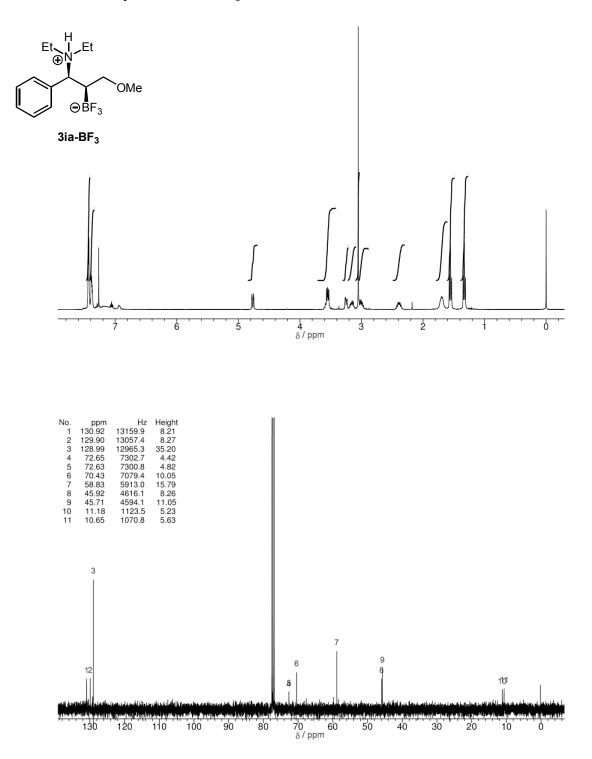

[¹H, ¹³C, and ¹⁹F NMR Spectra of **3aa-BF**₃]

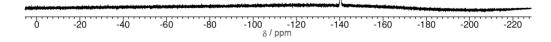

-90	-100	-110	-120	-130	-140 δ / ppm	-150	-160	-170	-180	-190

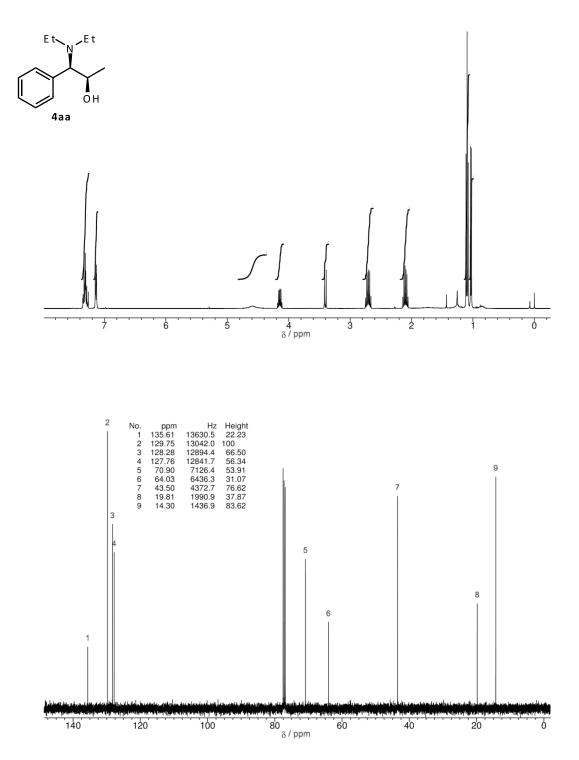

[¹H, ¹³C, and ¹⁹F NMR Spectra of **3ac-BF**₃]



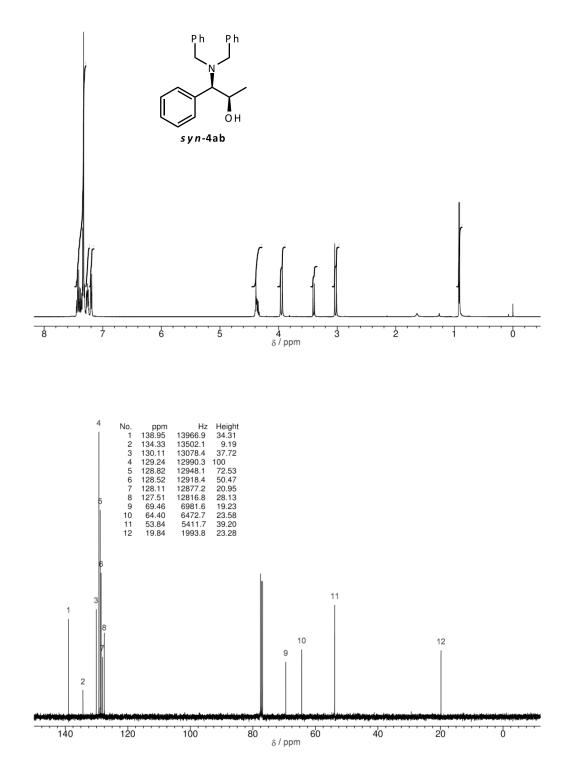

[¹H, ¹³C, and ¹⁹F NMR Spectra of **3ae-BF**₃]

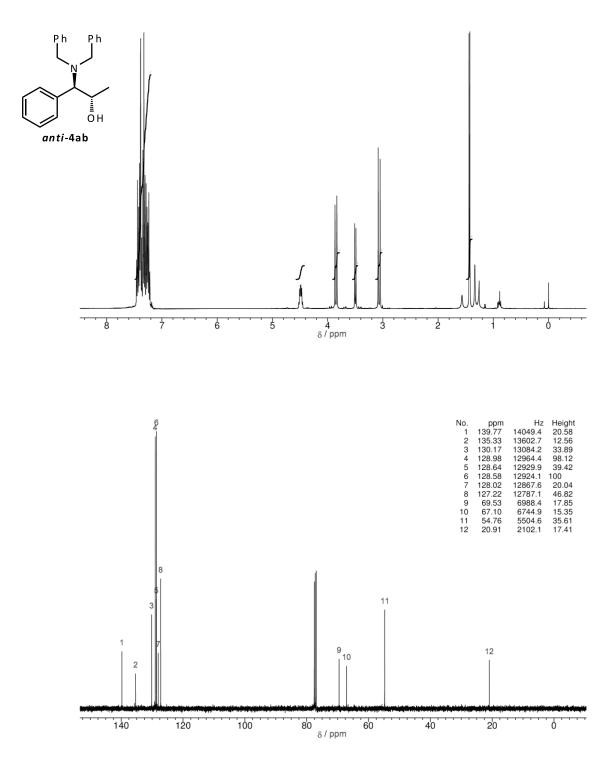


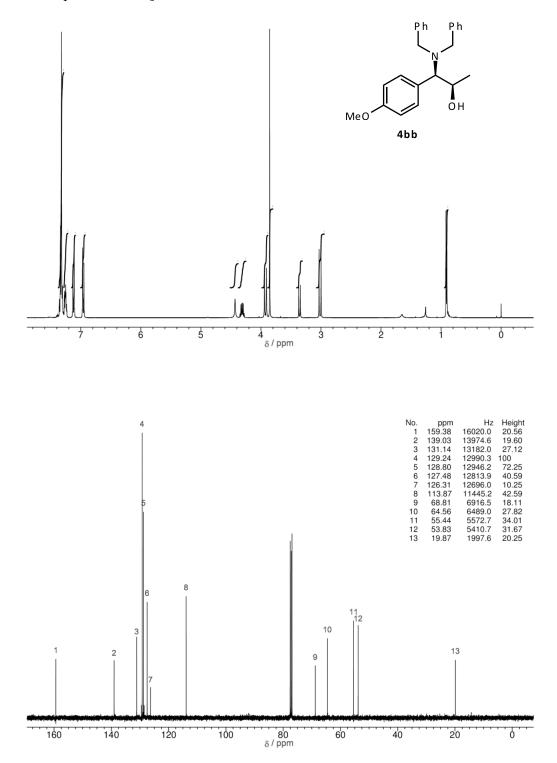

[¹H, ¹³C, and ¹⁹F NMR Spectra of **3af-BF**₃]

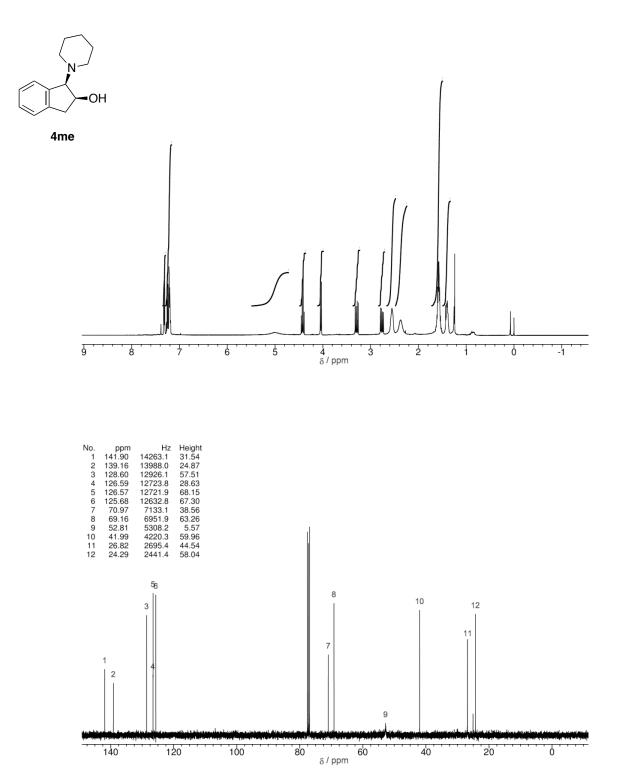


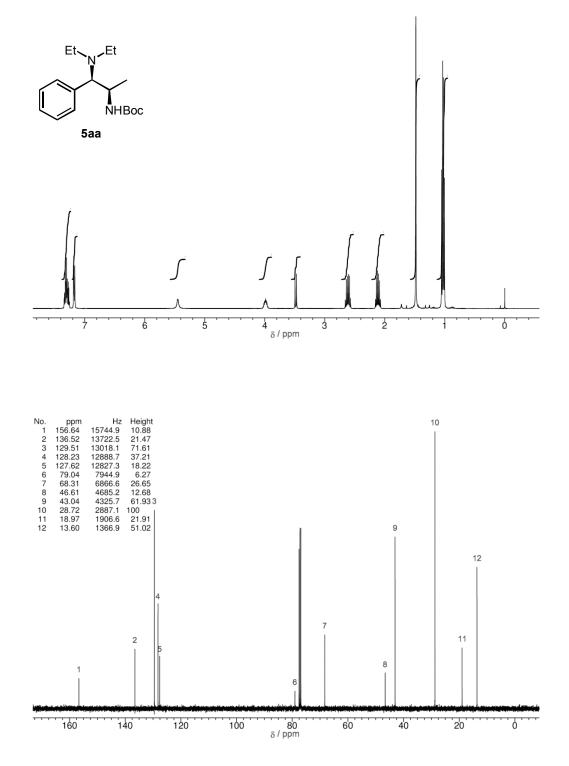
[¹H, ¹³C, and ¹⁹F NMR Spectra of **3ia-BF**₃]




[¹H and ¹³C NMR Spectra of **4aa**]


[¹H and ¹³C NMR Spectra of *syn*-4ab]


[¹H and ¹³C NMR Spectra of *anti*-4ab]


[¹H and ¹³C NMR Spectra of **4bb**]

[¹H and ¹³C NMR Spectra of **4me**]

[¹H and ¹³C NMR Spectra of **5aa**]

