## Supporting Information

# Highly Enantiospecific Platinum-Catalyzed Cycloisomerizations: Synthesis of Enantioenriched Oxabicycloheptene Derivatives 

Eric T. Newcomb and Eric M. Ferreira*
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
emferr@mail.colostate.edu

## Table of Contents

Additional References ..... S3
Materials and Methods ..... S4
Enyne Cycloisomerizations ..... S5
Optimization Studies ..... S13
Additional Reactions ..... S17
Substrate Syntheses ..... S18
Crystallographic Data ..... S31
NMR Spectra ..... S37
HPLC Traces ..... S109

## Additional References

Supplemental references related to footnote 5:
(a) Brissy, D.; Skander, M.; Retailleau, P.; Marinetti, A. Organometallics 2007, 26, 5782-5785. (b) Brissy, D.; Skander, M.; Retailleau, P.; Frison, G.; Marinetti, A. Organometallics 2009, 28, 140-151. (c) Deschamps, N. M.; Elitzin, V. I.; Liu, B.; Mitchell, M. B.; Sharp, M. J.; Tabet, E. A. J. Org. Chem. 2011. 76, 712-715. (d) Jullien, H.; Brissy, D.; Sylvain, R.; Retailleau, P.; Naubron, J.-V.; Gladiali, S.; Marinetti, A. Adv. Synth. Catal. 2011, 353, 1109-1124. (e) Teller, H.; Fürstner, A. Chem. Eur. J. 2011, 17, 7764-7767. (f) Pradal, A.; Chao, C.-M.; Toullec, P. Y.; Michelet, V. Beilstein J. Org. Chem. 2011, 7, 1021-1029.

Materials and Methods: Reactions were performed under an argon atmosphere unless otherwise noted. Tetrahydrofuran, ether, dichloromethane and toluene were purified by passing through activated alumina columns. All other reagents were used as received unless otherwise noted. Commercially available chemicals were purchased from Alfa Aesar (Ward Hill, MA), Sigma-Aldrich (St. Louis, MO), Oakwood Products, (West Columbia, SC), Strem (Newburport, MA) and TCI America (Portland, OR). Qualitative TLC analysis was performed on 250 mm thick, $60 \AA$ Å, glass backed, F254 silica (Silicycle, Quebec City, Canada). Visualization was accomplished with UV light and exposure to $p$-anisaldehyde or $\mathrm{KMnO}_{4}$ solutions followed by heating. Flash chromatography was performed using Silicycle silica gel (230-400 mesh). ${ }^{1} \mathrm{H}$ NMR spectra were acquired on either a Varian Mercury 300 (at 300 MHz ), or a Varian 400 MR (at 400 MHz ) and are reported relative to $\mathrm{SiMe}_{4}(\delta 0.00) .{ }^{13} \mathrm{C}$ NMR spectra were acquired on a Varian 400 MR (at 100 MHz ) and are reported relative to $\mathrm{SiMe}_{4}(\delta 0.0)$. All IR spectra were obtained on NaCl plates (film) with a Bruker Tensor 27. All gas chromatography was performed on a Varian CP-3800 gas chromatograph. All optical rotations were obtained on a Rudolph Research Analytical Autopol III Polarimeter. High resolution mass spectrometry data were acquired by the Colorado State University Central Instrument Facility on an Agilent 6210 TOF LC/MS.

## Enyne Cycloisomerizations

General procedure for the platinum catalyzed cycloisomerization of oxygen-tethered 1,6enynes. To a solution of enyne in THF ( 0.030 M ) under argon was added $\mathrm{PtCl}_{2}(7 \mathrm{~mol} \%)$. The resulting mixture was sealed and stirred at $70^{\circ} \mathrm{C}$. Upon completion, as deteremined by TLC, the reaction mixture was allowed to cool to ambient temperature. The mixture was then diluted with hexanes and passed through a small plug of alumina. The solvent was concentrated in vacuo and the crude residue was purified by flash chromatography.

General Notes: Without the addition of triethylamine to the flash chromatography eluent, decreased yields were observed. For ethereal enynes bearing a crotyl substituent (e.g., 12e), the $(E)$-crotyl bromide that was used as the starting material precursor featured a small amount $(\sim 5 \%)$ of the corresponding $(Z)$-isomer. This isomer was carried through the enyne synthesis in forming the ether products, as well as the cycloisomerizations to form the bicycles. These isomers were generally inseparable from the major compound, and therefore small amounts are observed in the NMR spectra.


Bicycle 13e. To a solution of enyne 12e $(25.0 \mathrm{mg}, 0.109 \mathrm{mmol})$ in THF ( $3.63 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(2.0 \mathrm{mg}, 0.00763 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 40 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow 98.5: 1: 0.5$ hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 3 e}\left(19.9 \mathrm{mg}, 80 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.63$ in $\left.9: 1 \mathrm{Hexanes} / \mathrm{Et}_{2} \mathrm{O}\right)$ as a yellow oil.

Bicycle 13e: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.20-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{dt}, J=8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (s, 1H), $4.17(\mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.49-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 156.3,142.5,129.8,128.7,126.5,104.4,62.9,33.0,30.1,27.3,26.1,20.5$, 20.4, 15.0; IR (film) 2972, 2874, 1716, $1493 \mathrm{~cm}^{-1}$; HRMS (ESI+) $\mathrm{m} / \mathrm{z}$ calc'd for ( $\mathrm{M}+\mathrm{H}$ ) ${ }^{+}$ $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}\right]^{+}: 229.1587$, found 229.1582; $[\alpha]_{\mathrm{D}}{ }^{31}=+18.27\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $97 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 1\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major isomer 5.01 min , minor isomer 5.36 min ).


Bicycle 15a. To a solution of enyne $\mathbf{1 4 a}(35.1 \mathrm{mg}, 0.121 \mathrm{mmol})$ in THF ( $4.03 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(2.3 \mathrm{mg}, 0.00847 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 20 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes/ $\mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 a}\left(32.2 \mathrm{mg}, 92 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.37$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a white solid.

Bicycle 15a: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 7.07-6.84 (m, 8H), 6.70-6.67 (m, 2H), $5.24(\mathrm{~s}, 1 \mathrm{H})$, 4.23 (dd, $J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22$ (m, 1H), $2.06(\mathrm{dt}, J=5.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 157.0,141.1,138.5,130.4,128.5,127.9,126.6,125.8,104.3,62.6,36.9,33.0$, $32.4,29.7,20.4,20.2$; IR (film) 2975, 1720, 1601, $1496 \mathrm{~cm}^{-1}$; HRMS (DART+) $\mathrm{m} / \mathrm{z}$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}:$291.1743, found 291.1742; $[\alpha]_{\mathrm{D}}{ }^{32}=+5.32\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $98 \%$ by HPLC analysis (Chiralpak IC, hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 210 nm , major isomer 8.82 min , minor isomer 8.47 min ).


Bicycle 15b. To a solution of enyne $\mathbf{1 4 b}(68.0 \mathrm{mg}, 0.203 \mathrm{mmol})$ in THF ( $6.78 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(3.8 \mathrm{mg}, 0.0142 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70^{\circ} \mathrm{C}$ and stirred at that temperature for 27 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 3 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 b}\left(47.8 \mathrm{mg}, 70 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.47$ in $9: 1$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ as a colorless oil.

Bicycle 15b: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.97(\mathrm{~m}, 8 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H})$, $4.06(\mathrm{dd}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-$ $2.90(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dtd}, J=13.7,6.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dt}, J=7.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{dd}, J=$ $5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $156.6,142.1,139.3,129.9,128.7,128.5,127.7,127.5,126.8,103.9,72.9,70.5,62.7,32.9,31.2$, 27.4, 26.9, 20.4, 20.3; IR (film) 2963, 2866, 1664, $1361 \mathrm{~cm}^{-1}$; HRMS (DART + ) $\mathrm{m} / \mathrm{z}$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 335.2011$, found 335.2008; $[\alpha]_{\mathrm{D}}{ }^{33}=+64.26\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $98 \%$ by hydroboration/oxidation and HPLC analysis:


To a solution of bicycle $\mathbf{1 5 b}(10.0 \mathrm{mg}, 0.030 \mathrm{mmol})$ in hexanes $(300 \mu \mathrm{l})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(5.6 \mu \mathrm{l}, 2.0 \mathrm{M}$ in hexanes, 0.0105 mmol$)$ dropwise. The resulting solution was stirred at ambient temperature for 3 h , cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{EtOH}(38 \mu \mathrm{l})$ was added, followed by aq. $\mathrm{NaOH}(12 \mu \mathrm{l}, 3 \mathrm{M})$, and aq. $\mathrm{H}_{2} \mathrm{O}_{2}(190 \mu \mathrm{l}, 35 \%)$. The resulting mixture was allowed to warm to ambient temperature and stirred overnight. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $3 \times 10 \mathrm{~mL}$ ). The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(1 \times 5 \mathrm{~mL})$, then brine ( $1 \times 5$ mL ), and then dried over $\mathrm{MgSO}_{4}$. The solvent was removed in vacuo and the resulting residue was purified by flash chromatography $\left(9: 1 \rightarrow 4: 1\right.$ hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ eluent) affording alcohol $\mathbf{S 1}(7.5$ $\mathrm{mg}, 71 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.30$ in $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

The ee was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel IA, 3\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \boldsymbol{\lambda}=210 \mathrm{~nm}$, major isomer 7.96 min , minor isomer 9.08 min ).


Bicycle 15c. To a solution of enyne $\mathbf{1 4 c}(44.1 \mathrm{mg}, 0.193 \mathrm{mmol})$ in THF ( $6.44 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(3.6 \mathrm{mg}, 0.0135 \mathrm{mmol})$. The resulting mixture was sealed, heated to $75^{\circ} \mathrm{C}$ and stirred at that temperature for 36 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (90:8:2:1 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 40:8:2:1 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $15 \mathrm{c}\left(25.9 \mathrm{mg}, 59 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.71 \mathrm{in}$ 15:4:1 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ ) as a yellow oil.

Bicycle 15c: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}$, $1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.97(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.19$ (dddd, $J=8.7$, $3.4,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 157.6, 146.9, 128.7, 128.2, 127.9, 127.6, 126.1, 95.3, 61.9, 22.4, 26.5, 26.2, 24.7, 20.8, 8.7; IR (film) 2963, 2871, 1668, $1492 \mathrm{~cm}^{-1}$; HRMS (DART+) $\mathrm{m} / \mathrm{z}$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}\right]^{+}: 229.1592$, found 229.1587; $[\alpha]_{\mathrm{D}}{ }^{30}=+2.13\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $96 \%$ by hydroboration/oxidation and HPLC analysis:


To a solution of bicycle $\mathbf{1 5 c}(5.3 \mathrm{mg}, 0.0232 \mathrm{mmol})$ in hexane $(350 \mu \mathrm{l})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(3.8 \mu \mathrm{l}, 2.0 \mathrm{M}$ in hexanes, 0.00690 mmol$)$ dropwise. The resulting solution was stirred at ambient temperature for 3 h , cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{EtOH}(40 \mu \mathrm{l})$ was added, followed by aq. $\mathrm{NaOH}(12 \mu \mathrm{l}, 3 \mathrm{M})$, and aq. $\mathrm{H}_{2} \mathrm{O}_{2}(190 \mu \mathrm{l}, 30 \%)$. The resulting mixture was allowed to warm to ambient temperature and stirred for 20 h . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 10 mL ). The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(1 \times 5 \mathrm{~mL})$, then brine $(1 \times 5 \mathrm{~mL})$, and then dried over $\mathrm{MgSO}_{4}$. The solvent was removed in vacuo and the resulting residue was purified by flash chromatography ( $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent) affording alcohol $\mathbf{S 2}$ $\left(5.0 \mathrm{mg}, 88 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.30$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless solid.

The ee was determined to be $96 \%$ by HPLC analysis (Daicel Chiralcel IC, 0.5\% 2-propanol in hexane, $1.2 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major isomer 4.76 min , minor isomer 5.14 min ).


Bicycle 15d. To a solution of enyne $\mathbf{1 4 d}(29.9 \mathrm{mg}, 0.131 \mathrm{mmol})$ in THF ( $4.38 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(2.4 \mathrm{mg}, 0.00917 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 26 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 d}\left(25.0 \mathrm{mg}, 83 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.42$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

Bicycle 15d: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.15(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 157.6, 143.0, 129.5, 128.4, 126.4, 103.7, 68.2, 32.7, 20.3, 28.0, 22.2, 20.6, 20.4, 16.6; IR (film) 2964, 2870, 1666, $1446 \mathrm{~cm}^{-1}$; HRMS (DART+) $\mathrm{m} / \mathrm{z}$ calc'd for (M + $\mathrm{H})^{+}\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}\right]^{+}: 229.1592$, found 229.1587; $[\alpha]_{\mathrm{D}}{ }^{32}=+55.32\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 1\% 2-propanol in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 4.51 min , minor isomer 4.20 min ).


Bicycle 15e. To a solution of enyne $\mathbf{1 4 e}(30.1 \mathrm{mg}, 0.124 \mathrm{mmol})$ in THF ( $4.13 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(2.3 \mathrm{mg}, 0.00868 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 24 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 e}\left(24.9 \mathrm{mg}, 83 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.86$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

Bicycle 15e: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 7.23-7.17 (m, 4H), 7.13-7.08 (m, 1H), $5.01(\mathrm{~s}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 156.1,141.4,131.4,128.7,126.5,106.2,69.0,32.6,31.2$, 29.8, 26.3, 20.5, 20.4, 12.5, 11.6; IR (film) 2963, 2871, 1663, 1469, $1384 \mathrm{~cm}^{-1}$; HRMS (DART+) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}$: 243.1743, found 243.1746; $[\alpha]_{\mathrm{D}}{ }^{32}=+351.49(c=0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

The $e e$ was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 1\% 2-propanol in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major isomer 4.30 min , minor isomer 3.96 min ).


Bicycle 15f. To a solution of enyne $\mathbf{1 4 f}(30.1 \mathrm{mg}, 0.124 \mathrm{mmol})$ in THF ( $4.13 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(2.3 \mathrm{mg}, 0.00868 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 48 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 f}\left(18.1 \mathrm{mg}, 60 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.37$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a yellow oil.

Bicycle 15f: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H})$, $4.12(\mathrm{dd}, J=11.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=11.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (dquintet, $J=13.7,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 156.0, 144.5, 129.3, 128.7, 128.1, 127.9, 126.2, 98.8, $62.0,33.3,30.5,29.4,29.2,25.3,20.7,20.6,16.6$; IR (film) 2966, 2870, $1666,1492 \mathrm{~cm}^{-1}$;

HRMS (DART + ) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}$: 243.1743, found 243.1752; $[\alpha]_{\mathrm{D}}{ }^{30}=$ $+208.09\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $92 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 1\% 2-propanol in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major isomer 4.31 min , minor isomer 4.68 min ).


Bicycle $\mathbf{1 5 g}$. To a solution of enyne $\mathbf{1 4 g}(31.7 \mathrm{mg}, 0.188 \mathrm{mmol})$ in THF ( $3.93 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(2.1 \mathrm{mg}, 0.00782 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 26 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a short plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $99.5: 0.5$ hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow 97.5: 2: 0.5$ hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 g}\left(24.0 \mathrm{mg}, 80 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.33$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

Bicycle 15g: NMR (400 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 7.24-7.18 (m, 4H), 7.11-7.07 (m, 1H), 4.99 (s, 1H), 4.00 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.64$ (ddd, $J=14.2,7.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.27$ (ddd, $J=14.0,7.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.06$ (d, $J=$ $1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 155.7$, 142.3, 131.1, 128.8, 128.2, 127.9, 126.4, 106.6, 68.5, 32.63, 32.61, 30.5, 30.0, 29.0, 26.9, 23.1, 21.9, 21.6, 21.3, 20.5, 20.4; IR (film) 2936, 2869, 1664, 1602, $1447 \mathrm{~cm}^{-1}$; HRMS (DART + ) $m / z$ calc'd for $(M+H)^{+}\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}+\mathrm{H}\right]^{+}: 269.1900$, found 269.1900; $[\alpha]_{\mathrm{D}}{ }^{32}=$ $+113.62\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The ee was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 100\% hexane, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 4.78 min , minor isomer 12.69 min ).


Bicycle 15h. To a solution of enyne $\mathbf{1 4 h}(6.5 \mathrm{mg}, 0.0285 \mathrm{mmol})$ in THF ( $967 \mu \mathrm{l}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(0.5 \mathrm{mg}, 0.00203 \mathrm{mmol})$. The resulting mixture was sealed, heated to 70 ${ }^{\circ} \mathrm{C}$ and stirred at that temperature for 17 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 h}(4.4 \mathrm{mg}, 68 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.42$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

Bicycle 15h: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.15-7.01$ (comp. m, 5H), 4.99 (s, 1 H ), 4.09 (dd, $\mathrm{J}=$ $10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.68 (ddd, J = 10.3, 2.2, $0.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.51(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.24$ (m, $1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 157.5,138.9,129.1,126.1,103.8,62.8,35.1,33.0,28.5,20.6,20.3,20.2,18.4$; IR (film) 2974 , 1715, 1602, $1498 \mathrm{~cm}^{-1}$; HRMS (DART + ) $\mathrm{m} / \mathrm{z}$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}\right]^{+}$: 229.1587, found 229.1600; $[\alpha]_{\mathrm{D}}{ }^{33}=-8.40\left(c=0.076, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $92 \%$ by HPLC analysis (Daicel Chiralcel IC, 0.1\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major isomer 4.43 min , minor isomer 4.23 min ).


Bicycle 15i. To a solution of enyne $\mathbf{1 4 i}(25.0 \mathrm{mg}, 0.0517 \mathrm{mmol})$ in THF $(1.73 \mathrm{~mL}, 0.030 \mathrm{M})$ under argon was added $\mathrm{PtCl}_{2}(1.0 \mathrm{mg}, 0.00364 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 20 h . Once cooled to ambient temperature, the mixture was diluted with hexanes filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 1: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}\left(0.5 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ ) eluent) affording bicycle $15 i\left(21.4 \mathrm{mg}, 86 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.53$ in $1: 1$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ as a white semisolid.

Bicycle 15i: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 8.15-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}$, 2 H ), 7.21-7.18 (s, 1H), 7.08-6.95 (comp. m, 3H), 6.84-6.76 (comp. m, 3H), 6.73-6.69 (m, 2H), 6.55-6.51 (m, 1H), 4.15 (dd, $J=10.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, $J=10.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (d, $J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.08$ (d, $J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 157.9,144.2,138.0,136.3$, $135.8,131.6,129.8,128.4,128.2,128.1,127.9,127.0,126.0,125.6,124.9,123.2,122.3,120.8$, 114.1, 102.6, 62.5, 36.2, 33.0, 28.8, 23.6, 21.1, 20.4, 20.2; IR (film) 2962, 1494, 1447, $1376 \mathrm{~cm}^{-}$ ${ }^{1}$; LRMS (ESI + ) $m / z$ calc' d for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}$: 484.2, found 484.2; $[\alpha]_{\mathrm{D}}{ }^{32}=$ $+14.89\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $97 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 10\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major isomer 5.74 min , minor isomer 7.09 min ).


Bicycle 15j. To a solution of enyne $\mathbf{1 4 j}(60.0 \mathrm{mg}, 0.167 \mathrm{mmol})$ in THF ( $5.57 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(3.2 \mathrm{mg}, 0.0117 \mathrm{mmol})$. The resulting mixture was sealed, heated to
$70^{\circ} \mathrm{C}$ and stirred at that temperature for 29 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 3 \mathrm{~cm}$, 9:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes/ $\mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 j}\left(51.6 \mathrm{mg}, 86 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.50 \mathrm{in} 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

Bicycle 15j: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~s}$, $1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dt}, J=5.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.13(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 158.0$, 138.1, 129.5, 128.3, 126.4, 100.5, 64.5, 62.7, 34.9, 33.1, 26.7, 26.1, 25.5, 20.5, 20.3, 18.5, 5.4; IR (film) 2956, 2858, 1729, 1471, $1255 \mathrm{~cm}^{-1}$; HRMS (DART+) m/z calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}\right]^{+}: 359.2406$, found 359.2403; $[\alpha]_{\mathrm{D}}{ }^{31}=-90.21(c=0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

The ee was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel IC, $100 \%$ hexane, 1.5 $\mathrm{mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major isomer 4.68 min , minor isomer 4.45 min ).


Bicycle 15k. To a solution of enyne $\mathbf{1 4 k}(110 \mathrm{mg}, 0.298 \mathrm{mmol})$ in THF $(9.93 \mathrm{~mL}, 0.030 \mathrm{M})$ under argon was added $\mathrm{PtCl}_{2}(5.4 \mathrm{mg}, 0.0201 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70^{\circ} \mathrm{C}$ and stirred at that temperature for 9 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 4.5 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 97.5:2:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 5 k}$ ( $101 \mathrm{mg}, 92 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.36$ in $9: 1 \mathrm{Hexanes} / \mathrm{Et}_{2} \mathrm{O}$ ) as a white solid.

Bicycle 15k: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.02-6.92(\mathrm{~m}, 7 \mathrm{H}), 6.31-6.28(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H})$, 4.16 (dd, $J=10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.77 (dd, $J=10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.63 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.30$2.20(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.07$ (app. t, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ $157.1,140.5,137.6,131.0,130.2,129.6,128.6,126.8,119.7,104.0,62.4,36.1,33.0,32.5,29.8$, 20.4, 20.2; IR (film) 3032, 2905, 1620, 1530, $1095 \mathrm{~cm}^{-1}$; HRMS (ESI+) $\mathrm{m} / \mathrm{z}$ calc'd for (M+H) ${ }^{+}$ $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrO}+\mathrm{H}\right]^{+}: 369.0849$, found 369.0832; $[\alpha]_{\mathrm{D}}^{32}=-15.75\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 0.5\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major isomer 6.45 min , minor isomer 8.68 min ).

## Optimization Studies

## Catalyst Evaluation

|  |  | conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| entry | catalyst (mol \%) | solvent, temp ( ${ }^{\circ} \mathrm{C}$ ) | $t(\mathrm{~h})$ | yield | $e e(\%)$ | es (\%) ${ }^{\text {a }}$ |
| 1 | $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuNTf} \mathrm{f}_{2}(5)$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23$ | 0.5 | 52 | 84 | 87 |
| 2 | $[\mathrm{Ir}(\mathrm{dbcot}) \mathrm{Cl}]_{2}(2.5)^{\mathrm{b}, \mathrm{c}}$ | $\mathrm{PhCH}_{3}, 100$ | 3 | 68 | 84 | 87 |
| 3 | $\mathrm{PtCl}_{4}$ (5) | $\mathrm{PhCH}_{3}, 23$ | 1 | 27 | 90 | 93 |
| 4 | $\mathrm{PtCl}_{2}$ (5) | $\mathrm{PhCH}_{3}, 60$ | 22 | 78 | 86 | 89 |
| 5 | $\mathrm{PtCl}_{2}(5)$ | THF, 60 | 18 | 87 | 88 | 91 |
| 6 | $\mathrm{PtCl}_{2}(5)^{\text {b }}$ | THF, 60 | 14 | 86 | 86 | 89 |
| 7 | $\left[\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{PtCl}_{2}\right]_{2}$ (2.5) | THF, 23 | 28 | 84 | 86 | 89 |
| 8 | $\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ (7) | THF, 60 | 48 | 64 | 87 | 90 |
| 9 | $\mathrm{PtCl}_{2}(7)$ | THF, 70 | 18 | 90 | 87 | 90 |
| ${ }^{\text {a }}$ Enantiospecificity $(e s)=\left[\left(e e_{\text {product }}\right) /\left(e e_{\text {substrate }}\right)\right] \times 100 \%$. <br> b Under 1 atm CO. <br> ${ }^{\text {c }}$ dbcot: dibenzo[a,e]cyclooctatetraene |  |  |  |  |  |  |

General Procedure for Experiments in Table 1. To a solution of enyne 10 in the listed solvent under argon was added catalyst. The resulting mixture was sealed, heated to the prescribed temperature and stirred for the listed time. For entry 7, the solution was purged with a balloon of CO prior to heating. Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography. The enantiomeric excess of bicycle 11 was analyzed by HPLC.


Bicycle 11, entry 9. To a solution of enyne $10(20.0 \mathrm{mg}, 0.0567 \mathrm{mmol})$ in THF ( $1.90 \mathrm{~mL}, 0.030$ $\mathrm{M})$ under argon was added $\mathrm{PtCl}_{2}(0.8 \mathrm{mg}, 0.00285 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 18 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 98.5:1:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $11\left(17.9 \mathrm{mg}, 90 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.73$ in $9: 1$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ as a white solid.

Bicycle 11: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.85$ (comp. m, 11H), 6.72-6.70 (m, $2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.73$ (comp. m, $3 \mathrm{H}), 2.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 150.9$, $142.0,140.8,138.4,130.3,128.9,128.6,128.5,128.00,127.97,126.6,126.2,125.8,107.1,62.5$, 37.2, 36.6, 33.7, 32.4, 29.3; IR (film) 3061, 2923, 2863, 1665, $1497 \mathrm{~cm}^{-1}$; HRMS (ESI+) $\mathrm{m} / \mathrm{z}$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}+\mathrm{H}\right]^{+}: 353.1905$, found 353.1891; $[\alpha]_{\mathrm{D}}{ }^{30}=-0.43\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $87 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 10\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 6.04 min , minor isomer 12.23 min ).

## Propargylic Substituent Evaluation



Bicycle 13a. To a solution of enyne 12a ( $10.0 \mathrm{mg}, 0.0499 \mathrm{mmol}$ ) in THF ( $1.67 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(0.9 \mathrm{mg}, 0.00350 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 12 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 98.5:1:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 3 a}\left(9.1 \mathrm{mg}, 90 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.59$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a yellow oil.

Bicycle 13a: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.25-7.07$ (comp. m, 5H), 5.09-5.05 (s, 1H), 4.12 (dd, $J=10.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.80(\mathrm{dd}, J=10.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.43$ (quintet, $J=6.0 \mathrm{~Hz}$, 1 H ), 1.20-1.18 (m, 1H), 1.20-1.13 (comp. m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 147.7, 142.3, $129.7,128.7,126.5,106.7,62.7,29.4,27.5,26.5,20.0,15.0$; IR (film) 2929, 1715, 1495, 1447 $\mathrm{cm}^{-1}$; HRMS (ESI + ) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}+\mathrm{H}\right]^{+}: 201.1274$, found 201.1273; $[\alpha]_{\mathrm{D}}{ }^{31}$ $=-31.92\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $80 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 5\% 2-propanol in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 9.67 min , minor isomer 10.60 min ).


Bicycle 13b. To a solution of enyne 12b ( $25.0 \mathrm{mg}, 0.103 \mathrm{mmol}$ ) in THF ( $3.43 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(1.9 \mathrm{mg}, 0.00722 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 24 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 98.5:1:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle 13b ( $21.1 \mathrm{mg}, 84 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.66$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a yellow oil.

Bicycle 13b: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.22-7.18$ (comp. m, 4H), 7.13-7.07 (m, 1H), 5.15 (s, 1 H ), 4.14 (dd, $J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.76 (dd, $J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.03-1.82 (comp. m, 4H), 1.48 (quintet, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.23-1.17 (comp. m, 2H), $0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 150.5,142.3$, 129.7, 128.7, 126.5, 107.8, 62.7, 43.9, 29.9, 27.5, 26.42, 26.37, 22.7, 22.6, 15.0; IR (film) 2960, 2872, 1727, $1495 \mathrm{~cm}^{-1} ;$ HRMS (ESI + ) $\mathrm{m} / \mathrm{z}$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}: 243.1744$, found 243.1746; $[\alpha]_{\mathrm{D}}{ }^{30}=-13.19\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $78 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 1\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 4.91 min , minor isomer 6.01 min ).


Bicycle 13c. To a solution of enyne 12c ( $10.0 \mathrm{mg}, 0.0344 \mathrm{mmol}$ ) in THF ( $1.15 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(0.6 \mathrm{mg}, 0.00238 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 16 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes/ $\mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 98.5:1:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ eluent) affording bicycle $\mathbf{1 3 c}\left(9.3 \mathrm{mg}, 93 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.53$ in $9: 1$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ as a white solid.

Bicycle 13c: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.18-6.98$ (comp. m, 10 H ), $5.06(\mathrm{~s}, 1 \mathrm{H}), 4.11$ (dd, $J=$ $10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (dd, $J=10.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.39$ (quintet, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.68(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 150.4,142.1,129.7,128.8$, 128.7, 128.6, 126.5, 126.2, 107.1, 62.8, 36.7, 33.9, 29.7, 27.4, 26.4, 15.0; IR (film) 2925, 2855, 1719, $1602 \mathrm{~cm}^{-1}$; HRMS (ESI+) $\mathrm{m} / \mathrm{z}$ calc'd for (M+H) ${ }^{+}$ $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}: 291.1744$, found 291.1735; $[\alpha]_{\mathrm{D}}{ }^{31}=-8.51\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $90 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 3\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 5.62 min , minor isomer 12.79 min ).


Bicycle 13d. To a solution of enyne $\mathbf{1 2 d}(25.0 \mathrm{mg}, 0.0932 \mathrm{mmol})$ in THF ( $3.10 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(1.7 \mathrm{mg}, 0.00652 \mathrm{mmol})$. The resulting mixture was sealed, heated to $70{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 24 h . Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a small plug of alumina ( $0.5 \times 2 \mathrm{~cm}, 9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent). The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 hexanes $/ \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ 98.5:1:0.5 hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$
eluent) affording bicycle $\mathbf{1 3 d}\left(21.0 \mathrm{mg}, 84 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.85$ in $9: 1$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ as a colorless oil.

Bicycle 13d: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.23-7.19$ (comp. m, 4H), 7.14-7.09 (m, 1H), 5.17 (s, 1 H ), 4.18 (dd, $J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.74 (dd, $J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.99-1.83 (comp. m, 4H), 1.70-1.62 (comp. m, 2H), 1.59-1.53 (m, 1H), 1.49 (quintet, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.35-1.02 (comp. m, $7 \mathrm{H}), 0.74(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 155.8,142.6,129.8,128.7$, 126.5, 104.7, 99.1, 62.8, 42.8, 31.1, 30.9, 30.2, 27.3, 26.69, 26.67, 26.6, 26.1, 15.0; IR (film) 2930, 2856, 1720, $1448 \mathrm{~cm}^{-1}$; HRMS (ESI + ) $m / z$ calc'd for $\left(\mathrm{M}+\mathrm{H}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}+\mathrm{H}\right]^{+}: 269.1900\right.$, found 269.1901; $[\alpha]_{\mathrm{D}}{ }^{28}=+10.00\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $96 \%$ by HPLC analysis (Daicel Chiralcel OJ-H, 1\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major isomer 4.15 min , minor isomer 4.56 min ).

## Additional Reactions



Cyclopropane 18. To a solution of bicycle 15a ( $36.3 \mathrm{mg}, 0.125 \mathrm{mmol}$ ) in dioxane ( 3.75 mL ) at $23{ }^{\circ} \mathrm{C}$ was added $\mathrm{OsO}_{4}\left(23.8 \mu \mathrm{l}, 4 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 0.00375 \mathrm{mmol}$ ) followed by 2,6-lutidine ( $29.0 \mu \mathrm{l}$, $0.250 \mathrm{mmol})$. To the resulting mixture was added a solution of $\mathrm{NaIO}_{4}(106 \mathrm{mg}, 0.500 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{~mL})$. The resulting reaction mixture was stirred vigorously for 48 h , at which time it was diluted with EtOAc $(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with EtOAc ( $2 \times 15 \mathrm{~mL}$ ). The combined organic layers were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \times 10 \mathrm{~mL})$, then brine ( $1 \times 10 \mathrm{~mL}$ ) and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (9:1 hexanes/EtOAc eluent) affording cyclopropane $18\left(28.9 \mathrm{mg}, 72 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.53$ in $4: 1$ hexanes/EtOAc) as a colorless oil.

Cyclopropane 18: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 9.73 (s, 1H), 7.24-7.20 (comp. m, 3H), 7.127.07 (comp. m, 3H), 7.06-7.00 (m, 2H), 6.84-6.80 (m, 2H), 4.79 (dd, $J=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dd, $J=11.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.60$ (septet, $J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.21(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.3$, $135.1,134.6,131.5,128.7,128.1,128.0,127.0,61.3,49.8,38.2,34.6,34.1,19.23,19.16$; IR (film) 2969, 1733, 1704, $1191 \mathrm{~cm}^{-1}$; HRMS (ESI + ) $m / z$ calc'd for $(\mathrm{M}+\mathrm{Na})^{+}\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$: 345.1467, found 345.1466; $[\alpha]_{\mathrm{D}}{ }^{27}=-150.43\left(c=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The $e e$ was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 15\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 6.30 min , minor isomer 12.41 min ).


Bicycle S4. To a solution of enyne $\mathbf{S 3}(50.0 \mathrm{mg}, 0.120 \mathrm{mmol})$ in THF ( $4.61 \mathrm{~mL}, 0.030 \mathrm{M}$ ) under argon was added $\mathrm{PtCl}_{2}(2.2 \mathrm{mg}, 0.00840 \mathrm{mmol})$. The resulting mixture was sealed, heated to 70 ${ }^{\circ} \mathrm{C}$ and stirred at that temperature for 15 h . Once cooled to ambient temperature, the solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (4:1 hexanes/EtOAc $\rightarrow$ 1:1 hexanes/EtOAc eluent) affording bicycle $\mathbf{S} 4$ ( $44.8 \mathrm{mg}, 90 \%$ yield, $\mathrm{R}_{\mathrm{F}}$ $=0.62$ in $1: 1$ hexanes/EtOAc) as a white solid.

The $e e$ was determined to be $80 \%$ by HPLC analysis (Daicel Chiralcel IC, 10\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, major isomer 17.97 min , minor isomer 14.04 min ). Note: The absolute configuration of $\mathbf{S 4}$ is preliminarily established.

## Substrate Syntheses

General procedure for the synthesis of propargylic alcohols using the Noyori transfer hydrogenation. To a solution of an ynone in 2-propanol ( 0.1 M ) under argon was added $\mathrm{Ru}[(S, S)-\mathrm{TsDPEN}(p-c y m e n e)]$ (.04-2 mol \%). The resulting purple solution was stirred at ambient temperature until the reaction was complete ( $2-48 \mathrm{~h}$ ). The solvent was removed in vacuo and the resulting residue was purified by flash chromatography affording the enantioenriched propargylic alcohol.


Alcohol S5. Based on the general procedure, alcohol S5 was produced in $>99 \%$ yield. All spectra matched those previously reported in the literature. ${ }^{1}$ The ee was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 5\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, S$ isomer $12.18 \mathrm{~min}, R$ isomer 6.86 min$) .[\alpha]_{\mathrm{D}}{ }^{32}=+2.98\left(c=1.0, \mathrm{CHCl}_{3}\right)(S)\left(\right.$ Lit. $[\alpha]_{\mathrm{D}}{ }^{20}=+1.52(c$ $\left.=0.6, \mathrm{CHCl}_{3}\right) 47.4 \%$ ee $\left.(S)\right)$.


Enyne 12e. To a solution of alcohol $\mathbf{S 5}(90.6 \mathrm{mg}, 0.520 \mathrm{mmol})$ in DMF $(1.73 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(22.9 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.572 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 25 min . Crotyl bromide ( $53.6 \mu \mathrm{l}, 0.520 \mathrm{mmol}$ ) was added and after 3 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The mixture was extracted with hexanes $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 9: 1 \mathrm{H} / E t O A c$ eluent) affording enyne 12 e ( 103 mg , $87 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.74$ in $4: 1$ hexanes/EtOAc) as a yellow oil.

Enyne 12e: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.47-7.42 (m, 2H), 7.33-7.29 (comp. m, 3H), 5.82$5.72(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H})$, 1.75-1.71 (m, 3H), $1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 131.9,129.8,128.4,128.3,127.6,123.2,87.6,86.4,74.8,69.8,33.4,19.0,18.1 ;$ IR (film) 2963, 1490, 1444, 1350, $\mathrm{cm}^{-1}$; HRMS (ESI + ) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}\right]^{+}$: 229.1587, found 229.1583; $[\alpha]_{\mathrm{D}}{ }^{31}=-62.55\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[^0]

Enyne 14a. To a solution of alcohol $\mathbf{S 5}(100 \mathrm{mg}, 0.575 \mathrm{mmol})$ in DMF $(1.91 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(27.6 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.896 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Cinnamyl bromide ( $85.2 \mu \mathrm{l}, 0.575 \mathrm{mmol}$ ) was added and after 3 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 10: 1$ hexanes/EtOAc eluent) affording enyne 14a ( $130 \mathrm{mg}, 78 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.55$ in 9:1 hexanes/EtOAc) as a colorless oil.

Enyne 14a: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.48-7.44 (m, 2H), 7.42-7.39 (m, 2H), 7.34-7.29 (m, $6 \mathrm{H}), 6.67$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ (ddd, $J=15.9,6.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ddd}, J=12.7,5.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.23 (ddd, $J=12.7,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (dq, $J=12.8,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 137.0, 132.7, 131.9, 128.7, 128.40, 128.36, 127.8, 126.7, 126.2, 123.1, 87.4, 86.7, 75.1, 69.7, $33.5,18.9,18.2$; IR (film) 3062, 2966, 2874, 1723, $1491 \mathrm{~cm}^{-1}$; HRMS (APCI+) $\mathrm{m} / \mathrm{z}$ calc'd for (M $+\mathrm{H})^{+}\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}+\mathrm{H}\right]^{+}:$291.1744, found 291.1752; $[\alpha]_{\mathrm{D}}{ }^{32}=-85.75\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Enyne 14b. To a solution of alcohol $\mathbf{S 5}(85.0 \mathrm{mg}, 0.488 \mathrm{mmol})$ in DMF $(1.63 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(23.4 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.585 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Bromide $\mathbf{S 6}^{2}$ $(118 \mathrm{mg}, 0.488 \mathrm{mmol})$ was added and after 6 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The mixture was extracted with hexanes $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 9: 1$ hexanes/EtOAc eluent) affording enyne 14b ( $119 \mathrm{mg}, 73 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.47 \mathrm{in} 4: 1$ hexanes $/ \mathrm{EtOAc}$ ) as a colorless oil.

Enyne 14b: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.46-7.42$ (m, 2H), 7.34 (d, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$ ), 7.327.28 (comp. m, 4H), 5.91-5.88 (comp. m, 2H), 4.53 (s, 2H), 4.37-4.32 (m, 1H), 4.10-4.03 (comp. $\mathrm{m}, 4 \mathrm{H}), 2.03(\mathrm{dq}, J=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 131.9,129.7,129.5,128.5,128.39,128.35,127.9,127.4,87.4,86.6$, 75.2, 72.4, 70.4, 69.0, 33.4, 18.9, 18.1; IR (film) 2962, 2853, 1490, 1454, $1102 \mathrm{~cm}^{-1}$; HRMS

[^1](APCI) $m / z$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2}+\mathrm{NH}_{4}\right]^{+}: 352.2277$, found 352.2276; $[\alpha]_{\mathrm{D}}{ }^{34}=-$ $83.62\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Enyne 14c. To a solution of alcohol $\mathbf{S 5}(100 \mathrm{mg}, 0.574 \mathrm{mmol})$ in DMF $(1.91 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(29.8 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.746 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Cis-crotyl bromide ${ }^{3}(77.5 \mathrm{mg}, 0.574 \mathrm{mmol}$ ) was added and after 3.5 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 15: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 c}$ ( $125 \mathrm{mg}, 95 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.56$ in $4: 1$ hexanes $/ \mathrm{EtOAc}$ ) as a colorless oil.

Enyne 14c: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.75-5.67(\mathrm{~m}$, $1 \mathrm{H}), 5.64-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=12.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=11.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dq}, J=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{6}$ ) $\delta 131.9,128.5,128.4,128.3$, 126.9, 123.2, 87.7, 86.4, 74.86, 74.85, 64.3, 33.4, 18.9, 18.2, 13.4; IR (film) 3023, 2969, 1659, 1490, 1071, $691 \mathrm{~cm}^{-1}$; HRMS (APCI) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}\right]^{+}$: 229.1592, found 229.1583; $[\alpha]_{\mathrm{D}}{ }^{30}=-182.55\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Enyne 14d. To a solution of alcohol $\mathbf{S 5}(80.0 \mathrm{mg}, 0.459 \mathrm{mmol})$ in DMF $(1.53 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(22.0 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.551 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Isobutenyl chloride ( $44.9 \mu \mathrm{l}, 0.459 \mathrm{mmol}$ ) was added and after 2.5 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 15: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 d}\left(93.1 \mathrm{mg}, 89 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.83$ in $4: 1$ hexanes $/ \mathrm{EtOAc}$ ) as a colorless oil.

Enyne 14d: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.04(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dq}, J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}$,

[^2]$J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 142.3,131.9,128.4,128.3,123.2,112.5,87.6$, 86.4, 74.9, 72.9, 33.5, 19.8, 18.9, 18.3; IR (film) 2963, 2872, 1598, 1490, $1071 \mathrm{~cm}^{-1}$; HRMS (ESI + ) $m / z$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{NH}_{4}\right]^{+}: 246.1858$, found 246.1859; $[\alpha]_{\mathrm{D}}{ }^{32}=-$ $116.81\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Enyne 14e. To a solution of alcohol $\mathbf{S 5}(90.1 \mathrm{mg}, 0.517 \mathrm{mmol})$ in DMF $(1.72 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(24.8 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.628 mmol ) in one portion. This mixture was then allowed to warm to ambient temperature and stirred for 20 min . Bromide $\mathbf{S} 7^{4}$ $(77.0 \mathrm{mg}, 0.517 \mathrm{mmol})$ was added and after 2 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 50: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 e}$ ( $91.0 \mathrm{mg}, 73 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.59$ in 9:1 hexanes/EtOAc) as a yellow oil.

Enyne 14e: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.59-5.54(\mathrm{~m}$, $1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dq}, J=$ $13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=6.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.9,131.9,128.4,128.2,123.3,123.0,87.8$, 75.1, 74.4, 33.5, 18.9, 18.3, 13.9, 13.4; IR (film) 2963, 2925, 1723, 1490, $1383 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{DART}+) \mathrm{m} / \mathrm{z}$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}+\mathrm{NH}_{4}\right]^{+}: 260.2014$, found 260.2012; $[\alpha]_{\mathrm{D}}{ }^{32}=-$ 47.87 ( $c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).


Enyne 14f. To a solution of alcohol $\mathbf{S 5}(90.1 \mathrm{mg}, 0.517 \mathrm{mmol})$ in DMF $(1.72 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(24.8 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.620 mmol$)$ in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Prenyl chloride ( $58.3 \mu \mathrm{l}, 0.517 \mathrm{mmol}$ ) was added and after 2.5 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 50: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 f}\left(105 \mathrm{mg}, 84 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.58$ in $9: 1$ hexanes/EtOAc) as a colorless oil.

[^3]Enyne 14f: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.47-7.43 (m, 2H), 7.32-7.29 (m, 3H), 5.41-5.36 (m, $1 \mathrm{H}), 4.28(\mathrm{dd}, J=11.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02(\mathrm{dq}, J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.6,131.9,128.4,128.3,123.3,121.1,87.8,86.3$, $74.8,65.5,33.4,26.0,19.0,18.3,18.2$; IR (film) $2965,2930,1723,1490,1444 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{DART}+) \mathrm{m} / \mathrm{z}$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}+\mathrm{NH}_{4}\right]^{+}: 260.2014$, found 260.2015; $[\alpha]_{\mathrm{D}}{ }^{31}=-$ $249.36\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Enyne 14g. To a solution of alcohol $\mathbf{S 5}(80.0 \mathrm{mg}, 0.459 \mathrm{mmol})$ in DMF $(1.53 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(22.0 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.551 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Bromide $\mathbf{S 8}^{5}$ ( $80.4 \mathrm{mg}, 0.459 \mathrm{mmol}$ ) was added and after 12 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with hexanes $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine $(5 \mathrm{~mL})$, and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 15: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 g}$ ( $85.2 \mathrm{mg}, 69 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.60$ in 9:1 hexanes $/ \mathrm{EtOAc}$ ) as a yellow oil.

Enyne 14g: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 7.45-7.42 (m, 2H), 6.99-6.95 (m, 3H), 5.78-5.76 (m, $1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.04(\mathrm{~m}$, $3 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.13$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 135.3,132.1,128.6,128.2,127.9,125.0,123.8,88.6,86.7,74.7$, $74.0,34.0,26.5,25.4,23.0,22.9,18.9,18.5$; IR (film) 2928, 2837, $1668,1490,1445 \mathrm{~cm}^{-1}$; HRMS (ESI + ) $m / z$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}+\mathrm{NH}_{4}\right]^{+}: 286.2165$, found 286.2163; $[\alpha]_{\mathrm{D}}{ }^{32}=$ -145.32 ( $c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).


Alcohol S10. To a solution of ketone $\mathbf{S 9}^{6}(1.00 \mathrm{~g}, 3.96 \mathrm{mmol})$ in 2-propanol ( 39.6 mL ) under argon was added $\mathrm{Ru}[(S, S)-\mathrm{TsDPEN}](p-c y m e n e)$ ( $23.8 \mathrm{mg}, 0.0396 \mathrm{mmol}$ ), and the resulting solution was stirred at ambient temperature for 48 h . The solvent was then removed by rotary evaporation and the resulting residue was immediately purified by flash chromatography (9:1 hexanes/EtOAc eluent) to afford alcohol $\mathbf{S 1 0}\left(993 \mathrm{mg}, 99 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.42$ in $4: 1 \mathrm{H} / \mathrm{EtOAc}$ eluent) as a colorless oil.

[^4]Alcohol S10: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.20(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dtd}, J=13.5,6.7$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.68 (br s, 1H), 1.08 (comp. m, $J=2.5 \mathrm{~Hz}, 17 \mathrm{H}$ ), 1.03 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.00 (d, $J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 107.5,86.4,85.6,34.7,18.8,18.3,17.4,11.3$; IR (film) 3356, 2960, 2170, $1464 \mathrm{~cm}^{-1}$; HRMS (DART + ) $m / z$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{OSi}+\right.$ $\left.\mathrm{NH}_{4}\right]^{+}: 272.2404$, found 272.2411; $[\alpha]_{\mathrm{D}}{ }^{30}=-10.64\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The ee was determined $99 \%$ by conversion to the benzoate and HPLC analysis:



To a solution of alcohol $\mathbf{S 1 0}(10.0 \mathrm{mg}, .0393 \mathrm{mmol})$, triethylamine ( $11.0 \mu \mathrm{~L}, .0786 \mathrm{mmol}$ ), and DMAP ( $0.48 \mathrm{mg}, .00393 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.393 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added benzoyl chloride ( 5.0 $\mu \mathrm{L}, .0432 \mathrm{mmol})$. The resulting solution was stirred at ambient temperature for 4.5 h . The solvent was then removed in vacuo and the resulting residue was purified by flash chromatography (9:1 hexanes/EtOAc eluent) affording benzoate $\mathbf{S 1 1}\left(12.2 \mathrm{mg}, 87 \%\right.$ yield, $\mathrm{R}_{f}=$ 0.65 in $4: 1$ hexanes/EtOAc eluent) as a colorless oil.

The $e e$ of benzoate $\mathbf{S 1 1}$ was determined to be $99 \%$ by HPLC analysis (Daicel Chiralcel OD-H, $100 \%$ hexane, $1.3 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}, S$ isomer $4.29 \mathrm{~min}, R$ isomer 4.08 min ).


Alkyne S13. To a solution of alcohol $\mathbf{S 1 0}$ ( $150 \mathrm{mg}, 0.589 \mathrm{mmol}$ ) and cinnamyl bromide ( 116 $\mathrm{mg}, 0.589 \mathrm{mmol}$ ) in DMF ( 1.96 mL ) at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(30.6 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.766 mmol ) in one portion. The mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min and ambient temperature for 4 h , at which time the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with hexanes $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine $(10 \mathrm{~mL})$, and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation to give crude ether $\mathbf{S 1 2}$, which was used immediately in the next step.

To crude alkyne $\mathbf{S 1 2}$ in THF ( 0.736 mL ) at $0{ }^{\circ} \mathrm{C}$ was added TBAF ( $2.65 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.65 mmol ) dropwise over 5 min . The resulting solution was allowed to warm to ambient temperature and stirred for 15 min , at which time sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed with brine ( 10 mL ) and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 9: 1$ hexanes/EtOAc eluent) affording alkyne $\mathbf{S 1 3}$ (122 mg, 97\% yield over two steps, $\mathrm{R}_{\mathrm{F}}=0.46$ in $4: 1$ hexanes $/ \mathrm{EtOAc}$ ) as a colorless oil.

Alkyne S13: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $1 \mathrm{H}), 6.64(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.26(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{ddd}, J=12.7,5.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$
$(\mathrm{ddd}, J=12.7,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=5.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ $(\mathrm{dq}, J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.9,132.8,128.7,127.8,126.7,126.0,81.9,74.5,74.3,69.6,33.1,18.7,17.9$.


Enyne 14h: To terminal alkyne $\mathbf{S 1 3}(30.0 \mathrm{mg}, 0.140 \mathrm{mmol})$ in THF $(700 \mu \mathrm{l})$ at $-78{ }^{\circ} \mathrm{C}$ was added $n$ - $\mathrm{BuLi}(91.0 \mu \mathrm{l}, 2.3 \mathrm{M}$ in hexanes, 0.210 mmol$)$. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1.5 h , then a solution of $\mathrm{MeI}(34.9 \mu \mathrm{l}, 0.560 \mathrm{mmol})$ in HMPA $(94.7 \mu \mathrm{l})$ was added. The mixture was allowed to warm to ambient temperature and stirred for 20 h , at which time it was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The aqueous layer was extracted with hexanes ( 3 x 5 mL ). The combined organic layers were washed with $10 \% \mathrm{LiCl}(1 \times 2 \mathrm{~mL})$, then brine $(1 \times 3 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (9:1 hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 h}(12.5 \mathrm{mg}$, $39 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.52$ in $4: 1$ hexanes/EtOAc) as a colorless oil.

Enyne 14h. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{ddd}, J=15.9,6.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{ddd}, J=12.7,5.4,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=12.7,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dq}, J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.89(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 137.0,132.4,128.6,127.7,126.6,126.4,82.4,74.8,69.4,33.3,18.8,18.0,3.8 ;$ IR (film) 2961, 2922, 1496, $1072 \mathrm{~cm}^{-1}$; HRMS (DART+) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}\right]^{+}$: 229.1587 , found 229.1590; $[\alpha]_{\mathrm{D}}{ }^{26}=-63.51\left(\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.




Enyne 14i. To a 2-dram vial under argon containing $\mathrm{CuI}(3.1 \mathrm{mg}, 0.0163 \mathrm{mmol})$ and $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.7 \mathrm{mg}, 0.00812 \mathrm{mmol})$ was added diisopropylamine $(0.326 \mathrm{~mL})$ followed by iodoindole $\mathbf{S} 14^{7}(84.2 \mathrm{mg}, 0.212 \mathrm{mmol})$. This resulting mixture was stirred for 5 min , at which time a solution of ether $\mathbf{S 1 3}(35.0 \mathrm{mg}, 0.162 \mathrm{mmol})$ in THF $(0.200 \mathrm{~mL})$ was added via syringe. The reaction mixture was stirred for 3 h then partitioned between ether ( 4 mL ) and $1 \mathrm{Maq} . \mathrm{HCl}$ $(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with sat. aq. $\mathrm{NaHCO}_{3}(1 \times 5 \mathrm{~mL})$, then brine ( $1 \times 10 \mathrm{~mL}$ ) and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent) affording enyne $\mathbf{1 4 i}\left(78.3 \mathrm{mg}, 99 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.14$ in 9:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

[^5]Enyne 14i: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.99-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$, 7.63-7.61 (m, 1H), 7.42-7.28 (comp. m, 5H), 7.25-7.22 (comp. m, 4H), 6.68 (d, $J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.34$ (ddd, $J=15.9,6.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (dd, $J=12.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (dd, $J=12.7,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 145.5,136.9,135.1,134.3,132.8,131.1$, $130.2,129.1,128.7,127.8,127.1,126.7,126.1,125.6,123.9,120.6,113.7,105.0,91.8,75.2$, 69.8, 33.4, 21.8, 18.9, 18.2; IR (film) 2962, 2871, 1494, 1376, $1189 \mathrm{~cm}^{-1}$; HRMS (DART+) m/z calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}^{+}\right.$: 484.1941, found 484.1942. $[\alpha]_{\mathrm{D}}{ }^{32}=-114.15(c=2.0$, $\mathrm{CHCl}_{3}$ ).


Enyne 14j: To terminal alkyne $\mathbf{S 1 3}(120 \mathrm{mg}, 0.560 \mathrm{mmol})$ in THF $(1.12 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(0.289 \mathrm{~mL}, 2.13 \mathrm{M}$ in hexanes, 0.616 mmol$)$ dropwise over 2 min . The resulting solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 30 min . The solution was then cooled back down to $-78^{\circ} \mathrm{C}$, and finely ground paraformaldehyde ( $18.7 \mathrm{mg}, 0.616$ mmol ) was added in one portion. The solution was allowed to warm to ambient temperature and stirred for 5 h . The reaction mixture was cooled back to $0^{\circ} \mathrm{C}$ and $\mathrm{TBSCl}(127 \mathrm{mg}, 0.840 \mathrm{mmol})$ was added. The resulting mixture was stirred at ambient temperature for 1 h and then quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed with brine ( 10 mL ) and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $15: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 j}$ ( $135 \mathrm{mg}, 67 \%$ yield, $\mathrm{R}_{\mathrm{F}}=$ 0.83 in $4: 1$ hexanes/EtOAc) as a colorless oil.

Enyne 14j: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, 1H), 6.63 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$ (ddd, $J=15.9,6.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.44-4.39 (comp. m, 3H), 4.13 (ddd, $J=12.6,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.94(\mathrm{dt}, J=5.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.92(\mathrm{~m}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.0,132.7,128.7,127.8,126.6,126.2,85.2,82.8,74.5,69.5,51.9,33.3,26.0,18.8$, 18.5, 18.1, 4.9; IR (film) 3028, 2959, 2858, 1728, 1495, $1255 \mathrm{~cm}^{-1}$; HRMS (DART+) $\mathrm{m} / \mathrm{z}$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}+\mathrm{NH}_{4}\right]^{+}: 376.2672$, found 376.2672; $[\alpha]_{\mathrm{D}}{ }^{33}=-88.30(c=1.0$, $\mathrm{CHCl}_{3}$ ).


Enyne 14k. To a solution of alcohol $\mathbf{S 5}(150 \mathrm{mg}, 0.861 \mathrm{mmol})$ in DMF $(2.87 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(41.2 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 1.03 mmol$)$ in one portion. The
mixture was then allowed to warm to ambient temperature and stirred for 20 min . Bromide $\mathbf{S 1 5}{ }^{8}$ ( $186 \mathrm{mg}, 0.861 \mathrm{mmol}$ ) was added and after 1 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with hexanes $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 7 \mathrm{~mL})$, then brine ( 7 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 9: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 4 k}$ ( $193 \mathrm{mg}, 61 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.83$ in $4: 1$ hexanes $/ \mathrm{EtOAc}$ ) as a colorless oil.

Enyne 14k: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.48-7.43 (m, 4H), 7.34-7.31 (m, 3H), 7.28-7.25 (m, 2H), $6.62(\mathrm{~d}, ~ J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{ddd}, J=15.9,6.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{ddd}, J=12.9,5.4,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{ddd}, J=12.9,6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.12$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 135.9,131.9,131.8$, 131.2, 128.4, 128.2, 127.2, 123.0, 121.5, 87.3, 86.8, 75.3, 69.5, 33.5, 18.9, 18.1; IR (film) 2964, $2869,1659,1491,1075 \mathrm{~cm}^{-1} ;$ HRMS (DART + ) $m / z$ calc'd for $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrO}+\mathrm{NH}_{4}\right]^{+}$: 386.1120, found 386.1097; $[\alpha]_{\mathrm{D}}{ }^{32}=-104.68\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Alcohol 9. To a solution of ynone $\mathbf{8}^{9} 80.0 \mathrm{mg}, 0.341 \mathrm{mmol}$ ) in 2-propanol ( 3.41 mL ) under argon was added $\operatorname{Ru}[(S, S)-\mathrm{TsDPEN}(p-c y m e n e)](2.1 \mathrm{mg}, 0.00341 \mathrm{mmol})$. The resulting purple solution was stirred at ambient temperature for 2 h . The solvent was removed in vacuo and the resulting residue was purified by flash chromatography ( $9: 1$ hexanes/EtOAc eluent) affording alcohol 9 ( $79.3 \mathrm{mg}, 98 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.38$ in $4: 1$ hexanes $/ \mathrm{EtOAc}$ ) as a colorless oil.

Alcohol 9: All spectra matched those previously reported in the literature. ${ }^{10}$ The ee was determined to be $97 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 10\% 2-propanol in hexane, 1 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, S$ isomer $25.13 \mathrm{~min}, R$ isomer 12.59 min$) .[\alpha]_{\mathrm{D}}{ }^{26}=+37.45\left(c=0.5, \mathrm{CHCl}_{3}\right)$ $(S)\left(\right.$ Lit. $[\alpha]_{\mathrm{D}}{ }^{27}=+28.4\left(c=1.1, \mathrm{CHCl}_{3}\right) 49 \%$ ee $\left.(S)\right)$.


Enyne 10. To a solution of alcohol $9(400 \mathrm{mg}, 1.69 \mathrm{mmol})$ in DMF ( 5.64 mL ) at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(87.9 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 2.197 mmol ) in one portion. The mixture was allowed to warm to ambient temperature and stirred for 20 min . Cinnamyl bromide ( $334 \mathrm{mg}, 1.69 \mathrm{mmol}$ ) was added and after 1 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with hexanes ( 3 x 50 mL ). The combined organic

[^6]layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine $(5 \mathrm{~mL})$, and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $9: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 0}$ ( $498 \mathrm{mg}, 84 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.77$ in $4: 1$ hexanes/EtOAc) as a yellow oil.

Enyne 10: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 7.48-7.45 (m, 2H), 7.25-7.23 (m, 2H), 7.15-6.98 (m, $11 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.24(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{ddd}, J=12.7,5.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-$ 4.31 (m, 1H), 4.10 (ddd, $J=12.6,6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.16$ (m, 2H).; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 141.9,137.4,132.6,132.1,129.0,128.82,128.77,128.65,126.9$, 126.6, 126.3, 123.5, 89.3, 86.6, 69.7, 68.8, 38.1, 32.0; IR (film) 3060, 2858, 1491, 1453, 1336 $\mathrm{cm}^{-1}$; HRMS (APCI+) m/z calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}+\mathrm{H}\right]^{+}: 353.1900$, found 353.1903; $[\alpha]_{\mathrm{D}}{ }^{26}=-43.62\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Alcohol S16. Based on the general procedure, alcohol S16 was produced in $88 \%$ yield. All spectra matched those previously reported in the literature. ${ }^{11}$ The $e e$ was determined to be $97 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 20\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, S$ isomer $8.89 \mathrm{~min}, R$ isomer 5.03 min$) .[\alpha]_{\mathrm{D}}{ }^{31}=-33.40\left(c=1.00, \mathrm{CHCl}_{3}\right)(S)\left(\mathrm{Lit}^{12}[\alpha]_{\mathrm{D}}{ }^{20}=-33.0\right.$ ( $c=0.94, \mathrm{CHCl}_{3}$ ) $>99 \%$ ee $(S)$ ).


Enyne 12a. To a solution of alcohol S16 ( $70.0 \mathrm{mg}, 0.479 \mathrm{mmol}$ ) in DMF ( 0.798 mL ) and THF $(0.798 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(21.1 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.527 mmol ) in one portion. The mixture was allowed to warm to ambient temperature and stirred for 25 min . Crotyl bromide ( $49.4 \mu \mathrm{l}, 0.479 \mathrm{mmol}$ ) was added and the resulting mixture was stirred for 2.5 h , at which point the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The volatile solvents were removed by rotary evaporation and the remaining mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed sequentially with aq. LiCl $(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $98: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent) affording enyne $\mathbf{1 2 a}\left(92.1 \mathrm{mg}, 96 \%\right.$ yield, $\mathrm{R}_{\mathrm{F}}=0.52$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a colorless oil.

Enyne 12a: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.46-7.41 (m, 2H), 7.33-7.28 (comp. m, 3H), 5.84$5.73(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H})$, $1.72(\mathrm{~m}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.9,130.3$, $128.4,127.4,123.0,89.4,85.0,69.6,64.9,22.4,18.0$; IR (film) 2986, 1490, 1443, $1099 \mathrm{~cm}^{-1}$;

[^7]HRMS (ESI + ) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}+\mathrm{H}\right]^{+}: 201.1274$, found 201.1266; $[\alpha]_{\mathrm{D}}{ }^{31}=-$ 75.75 ( $c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).


Alcohol S17. Based on the general procedure, alcohol S17 was produced in 37\% yield. All spectra matched those previously reported in the literature. ${ }^{13}$ The ee was determined to be $96 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 5\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, S$ isomer $14.23 \mathrm{~min}, R$ isomer 6.98 min$) .[\alpha]_{\mathrm{D}}{ }^{31}=-9.79\left(c=1.0, \mathrm{CHCl}_{3}\right)(S)\left(\mathrm{Lit}^{14}{ }^{14}[\alpha]_{\mathrm{D}}{ }^{23}=+9.5(c\right.$ $\left.=3.31, \mathrm{CHCl}_{3}\right) 94 \%$ ee $(R)$ ).


Enyne 12b. To a solution of alcohol $\mathbf{S 1 7}(90.4 \mathrm{mg}, 0.480 \mathrm{mmol})$ in DMF $(1.60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(21.1 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.528 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 30 min . Crotyl bromide ( $49.4 \mu 1,0.480 \mathrm{mmol}$ ) was added and after 2 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The mixture was extracted with hexanes ( 3 x 20 mL ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL}$ ), then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 15: 1$ hexanes/EtOAc eluent) affording enyne 12b ( $107 \mathrm{mg}, 92 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.34 \mathrm{in} \mathrm{15:1} \mathrm{hexanes/EtOAc)} \mathrm{as} \mathrm{a} \mathrm{yellow} \mathrm{oil}$.

Enyne 12b: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 7.48-7.42 (m, 2H), 7.01-6.94 (comp. m, 3H), 5.71-5.63 ( $\mathrm{m}, 2 \mathrm{H}$ ), 4.45-4.39 (comp. m, 2H), 4.05-4.01 (m, 1H), 2.09 (app. septet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.95 (ddd, $J=13.6,7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.77 (ddd, $J=13.5,7.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.53 (d, $J=4.7 \mathrm{~Hz}, 3 \mathrm{H}$ ), 0.92 (d, $J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 132.1, 128.9, 128.6, 128.4, 89.9, 86.0, 69.7, 45.4, 25.3, 23.0, 22.6, 17.8; IR (film) 2957, 2869, 1490, $1467 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI + ) $m / z$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}: 243.1744$, found 243.1730; $[\alpha]_{\mathrm{D}}{ }^{31}=-$ $69.36\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Enyne 12c. (Note: This alcohol 9, at $96 \% e e$, was generated in a separate transfer hydrogenation from the aforementioned one at $97 \%$ ee.) To a solution of alcohol $9(35.0 \mathrm{mg}, 0.148 \mathrm{mmol})$ in

[^8]DMF ( 0.350 mL ) and THF ( 0.350 mL ) at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(6.5 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.163 mmol ) in one portion. The mixture was allowed to warm to ambient temperature and stirred for 20 min . Crotyl bromide ( $15.3 \mu \mathrm{l}, 0.148 \mathrm{mmol}$ ) was added and after 4 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The volatile solvents were then removed by rotary evaporation and the remaining mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 20 mL$)$. The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5$ mL ), then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography ( $9: 1$ hexanes/EtOAc eluent) affording enyne 12c ( $33.9 \mathrm{mg}, 79 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.73$ in $4: 1$ hexanes $/ \mathrm{EtOAc}$ ) as a yellow oil.

Enyne 12c: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45(\mathrm{~m}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.34-7.18$ (comp. m, 8 H ), 5.86-5.73 (m, 1H), 5.72-5.56 (m, 1H), 4.31-4.24 (comp. m, 2H), 3.96 (dd, $J=11.5,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 141.7,131.89,131.87,130.2,128.7,128.5,128.43,128.41,127.4,126.0,123.0,88.4$, 86.1, 69.7, 68.3, 37.50, 37.45, 31.73, 31.70, 18.0; IR (film) 2930, 2857, 1491, 1454, $1335 \mathrm{~cm}^{-1}$; HRMS (ESI + ) $m / z$ calc'd for $(M+H)^{+}\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}$: 291.1744, found 291.1741; $[\alpha]_{\mathrm{D}}{ }^{31}=-$ 17.23 ( $\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).


S18
99\% ee
Alcohol S18. Based on the general procedure, alcohol S18 was produced in 73\% yield. All spectra matched those previously reported in the literature. ${ }^{15}$ The $e e$ was determined to be $98 \%$ by HPLC analysis (Daicel Chiralcel OD-H, 15\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, S$ isomer $12.18 \mathrm{~min}, R$ isomer 6.86 min$) .[\alpha]_{\mathrm{D}}{ }^{32}=+8.72\left(c=1.0, \mathrm{CHCl}_{3}\right)(S)\left(\right.$ Lit. $[\alpha]_{\mathrm{D}}{ }^{25}=+11.7(c$ $\left.=0.63, \mathrm{CHCl}_{3}\right) 79 \%$ ee $(S)$ ).


Enyne 12d. To a solution of alcohol $\mathbf{S 1 8}(90.1 \mathrm{mg}, 0.420 \mathrm{mmol})$ in DMF $(1.40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(18.5 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.462 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Crotyl bromide ( $43.3 \mu \mathrm{l}, 0.420 \mathrm{mmol}$ ) was added and after 3 h , the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL}$ ), then brine ( 5 mL ), and dried over $\mathrm{MgSO}_{4}$. The solvent was removed by rotary evaporation and the resulting residue was purified by flash chromatography (hexanes $\rightarrow 9: 1$ hexanes/EtOAc eluent) affording enyne $\mathbf{1 2 d}$ ( $105 \mathrm{mg}, 93 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.77 \mathrm{in} \mathrm{4:1} \mathrm{hexanes/EtOAc)} \mathrm{as} \mathrm{a} \mathrm{yellow} \mathrm{oil}$.

[^9]Enyne 12d: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.47-7.42 (m, 2H), 7.33-7.29 (comp. m, 3H), 5.82$5.71(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H})$, 1.95-1.88 (m, 2H), 1.78-1.64 (comp. m, 8H), 1.33-1.09 (comp. m, 7H); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 131.9,129.9,128.4,127.6,123.2,87.9,74.1,69.8,43.0,29.4,28.7,26.6,26.2,26.1$, 18.0; IR (film) 2927, 2854, 1490, $1330 \mathrm{~cm}^{-1}$; HRMS (ESI + ) $\mathrm{m} / \mathrm{z}$ calc'd for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}+\right.$ $\mathrm{H}]^{+}: 269.1900$, found 269.1903; $[\alpha]_{\mathrm{D}}{ }^{31}=-25.53\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.


Alcohol S20. Based on the general procedure, alcohol S20 was produced in 76\% yield. All spectra matched those previously reported in the literature. ${ }^{16}$ The $e e$ was determined to be $96 \%$ by HPLC analysis (Diacel Chiralcel OD-H, 3\% 2-propanol in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, S$ isomer $8.17 \mathrm{~min}, R$ isomer 6.60 min$) .[\alpha]_{\mathrm{D}}{ }^{32}=+1.06\left(c=1.0, \mathrm{CHCl}_{3}\right)(S)\left(\right.$ Lit. $^{17}[\alpha]_{\mathrm{D}}{ }^{25}=+2.4(c$ $\left.=4.0, \mathrm{CHCl}_{3}\right) 94 \%$ ee $(S)$ ).


Enyne 12f. To a solution of alcohol $\mathbf{S 2 0}(90.0 \mathrm{mg}, 0.478 \mathrm{mmol})$ in DMF ( 1.59 mL ) at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(21.0 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 0.526 mmol ) in one portion. The mixture was then allowed to warm to ambient temperature and stirred for 20 min . Crotyl bromide ( $49.3 \mu \mathrm{l}, 0.478 \mathrm{mmol}$ ) was added and after $4.5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added dropwise. The mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed sequentially with aq. $\mathrm{LiCl}(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~mL})$, then brine $(5 \mathrm{~mL})$, and dried over $\mathrm{MgSO}_{4}$. The solvent was removed in vacuo and the resulting residue was purified by flash chromatography ( $100 \%$ hexanes $\rightarrow 15: 1 \mathrm{H} / \mathrm{Et}_{2} \mathrm{O}$ eluent) affording enyne $\mathbf{1 2 f}(92.7 \mathrm{mg}, 80 \%$ yield, $\mathrm{R}_{\mathrm{F}}=0.62$ in $9: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ ) as a yellow oil.

Enyne 12f. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.83-5.72(\mathrm{~m}$, $1 \mathrm{H}), 5.64-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 3 \mathrm{H})$, 1.07-1.04 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 131.9,129.4,128.4,128.2,127.8,123.3,87.9$, 86.3, 78.0, 70.3, 35.9, 26.1, 18.0; IR (film) 2969, 2871, 1724, 1489, $1284 \mathrm{~cm}^{-1}$; HRMS (ESI+) $m / z$ calc' d for $(\mathrm{M}+\mathrm{H})^{+}\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}+\mathrm{H}\right]^{+}: 243.1744$, found 243.1736: $[\alpha]_{\mathrm{D}}{ }^{32}=-37.23(c=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

[^10]
## Crystallographic data

Table 1. Crystal data and structure refinement for $\mathbf{1 5 k}$.
Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
ef09_0m
$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrO}$
369.29

100(2) K
$0.71073 \AA$
Monoclinic
$P 2_{1}$
$a=8.7086(4) \AA \quad \alpha=90^{\circ}$.
$b=10.3343(5) \AA \quad \beta=113.168(2)^{\circ}$.
$c=10.3919(5) \AA \quad \gamma=90^{\circ}$.
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
859.82(7) $\AA^{3}$

2
$1.426 \mathrm{Mg} / \mathrm{m}^{3}$
$2.393 \mathrm{~mm}^{-1}$
380
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=33.29^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
$0.66 \times 0.49 \times 0.29 \mathrm{~mm}^{3}$
2.13 to $33.29^{\circ}$.
$-13<=\mathrm{h}<=12,-15<=\mathrm{k}<=14,-16<=1<=15$
22316
$5869[\mathrm{R}(\mathrm{int})=0.0255]$
99.7 \%

Semi-empirical from equivalents
0.5447 and 0.3011

Full-matrix least-squares on $\mathrm{F}^{2}$
5869 / $1 / 211$
Goodness-of-fit on $\mathrm{F}^{2}$
1.041

Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{R} 1=0.0281, \mathrm{wR} 2=0.0692$
$\mathrm{R} 1=0.0306, w R 2=0.0700$
0.022(6)
1.630 and -0.749 e. $\AA^{-3}$

Table 2. Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 5 k} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U^{\mathrm{ij}}$ tensor.

|  | x | y | z | U(eq) |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Br}(1)$ | -533(1) | 1540(1) | -3037(1) | 23(1) |
| C(1) | 597(2) | 1364(2) | -1061(2) | 14(1) |
| $\mathrm{C}(2)$ | 469(2) | 202(2) | -452(2) | 17(1) |
| C(3) | 1339(2) | 48(2) | 983(2) | 16(1) |
| C(4) | 2330(2) | 1043(2) | 1812(2) | 12(1) |
| C(5) | 2407(2) | 2208(2) | 1166(2) | 14(1) |
| C(6) | 1546(2) | 2378(2) | -275(2) | 15(1) |
| C(7) | 3336(2) | 883(2) | 3338(2) | 12(1) |
| C(8) | 3157(2) | -277(2) | 4146(2) | 15(1) |
| C(9) | 4739(3) | -793(2) | 5282(2) | 24(1) |
| C(10) | 4666(2) | 849(2) | 6844(2) | 17(1) |
| $\mathrm{C}(11)$ | 3559(2) | 1554(2) | 5836(1) | 13(1) |
| C(12) | 2550(2) | 1011(2) | 4433(2) | 12(1) |
| C(13) | 717(2) | 1321(2) | 3890(2) | 12(1) |
| C(14) | -497(2) | 385(2) | 3694(2) | 16(1) |
| C(15) | -2173(2) | 741(2) | 3225(2) | 21(1) |
| C(16) | -2639(2) | 2029(2) | 2947(2) | 24(1) |
| C(17) | -1432(2) | 2972(2) | 3143(2) | 22(1) |
| C(18) | 236(2) | 2613(2) | 3607(2) | 18(1) |
| $\mathrm{C}(19)$ | 5627(2) | 1234(2) | 8346(2) | 21(1) |
| C(20) | 5145(3) | 357(2) | 9319(2) | 29(1) |
| $\mathrm{C}(21)$ | 5395(3) | 2663(2) | 8623(2) | 24(1) |
| $\mathrm{O}(1)$ | 4980(2) | -439(2) | 6665(2) | 27(1) |

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 5 k}$.

| $\operatorname{Br}(1)-\mathrm{C}(1)$ | $1.9045(15)$ | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$ | 122.39(15) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.382(3) | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 121.22(15) |
| $\mathrm{C}(1)-\mathrm{C}(6)$ | 1.385(2) | $\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$ | 118.74(16) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.392(2) | $\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)$ | 122.36(14) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.400(2) | $\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(12)$ | 121.89(13) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.393(2) | $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$ | 59.02(10) |
| $\mathrm{C}(4)-\mathrm{C}(7)$ | $1.489(2)$ | $\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(7)$ | 61.85(11) |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.397(2) | $\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(9)$ | 116.05(14) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.506(2) | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | 116.87(15) |
| $\mathrm{C}(7)-\mathrm{C}(12)$ | 1.547(2) | $\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$ | 115.23(15) |
| $\mathrm{C}(8)-\mathrm{C}(12)$ | 1.505(2) | $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(1)$ | 122.75(17) |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.515(2) | $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$ | 127.44(17) |
| $\mathrm{C}(9)-\mathrm{O}(1)$ | 1.416(2) | $\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(19)$ | 109.56(14) |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.328(2) | $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | 122.2(2) |
| $\mathrm{C}(10)-\mathrm{O}(1)$ | $1.385(2)$ | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | 114.74(13) |
| $\mathrm{C}(10)-\mathrm{C}(19)$ | 1.506(2) | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(8)$ | 114.23(14) |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | $1.485(2)$ | $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(8)$ | 121.24(14) |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.504(2) | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$ | 119.46(13) |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | 1.387(2) | $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(7)$ | 117.03(13) |
| $\mathrm{C}(13)-\mathrm{C}(18)$ | 1.396(2) | $\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{C}(7)$ | 59.13(11) |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | 1.394(3) | $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$ | 119.21(15) |
| $\mathrm{C}(15)-\mathrm{C}(16)$ | 1.389(3) | $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$ | 122.76(15) |
| $\mathrm{C}(16)-\mathrm{C}(17)$ | 1.388(3) | $\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$ | 118.01(14) |
| $\mathrm{C}(17)-\mathrm{C}(18)$ | 1.389(2) | $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | 119.99(17) |
| $\mathrm{C}(19)-\mathrm{C}(21)$ | 1.533(3) | $\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$ | 120.35(18) |
| $\mathrm{C}(19)$-C(20) | 1.534(3) | $\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$ | 120.03(18) |
|  |  | $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | 119.44(19) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$ | 121.64(14) | $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$ | 120.98(17) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}(1)$ | 118.42(13) | $\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(21)$ | 112.88(15) |
| $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Br}(1)$ | 119.93(13) | $\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(20)$ | 110.01(16) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 118.83(15) | $\mathrm{C}(21)-\mathrm{C}(19)-\mathrm{C}(20)$ | 110.81(16) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 121.29(16) | $\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(9)$ | 115.23(15) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 118.27(14) |  |  |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$ | 119.31(14) |  |  |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 5 k}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

|  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| $\mathrm{Br}(1)$ | $36(1)$ | $20(1)$ | $11(1)$ | $2(1)$ | $6(1)$ | $6(1)$ |
| $\mathrm{C}(1)$ | $17(1)$ | $16(1)$ | $11(1)$ | $0(1)$ | $7(1)$ | $3(1)$ |
| $\mathrm{C}(2)$ | $22(1)$ | $15(1)$ | $12(1)$ | $-1(1)$ | $4(1)$ | $-2(1)$ |
| $\mathrm{C}(3)$ | $21(1)$ | $13(1)$ | $12(1)$ | $0(1)$ | $5(1)$ | $-3(1)$ |
| $\mathrm{C}(4)$ | $13(1)$ | $12(1)$ | $12(1)$ | $-1(1)$ | $6(1)$ | $0(1)$ |
| $\mathrm{C}(5)$ | $14(1)$ | $12(1)$ | $16(1)$ | $0(1)$ | $5(1)$ | $-1(1)$ |
| $\mathrm{C}(6)$ | $18(1)$ | $12(1)$ | $16(1)$ | $3(1)$ | $8(1)$ | $3(1)$ |
| $\mathrm{C}(7)$ | $13(1)$ | $12(1)$ | $12(1)$ | $0(1)$ | $5(1)$ | $1(1)$ |
| $\mathrm{C}(8)$ | $21(1)$ | $11(1)$ | $12(1)$ | $0(1)$ | $5(1)$ | $2(1)$ |
| $\mathrm{C}(9)$ | $34(1)$ | $20(1)$ | $15(1)$ | $0(1)$ | $5(1)$ | $13(1)$ |
| $\mathrm{C}(10)$ | $15(1)$ | $18(1)$ | $15(1)$ | $-2(1)$ | $4(1)$ | $3(1)$ |
| $\mathrm{C}(11)$ | $17(1)$ | $11(1)$ | $12(1)$ | $0(1)$ | $5(1)$ | $2(1)$ |
| $\mathrm{C}(12)$ | $16(1)$ | $10(1)$ | $10(1)$ | $1(1)$ | $3(1)$ | $1(1)$ |
| $\mathrm{C}(13)$ | $14(1)$ | $14(1)$ | $10(1)$ | $0(1)$ | $5(1)$ | $0(1)$ |
| $\mathrm{C}(14)$ | $20(1)$ | $14(1)$ | $15(1)$ | $-1(1)$ | $9(1)$ | $-3(1)$ |
| $\mathrm{C}(15)$ | $17(1)$ | $28(1)$ | $17(1)$ | $-1(1)$ | $6(1)$ | $-7(1)$ |
| $\mathrm{C}(16)$ | $13(1)$ | $36(1)$ | $22(1)$ | $4(1)$ | $6(1)$ | $1(1)$ |
| $\mathrm{C}(17)$ | $16(1)$ | $24(1)$ | $27(1)$ | $6(1)$ | $8(1)$ | $5(1)$ |
| $\mathrm{C}(18)$ | $15(1)$ | $16(1)$ | $21(1)$ | $3(1)$ | $7(1)$ | $1(1)$ |
| $\mathrm{C}(19)$ | $18(1)$ | $25(1)$ | $13(1)$ | $-3(1)$ | $-1(1)$ | $5(1)$ |
| $\mathrm{C}(20)$ | $43(1)$ | $24(1)$ | $15(1)$ | $2(1)$ | $6(1)$ | $6(1)$ |
|  | $30(1)$ | $22(1)$ | $17(1)$ | $-8(1)$ | $6(1)$ | $-4(1)$ |
|  | $34(1)$ | $24(1)$ | $17(1)$ | $-1(1)$ | $5(1)$ | $11(1)$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Table 5. Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 5 k}$.

|  | x | y | z | U(eq) |
| :---: | :---: | :---: | :---: | :---: |
| H(2) | -202 | -480 | -1005 | 20 |
| H(3) | 1259 | -749 | 1410 | 19 |
| H(5) | 3057 | 2899 | 1715 | 17 |
| H(6) | 1611 | 3175 | -707 | 18 |
| H(7) | 4502 | 1225 | 3658 | 15 |
| H(8) | 2285 | -927 | 3619 | 18 |
| H(9A) | 4726 | -1749 | 5220 | 29 |
| H(9B) | 5707 | -481 | 5096 | 29 |
| H(11) | 3409 | 2435 | 6018 | 16 |
| H(14) | -186 | -498 | 3880 | 19 |
| H(15) | -3002 | 98 | 3094 | 25 |
| H(16) | -3783 | 2266 | 2623 | 29 |
| H(17) | -1745 | 3855 | 2961 | 27 |
| H(18) | 1061 | 3257 | 3732 | 21 |
| H(19) | 6840 | 1093 | 8564 | 25 |
| H(20A) | 3975 | 509 | 9164 | 43 |
| H(20B) | 5860 | 552 | 10295 | 43 |
| H(20C) | 5293 | -551 | 9120 | 43 |
| H(21A) | 5686 | 3205 | 7978 | 36 |
| H(21B) | 6123 | 2880 | 9590 | 36 |
| H(21C) | 4228 | 2818 | 8479 | 36 |














15e
${ }^{1} \mathrm{H}$ NMR
( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ )








15h
1H NMR
( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ )











( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ )




( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ )








$12 e$
${ }^{1} \mathrm{H}$ NMR
1 H NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$













${ }^{1} \mathrm{H}$ NMR
( $400 \mathrm{MHz} \mathrm{CDCl}_{3}$ )



$14 e$
1 H NMR
1 H NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$14 e$
${ }^{13} \mathrm{C}$ NMR
( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )












${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



















## HPLC Traces







































[^0]:    ${ }^{1}$ Fang, T.; Du, D-M.; Lu, S-F.; Xu, J. Org. Lett. 2005, 7, 2081-2085.

[^1]:    ${ }^{2}$ Kottirsch, G.; Koch, G.; Feifel, R.; Neumann, U. J. Med. Chem. 2002, 45, 2289-2293.

[^2]:    ${ }^{3}$ Haynes, R. K.; Katsifis, A. G. Aust. J. Chem. 1989, 42, 1455-1471.

[^3]:    ${ }^{4}$ Lorenz, M.; Kalesse, M. Org. Lett. 2008, 10, 4371-4374.

[^4]:    ${ }^{5}$ Pagès, L.; Llebaria, A.; Camps, F.; Motins, E.; Miravitlles, C.; Moretó, J. M. J. Am. Chem. Soc. 1992, 114, 10449-10461.
    ${ }^{6}$ Helal, C. J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 10938-10939.

[^5]:    ${ }^{7}$ Witulski, B.; Buschmann, N.; Bergsträßer, U. Tetrahedron 2000, 56, 8473-8480.

[^6]:    ${ }^{8}$ Hammond, M. L.; Zambias, R. A.; Chang, M. N.; Jensen, N. P.; McDonald, J.; Thompson, K.; Boulton, D. A.; Kopka, I. E.; Hand, K. M.; Opas, E. E.; Luell, S.; Bach, T.; Davies, P.; MacIntyre, D. E.; Bonney, R. J.; Humes, J. L. J. Med. Chem. 1990, 33, 908-918.
    ${ }^{9}$ Yamaguchi, M.; Shibato, K.; Fujiwara, S.; Hirao, I. Synthesis 1986 421-422.
    ${ }^{10} \mathrm{Wu}, \mathrm{P}-\mathrm{Y} . ;$ Wu, H-L.; Shen, Y-Y.; Uang, B-J. Tetrahedron: Asymmetry 2009, 20, 1837-1841.

[^7]:    ${ }^{11}$ Morris, D. J.; Hayes, A. M.; Wills, M. J. Org. Chem. 2006, 71, 7035-7044.
    ${ }^{12}$ Zhang, X.; Lu, Z.; Fu, C.; Ma, S. Org. Biomol. Chem. 2009, 7, 3258-3263.

[^8]:    ${ }^{13}$ Pathak, K.; Bhatt, A. P.; Abdi, S. H. R.; Kureshy, R. I.; Khan, N. H.; Ahmad, I.; Jasra, R. V. Chirality 2007, 18, 82-88.
    ${ }^{14}$ Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 1376013761.

[^9]:    ${ }^{15}$ Zhong, J-C.; Hou, S-C.; Bian, Q-H.; Yin, M-M.; Na, R-S.; Zheng, B.; Li, Z-Y.; Liu, S-Z.; Wang, M. Chem. Eur. J. 2009, 15, 3069-3071.

[^10]:    ${ }^{16}$ Tanaka, K.; Shoji, T. Org. Lett. 2005, 7, 3561-3563.
    ${ }^{17}$ Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806-1807.

