N-Formylation of Amines by Methanol Activation

Nuria Ortega, Christian Richter and Frank Glorius*

Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 40, 48149 Münster (Germany)

Table of contents

1.	General information	S2
2.	General procedures	S3
3.	Characterization of nonyl nonanoate, N-cyclohexylnonanamide and	
	<i>N</i> -formamides 5a-q	S4
4.	Synthesis of the isolated complex $RuICy_2(2-methylallyl)_2(3)$	S11
5.	NMR spectra	S13
6.	HPLC traces	S34
7.	Optimization tables	S35
8.	NMR experiments	S37
9.	References	S38

1. General information

Unless otherwise noted, all reactions were carried out under an atmosphere of argon in flame-dried glassware. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under argon: *n*-hexane (CaH₂), THF (Na-benzophenone), toluene (CaH₂).

Commercially available chemicals were obtained from Acros Organics, Aldrich Chemical Co., Strem Chemicals, Alfa Aesar, ABCR and TCI Europe and used as received unless otherwise stated. Dicyclohexylimidazolium chloride (ICy·HCl) was prepared as previously reported.¹

Analytical thin layer chromatography was performed on Polygram SIL G/UV₂₅₄ plates. Visualization was accomplished with short wave UV light, vanillin, ninhydrine and/or KMnO₄ staining solutions followed by heating. Flash chromatography was either performed on Merck silica gel (40-63 mesh) by standard technique eluting with solvents as indicated. GC-MS Spectra were recorded on an Agilent Technologies 7890A GC-system with an Agilent 5975C VL MSD or an Agilent 5975 inert Mass Selective Detector (EI) and a HP-5MS column (0.25 mm × 30 m, Film: 0.25 μ m). The major signals are quoted in m/z with the relative intensity in parentheses. The methods used start with the injection temperature T₀; after holding this temperature for 3 min, the column is heated to temperature T₁ (ramp) and this temperature is held for an additional time t:

Method **50_40**: $T_0 = 50 \text{ °C}$, $T_1 = 290 \text{ °C}$, ramp = 40 °C/min, t = 4 min;

¹H and ¹³C-NMR spectra were recorded on a Bruker AV 300 or AV 400, Varian 500 MHz INOVA or Varian Unity plus 600 in solvents as indicate. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm). ESI mass spectra were recorded on a Bruker Daltonics MicroTof. Infrared spectra were recorded on a Varian Associates FT-IR 3100 Excalibur and Shimadzu FTIR 8400S. The wave numbers (v) of recorded IR-signals are quoted in cm⁻¹.

2. General Procedures

2.1. Synthesis of ester:

A Schlenk tube was charged with [Ru(cod)(2-methylallyl)₂] (4.8 mg, 0.015 mmol, 0.1%), ICy HCl (8.1 mg, 0.03 mmol, 0.2%) and dry KO^tBu (4.2 mg, 0.0375 mmol, 0.25%) in a glove box. The mixture was suspended in toluene (15 mL) and stirred at 70 °C for 12 h under argon. After cooling to RT 1-nonanol (2.62 mL, 15.0 mmol, 1 eq.) was added and the schlenk tube was equipped with a reflux condenser. The mixture was refluxed at 125 °C under an argon flow for 24 h. Flash coloumn chromatography (Pentane/EtOAc 98:2) afforded the pure ester (2.070 g, 97%).

Note: Preforming the complex **3** in situ or starting with the isolated complex lead to identical results.

2.2. Synthesis of amide:

A Schlenk tube was charged with $[Ru(cod)(2-methylallyl)_2]$ (9.6 mg, 0.03 mmol, 2.0%), ICy HCl (16.2 mg, 0.06 mmol, 0.4%) and dry KO'Bu (8.4 mg, 0.075 mmol, 0.5%) in a glove box. The mixture was suspended in toluene (1.5 mL) and stirred at 70 °C for 12 h under argon. After cooling to RT 1-nonanol (392 µL, 2.25 mmol, 1.5 eq.) and cyclohexylamine (172 µL, 1.50 mmol, 1.0 eq.) were added and the schlenk tube was equipped with a reflux condenser. The mixture was refluxed at 125 °C under an argon flow for 24 h. Flash coloumn chromatography (Pentane/EtOAc 8:2) afforded the pure amide (356 mg, 99%).

2.3. Synthesis of *N*-formamides:

To a flame-dried screw-capped tube equipped with a magnetic stir bar was added $[Ru(cod)(2-methylallyl)_2]$ (9.6 mg, 0.03 mmol), imidazolium salt ICy HCl (16.2 mg, 0.06 mmol) and dry KO'Bu (8.4 mg, 0.075 mmol) in a glove box. The mixture was suspended in toluene (1.5 mL) and stirred at 70 °C for 12 h under argon. Then styrene (0.52 mL, 4.50 mmol), methanol (0.20 mL, 5.00 mmol) and the corresponding amine (1.50 mmol) were added and the mixture was heated at 125 °C for 24 h.

The reaction mixture was directly transferred on a plug of silica and pure compounds were obtained by eluting with mixtures of pentane/EtOAc ($8/2 \rightarrow 1/1 \rightarrow 0/1$).

3. Characterization of Products

Nonyl nonanoate

The product was obtained as colorless oil in 97% yield (2.070 g, 7.27 mmol).

R_F (pentane/EtOAc 100:5): 0.42. ¹**H NMR (300 MHz, CDCl₃):** 4.06 (t, J=6.7 Hz, 2H, CH₂O), 2.29 (t, J=7.5 Hz, 2H, COCH₂), 1.71 – 1.53 (m, 4H, CH₂), 1.40 – 1.18 (m, 22H, CH₂), 0.94 – 0.80 (m, 6H, CH₃). ¹³**C NMR (75 MHz, CDCl₃):** 174.14, 64.53, 34.56, 32.00, 31.96, 29.63, 29.40, 29.38, 29.31, 29.28, 28.80, 26.08, 25.18, 22.81, 22.79, 14.24. **ATR-FTIR (cm⁻¹):** 2924, 2855, 1738, 1467, 1167, 1109, 631, 529. **ESI-MS:** found:

285.2800 (C18H36O2H), calculated: 285.2788, found: 307.2612 (C18H36O2Na), calculated: 307.2608, found: 591.5318 ((C18H36O2)₂Na), calculated: 591.5323.

N-cyclohexylnonanamide

The product was obtained as white solid in 99% yield (356 mg, 1.49 mmol).

 $\mathbf{R}_{\mathbf{F}} \text{ (pentane/EtOAc 1:1): 0.69. }^{\mathbf{I}}\mathbf{H} \text{ NMR} \text{ (300 MHz, CDCl_3): 5.74 (d, J=8.3 Hz, 1H, NH), 3.70 (dddd, J=14.8 Hz, 10.8 Hz, 8.0 Hz, 3.9 Hz, 1H, CHN), 2.14 - 2.03 (m, 2H, CH2CO), 1.90 - 1.78 (m, 2H), 1.69 - 1.50 (m, 5H, CH_2), 1.37 - 0.99 (m, 15H, CH_2), 0.87 - 0.75 (m, 3H, CH_3). \\^{\mathbf{I}_{3}}\mathbf{C} \text{ NMR} \text{ (75 MHz, CDCl_3): 172.31, 48.04, 37.04, 33.23, 31.84, 29.38, 29.33, 29.20, 26.00, 25.58, 24.97, 22.66, 14.11.}$

ATR-FTIR (cm⁻¹): 2924, 2855, 1738, 1467, 1167, 1109, 631, 529. ESI-MS: found: 262.2144 (C15H29NONa), calculated: 262.2141, found: 501.4397 ((C15H29NO)₂Na), calculated 501.4391, found: 740.6646 ((C15H29NO)₃Na), calculated 740.6640.

N-Cyclohexylformamide (5a)

The product was obtained as colorless oil in 96% yield (183 mg, 1.44 mmol). R_F (EtOAc): 0.47; ¹H NMR (300 MHz, CDCl₃): Mixture of rotameres is observed. Ratio: 8/2. Major rotamer: 8.10 (s, 1H, CHO), 5.44 (s, 1 H, NH), 3.97 – 3.77 (m, 1H, CHN), 1.99 – 1.85 (m, 2H, CH₂), 1.80 – 1.66 (m, 2H, CH₂), 1.62 (m, 1H, CH₂), 1.43 – 1.08 (m, 5H, CH₂). Minor rotamer: 8.14 (s, 1H, CHO), 5.62 (s, 1H, NH), 3.41 – 3.22 (m, 1H, CHN), 1.99 – 1.85 (m, 2H, CH₂), 1.80 – 1.66 (m, 2H, CH₂), 1.62 (m, 1H, CH₂), 1.43 – 1.08 (m, 5H, CH₂). ¹³C NMR (75 MHz, CDCl₃): Major rotamer: 160.55, 46.96, 32.78, 25.30, 24.68. Minor rotamer: 163.73, 51.08, 34.47, 24.89, 24.64. **ATR-FTIR (cm⁻¹):** 3391, 2925, 2855, 1734, 1682, 1603, 1505, 1464, 1320, 1256, 1177, 1105, 1053, 991, 867, 747, 692, 623. **ESI-MS:** found: 150.0893 (C7H13NONa), calculated: 150.0889.

N-Cyclopentylformamide (5b)

The product was obtained as colorless oil in 95% yield (161 mg, 1.42 mmol). H = 0

N-Hexylformamide (5c)

 \sim_{NH} The product was obtained as colorless oil in 84% yield (163 mg, 1.26 mmol).

R_F (EtOAc 40:60): 0.49; ¹**H NMR (300 MHz, CDCl₃)**: Mixture of rotamers is observed. Ratio: 8/2. Major rotamer: 8.11 (s, 1H, CHO), 6.04 (s, 1H, NH), 3.34 - 3.20 (m, 2H, CH₂N), 1.59 - 1.41 (m, 2H, CH₂), 1.36 - 1.18 (m, 6H, CH₂), 0.97 - 0.60 (m, 3H, CH₃). Minor rotamer: 7.99 (d, J = 12.0 Hz, 1H, CHO), 3.21 - 3.10 (m, 2H, CH₂N), 2.22 (s, 1H, NH), 1.59 - 1.41 (m, 2H, CH₂), 1.36 - 1.18 (m, 6H, CH₂), 0.97 - 0.60 (m, 3H, CH₃). ¹³C NMR (75 **MHz, CDCl₃)**: Major rotamer: 161.42, 38.27, 31.48, 29.51, 26.58, 22.60, 14.06. Minor rotamer: 164.84, 41.92, 31.37, 31.23, 26.11, 22.57, 14.04. **ATR-FTIR (cm⁻¹)**: 3281, 3056, 2957, 2929, 2858, 1658, 1466, 1382, 1466, 1382, 1241, 771 725, 650, 622. **ESI-MS**: found: 130.1223 (C7H15NOH), calculated: 130.1226, found: 152.1046 (C7H15NONa), calculated: 152.1046.

N-dodecylformamide (5d)

The product was obtained as white solid in 83% yield (263 mg, 1.25 mmol).

R_F (pentane/EtOAc 40:60): 0.34; ¹**H NMR (300 MHz, CDCl₃):** Mixture of rotamers is observed. Ratio: 8/2. Major rotamer: 8.13 (s, 1H, CHO), 5.88 (s, 1H, NH), 3.26 (q, J = 6.7 Hz, 2H, CH₂N), 1.50 (m, 2H, CH₂CH₂NH), 1.25 (d, J=9.6, 18H, CH₂), 0.92 – 0.77 (m, 3H, CH₃). Minor rotamer: 8.01 (d, J = 12.0 Hz, 1H, CHO), 3.18 (q, J=6.8 Hz, 1H, CH₂N), 1.50 (m, 2H, CH₂CH₂NH), 1.25 (d, J=9.6, 18H, CH₂), 0.92 – 0.77 (m, 3H, CH₃). ¹³C NMR (75 MHz, CH₂CH₂NH), 1.25 (d, J=9.6, 18H, CH₂), 0.92 – 0.77 (m, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): Major rotamer: 161.34, 38.30, 32.01, 29.74, 29.72, 29.67, 29.63, 29.60, 29.44, 29.35, 26.96, 22.78, 14.22. Minor rotamer: 164.77, 41.91, 31.33, 29.72, 29.67, 29.63, 29.60, 29.44, 29.24, 26.48, 14.22. ATR-FTIR (cm⁻¹): 3292, 2954, 2919, 2849, 1741, 1644, 1535, 1467, 1377, 1235, 1215, 1047, 779, 722, 668. ESI-MS: found: 236.1985 (C13H27NONa), calculated: 236.1985.

N-Adamantan-1-ylformamide (5e)

The product was obtained as white solid in 27% yield (73 mg, 0.40 mmol). **R**_F (pentane/EtOAc 40:60): 0.31; ¹H NMR (300 MHz, CDCl₃): Mixture of rotamers is observed. Ratio: 7/3. Major rotamer: 8.25 (d, *J* = 12.3 Hz, 1H, CHO), 6.36 (s, 1H, NH), 2.15 – 2.03 (m, 3H), 2.03 – 1.95 (m, 1H), 1.85 – 1.79 (m, 4H), 1.73 – 1.57 (m, 6H). Minor rotamer: 8.00 (d, *J* = 2.1, 1H, CHO), 5.30 (s, 1H, NH), 2.15 – 2.03 (m, 3H), 2.03 – 1.95 (m, 1H), 1.85 – 1.79 (m, 4H), 1.73 – 1.57 (m, 6H). Minor rotamer: 8.00 (d, *J* = 2.1, 1H, CHO), 5.30 (s, 1H, NH), 2.15 – 2.03 (m, 3H), 2.03 – 1.95 (m, 1H), 1.85 – 1.79 (m, 4H), 1.73 – 1.57 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): Major rotamer: 160.38, 50.75, 44.18, 35.95, 29.34. Minor rotamer: 162.38, 52.18, 41.88, 36.31, 29.44. ATR-FTIR (cm⁻¹): 3184, 3087, 2898, 2851, 1689, 1450, 1395, 1362, 1304, 1259, 1134, 1098, 1040, 786, 750, 671. ESI-MS: found: 202.1206 (C11H17NONa), calculated: 202.1202.

N-benzylformamide (5f)

 $\mathbf{R}_{\mathbf{F}}$ (pentane/EtOAc 40:60): 0.25; ¹H NMR (400 MHz, CDCl₃): Mixture of rotamers is observed. Ratio: 8/2. Major rotamer: 8.01 (s, 1H, CHO), 7.28 –

The product was obtained as colorless oil in 83% yield (168 mg, 1.25 mmol).

7.04 (m, 5H, H_{Ar}), 6.77 (s, 1H, NH), 4.27 (d, J = 6.0 Hz, 2H, CH₂N). Minor rotamer: 7.92 (d, J = 12.0 Hz, 1H, CHO), 7.28 – 7.04 (m, 5H, H_{Ar}), 6.36 (s, 1H, NH), 4.21 (d, J=6.4 Hz, 2H, CH₂N). ¹³C NMR (101 MHz, CDCl₃): Major rotamer: 161.41, 137.68, 128.63, 127.60, 127.46, 41.95. Minor rotamer: 164.89, 137.55, 128.82, 127.84, 126.93, 45.62. ATR-FTIR (cm⁻¹): 3271, 2885, 1638, 1532, 1454, 1387, 1226, 1079, 1029, 738, 696. ESI-MS: found: 158.0576 (C8H9NONa), calculated: 158.0576

N-(3-Trifluoromethylbenzyl)formamide (5g)

The product was obtained as white solid in 33% yield (101 mg, 0.49 mmol).

R_F (EtOAc): 0.40; ¹**H** NMR (300 MHz, CDCl₃): Mixture of rotamers is observed. Ratio: 9/1. Major rotamer: 8.22 (s, 1H, CHO), 7.58 – 7.37 (m, 4H, H_{Ar}), 6.62 (s, 1H, NH), 4.47 (d, J = 6.2 Hz, 2H, CH₂N) Minor rotamer: 8.13 (d, J = 11.8, 1H, CHO), 7.58 – 7.37 (m, 4H, H_{Ar}), 6.46 (s, 1H, NH), 4.46 – 4.42 (m, 2H, CH₂N). ¹³C NMR (75 MHz, CDCl₃): Mixture of rotamers: 164.86, 161.46, 138.83, 131.28, 131.11 (d, J = 1.5 Hz), 130.85, 129.56, 129.30, 125.86, 124.39 (dq, J = 12.6 Hz, 3.9 Hz), 122.25, 118.64, 45.28, 41.62. ATR-FTIR (cm⁻¹): 3301, 3261, 3055, 2927, 2865, 1659, 1535, 1451, 1384, 1326, 1237, 1158, 1115, 1073, 977, 922, 905, 888, 801, 699, 660. ESI-MS: found: 226.0455 (C₉H₈F₃NONa), calculated: 226.0450.

N-(4-Methoxybenzyl)formamide (5h)

The product was obtained as white solid in 44% yield (110 mg, 0.66 mmol).

 R_F (EtOAc): 0.44; ¹H NMR (300 MHz, CDCl₃): Mixture of rotamers is observed. Ratio: 8.5/1.5. Major rotamer: 8.10 (s, 1H, CHO), 7.21 – 7.04 (m, 2H, H_{Ar}), 6.95 – 6.73 (m, 2H, H_{Ar}), 6.67 (s, 1H, NH), 4.30 (d, J=5.8 Hz, 2H, CH₂N), 3.82 – 3.56 (m, 3H, OCH₃). Minor rotamer: 8.02 (d, J=11.9 Hz, 1H, CHO), 7.21 – 7.04 (m, 2H, H_{Ar}), 6.95 – 6.73 (m, 2H, H_{Ar}), 6.30 (s, 1H, NH), 4.24 (d, J=6.4 Hz, 2H, CH₂N), 3.82 – 3.56 (m, 3H, OCH₃). ¹³C NMR (75 MHz, CDCl₃): Major rotamer: 161.41, 137.68, 128.63, 127.60, 127.46, 41.95. Minor rotamer: 164.89, 137.55, 128.82, 127.84, 126.93, 45.62. ATR-FTIR (cm⁻¹): 3284, 2933, 2895, 2835, 1641, 1512, 1460, 1377, 1352, 1304, 1241, 1213, 1179, 1116, 1033, 828, 795, 696. ESI-MS: found: 188.0685 (C8H11NO2Na), calculated: 188.0682.

N-(4-Chlorobenzyl)formamide (5i)

The product was obtained as white solid in 47% yield (120 mg, 0.71 mmol).

 $\mathbf{R}_{\rm F}$ (EtOAc): 0.40; ¹H NMR (300 MHz, CDCl₃): Mixture of rotamers is observed. Ratio: 9/1. Major rotamer: 8.13 (s, 1H, CHO), 7.28 – 7.16 (m, 2H, H_{Ar}), 7.16 – 7.06 (m, 2H, H_{Ar}), 6.34 (s, 1H, NH), 4.32 (d, J = 6.0 Hz, 2H, CH₂N). Minor rotamer: 8.03 (d, J =11.9 Hz, 1H, CHO), 7.28 – 7.16 (m, 2H, H_{Ar}), 7.16 – 7.06 (m, 2H, H_{Ar}), 4.28 (d, J = 6.5 Hz, 2H, CH₂N). ¹³C NMR (75 MHz, CDCl₃): Major rotamer: 161.29, 136.26, 133.46, 129.13, 128.91, 41.47. Minor rotamer: 164.79, 136.09, 133.87, 128.39, 45.10. ATR-FTIR (cm⁻¹): 3277, 3028, 2897, 1648, 1532, 1491, 1382, 1225, 1089, 10014, 871, 820, 759, 682. ESI-MS: found: 192.0190 (C₈H₈CINONa), calculated: 192.0187.

N-(4-Fluorobenzyl)formamide (5j)

The product was obtained as white solid in 57% yield (131 mg, 0.86 mmol). R_F (EtOAc): 0.43; ¹H NMR (300 MHz, CDCl₃): Mixture of rotamers is a served ¹H NMR-signals are completely overlapping. Mixture of rotamers: 8.11 (s. 1H

observed. ¹H NMR-signals are completely overlapping. Mixture of rotamers: 8.11 (s, 1H, CHO), 7.23 - 7.09 (m, 2H, H_{Ar}), 7.05 - 6.79 (m, 3H, H_{Ar}, NH), 4.32 (d, J = 6.1 Hz, 2H, CH₂N). ¹³C NMR (75 MHz, CDCl₃): Major rotamer: 162.08 (d, J = 245.7 Hz), 161.42, 133.55 (d, J = 3.3 Hz), 129.31 (d, J = 8.1 Hz), 115.45 (d, J = 21.4 Hz), 41.27. Minor rotamer: 164.81, 162.29 (d, J = 246.4 Hz), 133.38 (d, J = 3.2 Hz), 128.70 (d, J = 8.2 Hz), 115.86, 45.01. ATR-FTIR (cm⁻¹): 3276, 3036, 2936, 2897, 1718, 1650, 1538, 1508, 1462, 1419, 1383, 1350, 1213, 1159, 1096, 1014, 965, 869, 805, 697. ESI-MS: found: 176.0484 (C8H8FNONa), calculated: 176.04682.

N-(1-phenylethyl)formamide (5k)

H The product was obtained as white solid in 77% yield (172 mg, 1.16 mmol).

R_F (EtOAc): 0.53; ¹H NMR (300 MHz, CDCl₃): Mixture of rotamers is observed. Ratio: 8.5/1.5. Major rotamer: 7.91 (s, 1H, CHO), 7.25 – 7.10 (m, 5H, H_{Ar}), 7.04 (s, 1H, NH), 5.01 (p, J = 8.0 Hz, 1H, CHN), 1.34 (d, J = 7.0 Hz, 3H, CH₃). Minor rotamer: 7.94 (d, J = 12.0 Hz, 1H, CHO), 7.25 – 7.10 (m, 5H, H_{Ar}), 4.79 – 4.13 (m, 1H, CHN), 2.68 (s, 1H, NH), 1.40 (d, J = 6.9 Hz, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): Major rotamer: 160.71, 142.79, 128.51, 127.22, 125.98, 47.49, 21.83. Minor rotamer: 164.42, 142.87, 128.76, 127.56, 125.69, 51.79, 23.35. ATR-FTIR (cm⁻¹): 3268, 3032, 2976, 2868, 1653, 1530, 1495, 1450, 1379, 1236, 1088, 1021, 912, 807, 760, 697. ESI-MS: found: 172.0735 (C9H11NONa), calculated: 172.0733.

N,N-dibutylformamide (5l)

The product was obtained as colourless oil in 64% yield (151 mg, 0.96 mmol).

R_F (pentane/EtOAc 80:20): 0.28; ¹**H** NMR (300 MHz, CDCl₃): 7.93 (s, 1H, CHO), 3.18 (t, J = 7.5 Hz, 2H, CH₂N), 3.09 (t, J = 7.1 Hz, 2H, CH₂N), 1.49 – 1.34 (m, 4H, CH₂), 1.30 – 1.10 (m, 4H, CH₂), 0.82 (td, J = 7.3 Hz, 2.2 Hz, 6H, CH₃). ¹³C NMR (75 MHz, CDCl₃): 162.53, 47.02, 41.69, 30.60, 29.27, 20.04, 19.51, 13.69, 13.53. ATR-FTIR (cm⁻¹): 3346, 2958, 2932, 2871, 1667, 1460, 1427, 1399, 1378, 1291, 1253, 1117, 1056, 950, 733, 687, 626. ESI-MS: found: 180.1363 (C₉H₁₉NONa), calculated: 180.1359.

N,*N*-dibenzylformamide (5m)

The product was obtained as colourless oil in 71% yield (240 mg, 1.06 mmol).

 $\mathbf{R_{F}} \text{ (pentane/EtOAc 80:20): } 0.38; \ ^{1}\mathbf{H} \text{ NMR (300 MHz, CDCl_3): } 8.27 \\ \text{(s, 1H, CHO), } 7.29 - 7.10 \text{ (m, 6H, H_{Ar}), } 7.10 - 6.99 \text{ (m, 4H, H_{Ar}), } 4.27 \text{ (s, 2H, CH_2N), } 4.10 \text{ (s, } 2\text{H, CH}_2\text{N}). \ ^{13}\mathbf{C} \text{ NMR (75 MHz, CDCl_3): } 162.70, 135.90, 135.53, 128.78, 128.56, 128.36, } 127.99, 127.58, 127.52, 50.06, 44.45. \text{ ATR-FTIR (cm}^{-1}): 3030, 2922, 2864, 1666, 1495, } 1425, 1397, 1263, 1198, 1158, 1077, 1029, 979, 823, 738, 699, 610.$ **ESI-MS:** $found: 248.1046 (C_{15}H_{15}\text{NONa}), calculated: 248.1046.$

Piperidine-1-carbaldehyde (5n)

The product was obtained as colourless oil in 90% yield (152 mg, 1.35 mmol). **R**_F (EtOAc): 0.28; ¹**H NMR (300 MHz, CDCl₃)**: 7.92 (s, 1H,CHO), 3.44 – 3.36 (m, 2H, CH₂N), 3.27 - 3.20 (m, 2H, CH₂N), 1.66 - 1.56 (m, 2H, CH₂), 1.55 - 1.40(m, 4H, CH₂). ¹³**C NMR (75 MHz, CDCl₃)**: 160.81, 46.82, 40.58, 26.53, 25.03, 24.65. **ATR-FTIR (cm⁻¹)**: 2937, 2857, 1658, 1440, 1398, 1258, 1210, 1118, 1028, 996, 854, 655, 628. **ESI-MS:** found: 136.0730 (C₆H₁₁NONa), calculated: 136.0733.

Morpholine-4-carbaldehyde (50)

The product was obtained as colourless oil in 74% yield (128 mg, 1.11 mmol).

R_F (EtOAc): 0.15; ¹**H NMR (300 MHz, CDCl₃):** 8.02 (s, 1H, CHO), 3.76 – 3.59 (m, 4H, CH₂), 3.57 – 3.50 (m, 2H, CH₂), 3.41 – 3.31 (m, 2H, CH₂). ¹³**C NMR (75 MHz, CDCl₃):** 160.91, 67.28, 66.48, 45.85, 40.65. **ATR-FTIR (cm⁻¹):** 2969, 2914,

2858, 1656, 1434, 1398, 1363, 1300, 1270, 1230, 1186, 1109, 1069, 1004, 855, 812, 660. **ESI-MS:** found: 138.0528 (C₅H₉NO₂Na), calculated: 138.0525.

Azepane-1-carbaldehyde (5p)

The product was obtained as colourless oil in 99% yield (189 mg, 1.48 mmol).

 $R_{F} (EtOAc): 0.34; {}^{1}H NMR (300 MHz, CDCl_{3}): 7.88 (s, 1H, CHO), 3.28 - 3.16 (m, 4H, CH_{2}N), 1.60 - 1.48 (m, 4H, CH_{2}), 1.45 - 1.32 (m, 4H, CH_{2}) {}^{13}C NMR (75 MHz, CDCl_{3}): 162.49, 47.31, 43.00, 29.90, 27.62, 26.56, 26.51. ATR-FTIR (cm⁻¹): 2925, 2855, 1658, 1426, 1401, 1298, 1259, 1199, 1155, 1105, 1001, 972, 873, 743,652. ESI-MS: found: 150.0884 (C₇H₁₃NONa), calculated: 150.0889, found: 277.1886 ((C₇H₁₃NO)₂Na), calculated: 277.1886.$

3,4-Dihydroisoquinoline-2(1H)-carbaldehyde (5q)

The product was obtained as colourless oil in 90% yield (218 mg, 1.35 mmol).

^H $\mathbf{R}_{\mathbf{F}}$ (EtOAc): 0.44; ¹H NMR (300 MHz, CDCl3): Mixture of rotamers is observed. Ratio: 6/4. Major rotamer: 8.18 (s, 1H, CHO), 7.24 – 7.07 (m, 4H, H_{Ar}), 4.68 (s, 2H, C_{Ar}CH₂N), 3.64 (t, J=5.9 Hz, 2H, CH₂), 2.93 – 2.83 (m, 2H, CH₂). Minor rotamer: 8.23 (s, 1H, CHO), 7.24 – 7.07 (m, 4H, H_{Ar}), 4.53 (2, 1H, C_{Ar}CH₂N), 3.78 (t, J=6.2 Hz, 2H, CH₂), 2.93 – 2.83 (m, 2H, CH₂). ¹³C NMR (75 MHz, CDCl₃): Mixture of rotamers: 161.74, 161.23, 134.47, 134.15, 133.59, 132.28, 131.80, 129.25, 128.98, 127.16, 126.79, 126.69, 126.55, 125.95, 47.38, 43.30, 42.37, 38.05, 29.78, 27.99. ATR-FTIR (cm⁻¹): 2930, 2859, 1660, 1496, 1437, 1398, 1367, 1280, 1253, 1196, 1164, 1108, 1050, 983, 930, 814, 749, 706, 674, 629. ESI-MS: found: 184.0738 (C10H11NONa), calculated: 184.0733.

4. Synthesis of the isolated complex RuICy₂(2-methylallyl)₂(3)

Free carbene (ICy):

According to a modified procedure,² a schlenk flask was charged with ICy·HCl (7.000 g, 26 mmol, 1.00 eq.) and NaOtBu (3.003 g, 31 mmol, 1.2 eq.). The solids were suspended in THF (40 mL) and stirred at RT for 4 h. The solvent was removed in vacuum and the residue was suspended in warm toluene (20 mL, ≈ 60 °C). The suspension was filtered through a short plug of dry celite (3x6 cm) under argon atmosphere and eluted with an additional portion of toluene (20 mL). The solvent of the eluate was removed in vacuum to obtain a sticky red residue. Upon heating to 60 °C (\approx 30 min) under vacuum and cooling to RT the residue solidifies and ICy was obtained as a red solid (5.524 g, 24 mmol, 91%).

¹H NMR (300 MHz, Benzene-d₆): 6.62 (s, 4H, H_{Ar}), 4.13 (tt, *J* = 11.7 Hz, 3.7 Hz, 2H, CHN), 2.17 – 2.02 (m, 4H, CH₂), 1.76 – 1.54 (m, 8H, CH₂), 1.49 – 1.38 (m, 2H, CH₂), 1.23 – 0.95 (m, 6H, CH₂). 13C NMR (75 MHz, Benzene-d₆): 212.04, 115.89, 60.01, 35.29, 26.00, 25.88.

RuICy₂(2-methallyl)₂(3):

A Schlenk flask was charged with Ru(COD)(methallyl)₂ (100 mg, 0.31 mmol, 1.00 eq.) and ICy (149 mg, 0.64 mmol, 2.05 eq.) and the solids were suspended in hexane (1 mL). After short stirring at room temperature the red solution was heated to 60 °C. After 16 h a fine suspension was obtained and stirring was stopped. The supernatant solution was removed by syringe and the residue was washed again with hexane (2 mL). The residue was dried in vacuum and once again suspended in hexane (2 mL). After removing the supernatant solution and drying in vacuum the complex was obtained as a free flowing off-white powder (197 mg, 0.29 mmol, 94%)

¹**H NMR (300 MHz, Benzene-d₆):** 6.58 (d, J = 2.1 Hz, 1H, H_{Ar}), 6.43 (d, J = 2.1 Hz, 1H, H_{Ar}), 6.20 (tt, J = 11.8 Hz, 3.4 Hz, 1H, CHN), 5.02 (tt, J = 11.3 Hz, 3.2 Hz, 1H, CHN), 2.60

(d, J = 11.9 Hz, 1H, CH₂), 2.52 (d, J = 2.6 Hz, 1H, H_{allyl}), 2.45 (s, 3H, CH_{3allyl}), 1.95 – 1.77 (m, 4H, CH₂), 1.72 – 1.31 (m, 9H, CH₂) overlapping with: 1.45 (d, 1H, H_{allyl}), 1.27 – 1.05 (m, 4H, CH₂), 1.03 – 0.87 (m, 2H, CH₂), 0.68 (s, 1H, H_{allyl}), 0.46 (s, 1H_{allyl}). ¹³C NMR (75 MHz, Benzene-d₆): 202.96, 117.35, 116.46, 93.58, 60.55, 58.24, 40.01, 37.91, 35.85, 35.83, 35.03, 32.90, 26.82, 26.77, 26.19, 26.11, 26.09, 26.05. KBr-FTIR (cm⁻¹): 3173, 3138, 3031, 2978, 2935, 2853, 2667, 2602, 2196, 1613, 1584, 1521, 1452, 1412, 1387, 1366, 1304, 1269, 1222, 1207, 1185, 1090, 1056, 1021, 991, 972, 894, 849, 817, 761, 714, 681, 546, 508, 418. ESI-MS: found: 676.39991 (C38H62N4Ru), calculated: 676.40228 (During the measurement Ru was oxidized from +2 to +3, leading to the observed charge of +1 of the complex).

5. NMR spectra

110 100 f1 (ppm) 90 80 -10

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-161.29-161.29-151.26-133.46-133.46-133.46-133.45-133.45

8.27 2.26 2.26 2.27 2.22

135.90 135.53 135.53 135.53 135.53 135.58 128.56 128.56 128.56 128.56 127.59

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

6. HPLC traces

(R)-N-(1-phenylethyl)formamide

HPLC (OD-H, elute: hexane/*i*-PrOH = 95/5, detector: 210 nm, flowrate: 1 mL/min), $t_{1(major)} = 24.2$; min, $t_{2(minor)} = 33.2$ min.

7. Optimization tables

Optimization conditions under reflux:

NH ₂	RulCy ₂ , MeOH		
	solvent, T		

Entry	RuICy ₂	MeOH (eq)	Solvent	C (M)	T (°C)	Yield (%)
1	no NHC	3.3	Toluene	1M	125	-
2	2%	3.3	Toluene	1M	125	63
3	2%	2	Toluene	1M	125	traces
4	2%	0.5	Toluene	1M	125	-
5	2%	10	Toluene	1M	125	23
6	2%	10	Toluene	0.5M	125	16
7	2%	10	Toluene	0.1M	125	12
8	not pre-formed	10	Toluene	0.1M	125	11
9	2%	10	Xylene	1M	25	21
10	2% sealed tube	3.3	Toluene	1M	125	26
11	2%	3.3	Hexane	1M	125	traces
12	2% (+30%base)	3.3	Toluene	1M	125	22
13	2%	3.3	Toluene	1M	100	35
14	2%	3.3	Toluene	1M	80	9
15	2%	3.3	Toluene	1M	60	5

Additives

NH ₂	RulCy ₂ , MeOH toluene, 125 °C (aditive, sealed tube	NH_СНО
Entry	Aditive	Yield (%)
1	4-octyne (1eq)	60
2	norbornene (2eq)	60
3	TMS-acetylene (1eq)	3
4	styrene (2eq)	78
5	isoprene (2eq)	21

Styrene optimization

Entry	MeOH (eq)	Styrene (eq)	T (°C)	Yield (%)
1	1	2	125	traces
2	2	2	125	12
3	3.3	2	125	78
4	10	2	125	47
5	20	2	125	traces
6	neat MeOH	2	125	2
7	3.3	2	100	22
8	3.3	2	80	8
9	3.3	3	60	4
10	3.3	3	125	96
11	10	3	125	45
12	3.3	1	125	60

8. NMR experiments

9. References

- [1] S. Urban, N. Ortega, F. Glorius, *Angew. Chem. Int. Ed.* **2011**, *50*, 3803.
- [2] A. J. Arduengo, R. Krafczyk, R. Schmutzler, *Tetrahedron* 1999, 55, 14523.