Asymmetric Methallylation of Ketones Catalyzed by a Highly Active Organocatalyst 3,3'- \mathbf{F}_{2}-BINOL

Yongda Zhang*, Ning Li, Bo Qu, Shengli Ma, Heewon Lee, Nina C. Gonnella, Joe Gao, Wenjie Li, Zhulin Tan, Johnathan T. Reeves, Jun Wang, Jon C. Lorenz, Guisheng Li, Diana C. Reeves, Ajith Premasiri, Nelu Grinberg, Nizar Haddad, Bruce Z. Lu, Jinhua J. Song, Chris H. Senanayake

Chemical Development, Boehringer-Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877

E-mail: yongda.zhang@boehringer-ingelheim.com

Supporting Information

Table of Contents

General SI-2
Synthesis of (S)-3,3'-difluoro-1,1'-binaphthyl-2,2'-diol 7 -SI-3
Synthesis of 5,5-dimethyl-2-(2-methylallyl)-1,3,2-dioxaborinane 4 SI-4
Catalyst screen results SI-5
Allylation of 11 a catalyzed by $3,3^{\prime}-$ Br $_{2}$-BINOL and $3,3{ }^{\prime}-F_{2}$-BINOL SI-6
General procedure for the asymmetric methallylation of ketones- SI-6
Synthesis of enantioenriched 1 -SI-14
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for all new compounds- SI-18
Chiral HPLC traces for methallylation -SI-44
X-Ray crystallographic data for compound 7 SI-63

General Methods.

All reactions were carried out under an atmosphere of argon or nitrogen in dry glassware with magnetic stirring. Commercially available n - $\mathrm{BuLi}, \mathrm{MOMCl}, \mathrm{THF}$, NFSI (Nfluorobenzenesulfonimide), anhydrous $t-\mathrm{BuOH}$ and $t-\mathrm{AmOH}$ were received and used without any further purification. Ketones $\mathbf{1 1} \mathbf{j},{ }^{1} \mathbf{1 1} \mathbf{k}^{1}, \mathbf{1 1} \mathbf{p}^{2}$ were synthesized according to literature procedure. Column chromatography was performed on silica gel 60 (230-400 mesh). Thin layer chromatography was performed on 0.25 mm silica gel $60-\mathrm{F}$ plates. Visualization was accomplished with UV light, KMnO_{4}, aqueous ceric ammonium molybdate, or bromocresol green dips followed by heating. The stereochemistry of methallylation products were assigned by comparison with optical rotation of known compounds such as $\mathbf{1 2 o}$.
${ }^{1} \mathrm{H}$ NMR and spectra were recorded on a 400 MHz spectrometer at ambient temperature. Data are reported as follows: chemical shift in parts per million (δ, ppm) from an internal standard [tetramethylsilane (TMS) or deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$], multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad , integration, and coupling constant (Hz). ${ }^{13} \mathrm{C}$ NMR and spectra were recorded on a 400 MHz spectrometer at ambient temperature. Chemical shifts are reported in ppm from CDCl_{3} taken as 77.0 ppm. Melting points are uncorrected. Optical rotations were measured on an Autopd ${ }^{\circledR}$ III automatic polarimeter.

Synthesis of (S)-3,3'-difluoro-1,1'-binaphthyl-2,2'-diol 7^{3}

A dry and clean flask was charged with $60 \% \mathrm{NaH}(10.48 \mathrm{~g}, 261.94 \mathrm{mmol}, 2.5$ equiv) under nitrogen followed by addition of 100 mL of THF. After the resulting suspension was cooled to $0^{\circ} \mathrm{C}$, a solution of (S)-1,1'-binaphthyl-2,2'-diol $\mathbf{8}(30 \mathrm{~g}, 104.78 \mathrm{mmol})$ in 200 mL of THF was added while maintaining the internal temperature below $5{ }^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{MOMCl}(20.25 \mathrm{~g}, 251.46 \mathrm{mmol}, 2.4$ equiv) was added while maintaining the internal temperature below $10{ }^{\circ} \mathrm{C}$. After the solution was stirred for 1 h at $0-5^{\circ} \mathrm{C}$, the reaction was quenched with water and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the product as a pale yellow solid, which was slurried in a mixture solvent $(5 \% \mathrm{EtOAc}$ in Hexane) to give 37 g of the product 9 as an off-white solid with 94% yield.
To a dry $500-\mathrm{mL}$ 3-neck flask was charged 9 ($10 \mathrm{~g}, 26.71 \mathrm{mmol}$) under nitrogen followed by addition of 100 mL of THF via a syringe. After the resulting solution was cooled to $15{ }^{\circ} \mathrm{C}$, a solution of $2.5 \mathrm{M} \mathrm{n}-\mathrm{BuLi}(25.64 \mathrm{ml}, 64.10 \mathrm{mmol}, 2.4$ equiv) in hexane was added while maintaining the internal temperature below $-10{ }^{\circ} \mathrm{C}$. After complete addition, the mixture was kept at $0^{\circ} \mathrm{C}$ for 1 h to give a thick suspension. The suspension was cooled to $-70{ }^{\circ} \mathrm{C}$. NFSI ($21.03 \mathrm{~g}, 64.68 \mathrm{mmol}, 2.42$ equiv) in 100 mL of THF was added while maintaining the internal temperature $<-69^{\circ} \mathrm{C}$. After complete addition, the resulting mixture was kept $<-69^{\circ} \mathrm{C}$ for 30 min . Then the mixture was allowed to warm up to room temperature. Water was added to quench the reaction followed by addition of EtOAc. The combined organic layers were washed with aq. NaHCO_{3}, water and brine successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under vacuum gave the crude product, which was purified by silica gel chromatography to give the product $\mathbf{1 0}$ as a liquid with 91% yield.

To a flask was charged $\mathbf{1 0}(6.0 \mathrm{~g})$ and Amberlyst ${ }^{\circledR}$ ion-exchange resin $15(6.0 \mathrm{~g})$. After addition of 30 mL of THF and 30 mL of MeOH , the resulting mixture was heated at reflux for 3 h . After the mixture was cooled to room temperature, the solid was removed
by filtration. The crude product on removal of the solvent was purified on silica gel to give the pure product 7 as a white solid with 93% yield and $>99 \%$ ee.
$[\alpha]^{22}{ }_{\mathrm{D}}+22.9\left[\mathrm{c} 0.66, \mathrm{CHCl}_{3}\right]$; Melting point: $177-179{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600.02 MHz, DMSO$\left.d_{6}\right), \delta 9.57(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(150.92 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta, 152.1,143.1,130.6,127.6,127.4,125.5,124.2,123.8,118.0,111.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta-135.1(\mathrm{~m}, ~ 1 \mathrm{~F})$. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{O}_{2}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 323.0878, found: 323.0871; Chiral HPLC conditions: Chiralpak OD-H, $4.6 \times 250 \mathrm{~mm}$; 75:25 heptane/2-propanol, $1.2 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm},(R)-7, t=5.89 \mathrm{~min},(S)-7, t=8.59 \mathrm{~min}$.

Synthesis of 5,5-Dimethyl-2-(2-methylallyl)-1,3,2-dioxaborinane 4

To a dry flask was charged Mg turnings ($12.0 \mathrm{~g}, 497 \mathrm{mmol}$) and THF (350 mL) under argon followed by addition of 1.2 M DIBAL-H in heptane ($8.28 \mathrm{~mL}, 0.03$ equiv). The solution was left for 1 h and gradually became grey. 3-chloro-2-methylprop-1-ene (30 g , 331 mmol) was added to the flask while maintaining the temperature between $20-25^{\circ} \mathrm{C}$. After the complete addition, the mixture was stirred for 2 h at that temperature. The solution was titrated with bi-pyridine as indicator. ${ }^{4}$ The concentration is about 0.62 M . To a dry flask was charged the Grignard reagent ($248 \mathrm{mmol}, 400 \mathrm{~mL}$) prepared above and MTBE (200 mL) under nitrogen. After the mixture was cooled to $-60{ }^{\circ} \mathrm{C}$ (dry-ice bath), $\mathrm{B}(\mathrm{OMe})_{3}(25.8 \mathrm{~g}, 248 \mathrm{mmol}, 1$ equiv) was added while maintaining the internal temperature below $-60^{\circ} \mathrm{C}$. The resulting solution was stirred at -50 to $-60{ }^{\circ} \mathrm{C}$ for 30 min , and then slowly warm to $0{ }^{\circ} \mathrm{C}$ over 30 min . $\mathrm{AcCl}(17.5 \mathrm{~g}, 223.2 \mathrm{mmol}, 0.9$ equiv) was charged while controlling the temperature below $5{ }^{\circ} \mathrm{C}$. After that, the reaction mixture was allowed to warm to room temperature and then 3,3-dimethyl-propane-1,3-diol (23.0 $\mathrm{g}, 223 \mathrm{mmol}, 0.9$ equiv) was charged into the flask in one portion. The resulting reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ overnight. Dioxane ($32.78 \mathrm{~g}, 372 \mathrm{mmol}, 1.5$ equiv) was added to the mixture. After 2 h , the solid was filtered off through a Celite pad, which was rinsed with MTBE (200 mL). The residue on removal of the solvent was diluted with hexane $(100 \mathrm{~mL})$. The solid was removed by filtration. The filtrate was concentrated and
purified by passing a short silica gel column with 10% MTBE in hexanes as elute or by distillation under vacuum to give the boronate 4.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.67$ (s, 2H), $0.96(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.1,109.4,72.2,31.6,24.5,21.8$. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{BO}_{2}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 169.1400, found: 169.1371 .

Screen results of various substituted BINOLs.

To a dry and clean flask was charged ketone 3 (2 mmol) and substituted BINOL C1-C16 (0.20 equiv) under N_{2} followed by addition of $t-\mathrm{BuOH}(0.30 \mathrm{~g}, 4.0 \mathrm{mmol}$, 2 equiv) and 4 (3 mmol , 1.5 equiv) via syringe. Then the mixture was stirred at $23^{\circ} \mathrm{C}$ overnight. The er was determined on chiral HPLC. Chiral HPLC conditions: Chiralcel OJ-RH, 4.6×150 $\mathrm{mm}, 5 \mu \mathrm{~m}$, mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=4.0$), $52: 48 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with MeOH .

* 3.0 equiv of 4 and 2.0 eqiv of $t-\mathrm{BuOH}$ were used.

Allylation of 11a catalyzed by $\mathbf{3 , 3} \mathbf{3}^{\prime}-\mathrm{Br}_{2}$-BINOL 5 and $\mathbf{3 , 3} \mathbf{3}^{\prime}-\mathrm{F}_{2}$-BINOL 7.

$5 \mathrm{~mol} \%$ 3, $99: 1 \mathrm{er}, 99 \%$ yield
$5 \mathrm{~mol} \%$ 1, $92: 8 \mathrm{er}, 94 \%$ yield

General Procedure for the Asymmetric Methallylation of Ketones with 3,3'- $\mathbf{F}_{2^{-}}$ BINOL 7 as the organocatalyst

To a dry and clean flask was charged ketone (2 mmol) and $7(12.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.05$ equiv) under N_{2} followed by addition of $t-\mathrm{AmOH}(0.29 \mathrm{~g}, 4.0 \mathrm{mmol}, 2$ equiv) and 4 (3 mmol, 1.5 equiv) via syringe. Then the mixture was stirred at the temperature as indicated in the table 2 . The mixture was cooled to room temperature if the reaction was run at $40^{\circ} \mathrm{C}$. The reaction mixture was directly purified by flash chromatography $(0-5 \%$ EtOAc in hexanes) on silica gel to yield the product.

(R)-4-Methyl-1,2-diphenylpent-4-en-2-ol 12a

The general procedure was applied to 1,2 -diphenylethanone $(0.39 \mathrm{~g}, 2.0 \mathrm{mmol})$ in the presence of $2 \mathrm{~mol} \% 7$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95)$ to give the product as an oil $(0.49 \mathrm{~g}, 98$ yield, $93: 7 \mathrm{er})$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.14(\mathrm{~m}, 8 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.67$ $(\mathrm{s}, 1 \mathrm{H}), 3.16(\mathrm{~d}, ~ J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 145.8, 142.3, 136.6, 130.8, 127.8, 126.5, 125.7, 115.7, 75.6, 50.1, 49.9, 24.3. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$: 235.1481, found: 235.1476. Optical Rotation: $[\alpha]_{D}{ }^{22}+21.2\left(c=1.13, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 93:7 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$, mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $52: 48 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: 1.3 mL min . . The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 a}, t_{\text {major }}=8.57 \mathrm{~min} ;(S) \mathbf{- 1 2 a}, t_{\text {minor }}=8.06 \mathrm{~min}$.

(R)-1-(3-Methoxyphenyl)-4-methyl-2-phenylpent-4-en-2-ol 12b

The general procedure was applied to 2-(3-methoxyphenyl)-1-phenylethanone (113 mg, $0.5 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product $(134 \mathrm{mg}, 95 \%$ yield, $96: 4 \mathrm{er}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.73-$ $6.68(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.43(\mathrm{bs}, 1 \mathrm{H}), 4.82(\mathrm{bs}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 3.03(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.76(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.58$ $(\mathrm{d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1$, $145.8,142.3,138.0,128.7,127.8,126.4,125.7,123.2,115.9,115.7,112.5,75.6,55.0$, 50.1, 50.0, 24.3. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 300.1958$, found: 300.1954. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+21.1$ ($\left.\mathrm{c}=0.77, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 96:4 er.
Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $52: 48 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\operatorname{MeOH} .(R)-\mathbf{1 2 b}, t_{\text {major }}=7.15 \mathrm{~min} ;(S) \mathbf{- 1 2 b}, t_{\text {minor }}=6.64 \mathrm{~min}$

(R)-2-(2-Methoxyphenyl)-4-methyl-1-phenylpent-4-en-2-ol 12c

The general procedure was applied to 1-(2-methoxyphenyl)-2-phenylethanone (250 mg , $1.1 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product ($302 \mathrm{mg}, 97 \%$ yield, $95: 5 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.79(\mathrm{~m}$, $2 \mathrm{H}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.67(\mathrm{bs}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 3.20(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.5 \mathrm{~Hz}), 3.09(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 1.38(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.9,142.8,134.8,130.8,129.3,128.6,126.6,125.3$, 125.1, 125.0, 123.6, 115.8, 74.7, 50.5, 30.2, 24.0. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}^{+}\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$: 265.1287, found: 265.1581. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+27.1(\mathrm{c}=$ $0.90, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 92.5:7.5 er.
Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$
4.0), $48: 52 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R)-\mathbf{1 2 c}, t_{\text {major }}=10.58 \mathrm{~min} ;(S) \mathbf{- 1 2} \mathbf{c}, t_{\text {minor }}=11.28 \mathrm{~min}$.

(R)-2-(4-Fluorophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12d

The general procedure was applied to 1-(4-fluorophenyl)-2-phenylethanone (107.1 mg, $0.5 \mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(8.06 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product ($136 \mathrm{mg}, 97 \%$ yield, $96: 4 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.14 (m, 3H), 6.99-6.91 (m, 4H), $4.84(\mathrm{bs}, 1 \mathrm{H}), 4.67(\mathrm{bs}, 1 \mathrm{H}), 3.12(\mathrm{~d}, 1 \mathrm{H}, J=13.4$ $\mathrm{Hz}), 3.04(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.74(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.57(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.27$ $(\mathrm{s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.8,160.0,142.1,141.5,136.3$, 130.7, 127.9, 127.4, 127.3, 126.6, 116.0, 114.6, 114.4, 75.3, 50.2, 50.1, 24.3. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NFO}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$: 288.1758, found: 288.1749. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+22.3\left(\mathrm{c}=0.785, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 96:4 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $60: 40 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 d}, t_{\text {major }}=4.75 \mathrm{~min} ;(S) \mathbf{- 1 2 d}, t_{\text {minor }}=4.41 \mathrm{~min}$.

(R)-2-(4-Chlorophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12e

The general procedure was applied to 1-(4-chlorophenyl)-2-phenylethanone (115.3 mg , $0.5 \mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(8.06 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product 12e ($139 \mathrm{mg}, 97 \%$ yield, $96: 4 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.21(\mathrm{~m}$, $4 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{bs}, 1 \mathrm{H}), 4.66(\mathrm{bs}, 1 \mathrm{H}), 3.12(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.4 \mathrm{~Hz}), 3.03(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.73(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.56(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz})$, $2.26(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.5,141.9,136.2,132.3$, 130.7, 128.0, 127.3, 126.6, 116.1, 75.4, 50.1, 50.0, 24.4. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NClO}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 304.1463$, found: 304.1451. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+29.5(\mathrm{c}=$ $0.59, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 96:4 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $60: 40 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R)-\mathbf{1 2 e}, t_{\text {major }}=6.03 \mathrm{~min} ;(S) \mathbf{- 1 2 e}, t_{\text {minor }}=5.75 \mathrm{~min}$.

(R)-2-(4-Bromophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12f

The general procedure was applied to 1-(4-bromophenyl)-2-phenylethanone (137.6 mg , $0.5 \mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(8.06 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product ($162 \mathrm{mg}, 98 \%$ yield, $97: 3 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.37(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.15 (m, 5H), 6.97-6.91 (m, 2H), 4.84 (bs, 1H), 4.67 (s, 1H), 3.12 (d, 1H, $J=13.4$ $\mathrm{Hz}), 3.03(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.73(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 2.56(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 2.26$ $(\mathrm{s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.0,141.9,136.1,130.9,130.7$, 128.0, 127.6, 126.6, 120.4, 116.1, 75.4, 50.1, 50.0, 24.4. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NBrO}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 348.0958$, found: 348.0940. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+40(\mathrm{c}=$ $0.80, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 97:3 er.

Chiral HPLC conditions: Chiralpak OD-H, $4.6 \times 250 \mathrm{~mm}$; 98:2 heptane/iso-propanol, 1.0 $\mathrm{mL} / \mathrm{min} ; 220 \mathrm{~nm} ;(R) \mathbf{- 1 2 f}, t=16.47 \mathrm{~min} ;(S) \mathbf{- 1 2 f}, t=19.54 \mathrm{~min}$.

(R)-2-(4-Methoxyphenyl)-4-methyl-1-(naphthalen-1-yl)pent-4-en-2-ol 12g

The general procedure was applied to 1-(4-methoxyphenyl)-2-(naphthalen-1-yl)ethanone $(138 \mathrm{mg}, 0.5 \mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(8.06 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product ($159.6 \mathrm{mg}, 96 \%$ yield, $93: 7 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14-$ $8.06(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.48-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.66(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.46(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 2.83(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.60$ $(\mathrm{d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.2$, $142.5,138.5,133.8,133.5,133.2,129.4,128.5,127.2,126.8,125.6,125.3,125.0,115.8$, 113.2, 76.0, 55.2, 49.8, 45.9, 24.4. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2}(\mathrm{M}+$ $\mathrm{NH}_{4}{ }^{+}$): 350.2115, found: 350.2093. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+37.4\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 93:7 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $52: 48 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 g}, t_{\text {major }}=26.23 \mathrm{~min} ;(S) \mathbf{- 1 2 g}, t_{\text {minor }}=27.77 \mathrm{~min}$.

(R)-2-(4-Methoxyphenyl)-4-methyl-1-(naphthalen-2-yl)pent-4-en-2-ol 12h

The general procedure was applied to 1-(4-methoxyphenyl)-2-(naphthalen-2-yl)ethanone $(138 \mathrm{mg}, 0.5 \mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(16.73 \mathrm{mg}, 0.05 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product $\mathbf{1 2 h}(164 \mathrm{mg}, 99 \%$ yield, $98: 2 \mathrm{er}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-$ 7.68 (m, 2H), 7.61 (d, 1H, $J=8.4 \mathrm{~Hz}$), 7.49 ($\mathrm{s}, 1 \mathrm{H}$), 7.45-7.37 (m, 2H), 7.28-7.22 (m, $2 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.30$ $(\mathrm{d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 3.19(\mathrm{~d}, 1 \mathrm{H}, J=13 . \mathrm{Hz}), 2.77(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.59(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.6 \mathrm{~Hz}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.2,142.5,137.9$, $134.4,133.2,132.2,129.4,129.3,127.7,127.5,127.1,126.8,125.7,125.4,115.7,113.2$, $75.5,55.2,50.2,50.1,24.4$. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$: 315.1743, found: 315.1730. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+80.4\left(\mathrm{c}=0.83, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 98:2 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $60: 40 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 h}, t_{\text {major }}=10.31 \mathrm{~min} ;(S) \mathbf{- 1 2 h}, t_{\text {minor }}=11.33 \mathrm{~min}$.

(R)-1-Chloro-3-(4-fluorophenyl)-5-methylhex-5-en-3-ol 12i

The general procedure was applied to 3-chloro-1-(4-fluorophenyl)propan-1-one (96 mg, $0.5 \mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(8.06 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product ($115 \mathrm{mg}, 95 \%$ yield, $85: 15 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.32$ (m, $2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{bs}, 1 \mathrm{H}), 4.77(\mathrm{bs}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.10(\mathrm{~m}$, $1 \mathrm{H}), 2.64(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 2.54(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 2 \mathrm{H})$, 1.32 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.5,140.4,126.8,116.8,115.2,115.0$, 74.2, 51.5, 46.4, 40.0, 24.3. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClF}^{+}\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$:
225.0841, found: 225.0837. Optical Rotation: $[\alpha]_{D}{ }^{22}-56.3\left(c=0.70, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $85: 15$ er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $52: 48 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 i}, t_{\text {major }}=5.32 \mathrm{~min} ;(S) \mathbf{- 1 2 i}, t_{\text {minor }}=5.63 \mathrm{~min}$.

(R)-4-Methyl-1-phenyl-2-(thiophen-3-yl)pent-4-en-2-ol 12j

The general procedure was applied to 2-phenyl-1-(thiophen-3-yl)ethanone ($0.21 \mathrm{~g}, 1.04$ $\mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(16.73 \mathrm{mg}, 0.05 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product ($0.26 \mathrm{~g}, 98 \%$ yield, $96: 4$ er). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.27-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.20-7.16 (m, 3H), 6.97-6.93 (m, 4H), 4.86 (m, 1H), 4.70 (m, 1H), $3.02(\mathrm{~d}, J=13.32 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{~d}, J=13.36 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=13.44 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=13.44 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.1,142.3,136.5,130.6$, $127.8,126.5,126.0,125.4,120.6,115.7,75.0,50.2,49.6,24.1$. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NOS}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 276.1417$, found: 276.1416. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}$ $+1.39\left(\mathrm{c}=0.79, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 96:4 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $40: 60 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2} \mathbf{j}, t_{\text {major }}=23.36 \mathrm{~min} ;(S) \mathbf{- 1 2} \mathbf{j}, t_{\text {minor }}=24.38 \mathrm{~min}$.

(R)-4-Methyl-1-phenyl-2-(thiophen-2-yl)pent-4-en-2-ol 12k

The general procedure was applied to 2-phenyl-1-(thiophen-2-yl)ethanone ($0.21 \mathrm{~g}, 1.04$ $\mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(16.73 \mathrm{mg}, 0.05 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product ($0.26 \mathrm{~g}, 97 \%$ yield, $97: 3 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.26-7.18(\mathrm{~m}, 3 \mathrm{H})$, 7.15-7.13 (m, 1H), 7.06-7.03 (m, 2H), 6.92-6.90 (m, 1H), 6.76-6.74 (m, 1H), $4.91(\mathrm{~m}$, $1 \mathrm{~h}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=0.64,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.8,142.1,136.2,130.7,127.9,126.7,126.7,123.7,123.1,116.1$,
75.1, 51.1, 50.7, 24.2. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NOS}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$: 276.1417, found: 276.1419. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+13.5\left(\mathrm{c}=0.89, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 96:4 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $40: 60 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 k}, t_{\text {major }}=24.43 \mathrm{~min} ;(S) \mathbf{- 1 2 k}, t_{\text {minor }}=26.30 \mathrm{~min}$.

(S)-5-Methyl-1,3-diphenylhex-5-en-3-ol 121

The general procedure was applied to 1,3-diphenylpropan-1-one ($125 \mathrm{mg}, 0.59 \mathrm{mmol}$) in the presence of $5 \mathrm{~mol} \%$ of $7(9.58 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product (154 $\mathrm{mg}, 97 \%$ yield, $91: 9 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.26-721(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{bs}, 1 \mathrm{H}), 2.72-2.56(\mathrm{~m}$, $3 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.9$, $142.6,142.4,128.4,128.3,128.2,126.5,125.7,125.4,116.0,75.0,51.5,45.5,30.0,24.3$. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$: 249.1638, found: 249.1639. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-75.6\left(\mathrm{c}=0.88, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 91:9 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $60: 40 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 1}, t_{\text {minor }}=8.17 \mathrm{~min} ;(S) \mathbf{- 1 2 1}, t_{\text {major }}=7.36 \mathrm{~min}$.

(S)-2-Methyl-4,7-diphenylhept-1-en-4-ol 12m

The general procedure was applied to 1,4 -diphenylbutan-1-one ($125 \mathrm{mg}, 0.56 \mathrm{mmol}$) in the presence of $5 \mathrm{~mol} \%$ of $7(8.98 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product (150 $\mathrm{mg}, 96 \%$ yield, $90: 10 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.07(\mathrm{~m}, 10 \mathrm{H}), 4.86(\mathrm{~s}$, $1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 2.63-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 1 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 146.1,142.5,142.4,128.4,128.2,128.0$, 126.4, 125.7, 125.3, 115.9, 75.0, 51.3, 43.1, 36.1, 25.3, 24.3. HRMS (ES pos.): m/z calcd
for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}^{+}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right):$298.2165, found: 298.2156. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-44.8$ (c $=0.65, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 90:10 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $60: 40 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 m}, t_{\text {minor }}=8.34 \mathrm{~min} ;(S) \mathbf{- 1 2 m}, t_{\text {major }}=6.83 \mathbf{m i n}$.

(R)-1-(Benzyloxy)-4-methyl-2-phenylpent-4-en-2-ol 12n

The general procedure was applied to 2-(benzyloxy)-1-phenylethanone ($0.23 \mathrm{~g}, 1.02$ $\mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(6.55 \mathrm{mg}, 0.02 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product 12n ($269 \mathrm{mg}, 93 \%$ yield, 85:15 er). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.44-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 8 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{bs}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=13.68 \mathrm{~Hz}), 2.57(\mathrm{~d}, J=13.68 \mathrm{~Hz}$, $1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.2,141.9,138.0,128.4,128.0$, 127.8, 127.7, 126.8, 125.5, 115.2, 77.3, 75.5, 73.4, 47.1, 24.3. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 300.1958$, found: 300.1959. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-$ $24.3\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 84:16 er.

Chiral HPLC conditions: Chiralcel OJ-3, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (heptane), mobile phase B (IPA), $92: 8 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with MeOH. $(R) \mathbf{- 1 2 n}, t_{\text {major }}=6.63 \mathbf{m i n} ;(S) \mathbf{- 1 2 n}, t_{\text {minor }}=9.53 \mathrm{~min}$.

(S)-4-Methyl-2-phenylpent-4-en-2-ol 120 ${ }^{5}$

The general procedure was applied to acetophenone ($60 \mathrm{mg}, 0.50 \mathrm{mmol}$) in the presence of $5 \mathrm{~mol} \%$ of $7(0.025 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product $\mathbf{1 2 n}(85 \mathrm{mg}$, 96% yield, $78: 22$ er). Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-43.2$ ($\mathrm{c}=3.49, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 78:22 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$, mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$
4.0), $52: 48 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 0}, t_{\text {minor }}=3.75 \mathrm{~min} ;(S) \mathbf{- 1 2 0}, t_{\text {major }}=4.89 \mathrm{~min}$.

(R)-tert-Butyl 3-hydroxy-5-methyl-3-phenylhex-5-enoate 12p

The general procedure was applied to tert-butyl 3-oxo-3-phenylpropanoate ($0.23 \mathrm{~g}, 0.98$ $\mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $\mathbf{1}(15.82 \mathrm{mg}, 0.05 \mathrm{mmol})$. The crude product was purified by column chromatography on silica gel (hexanes: EtOAc $=5: 95$) to give the product 12p ($275 \mathrm{mg}, 95 \%$ yield, $78: 22 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.44-7.42$ (m , $2 H), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{bs}, 1 \mathrm{H})$, $2.89(\mathrm{~d}, J=11.61 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=15.52 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=13.56 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ $(\mathrm{d}, J=13.52 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3$, 146.0, 142.0, 127.9, 126.7, 125.3, 115.3, 81.7, 75.3, 51.4, 45.8, 27.8, 24.3. HRMS (ES pos.): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{NaO}_{6}\left(2 \mathrm{M}+\mathrm{Na}^{+}\right): 575.3343$, found: 575.3352. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+11.8\left(\mathrm{c}=0.89, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 80:20 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $48: 52 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 2 p}, t_{\text {major }}=7.31 \mathrm{~min} ;(S) \mathbf{- 1 2 p}, t_{\text {minor }}=9.10 \mathrm{~min}$.

Synthesis of enantioenriched (R)-tert-butyl 4-(6-(2-methylallyl)-2-oxo-6-phenyl-1,3-oxazinan-3-yl)piperidine-1-carboxylate 1
Synthesis of tert-butyl 4-isocyanatopiperidine-1-carboxylate 13

To a flask was charged $\mathrm{KHCO}_{3}(5.75 \mathrm{~g} ; 57.42 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(50.00 \mathrm{ml} ; 10.000 \mathrm{~V})$ followed by addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50.00 \mathrm{ml} ; 10.000 \mathrm{~V})$ and 4-amino-1-Boc-piperidine $(5.00 \mathrm{~g} ; 24.97 \mathrm{mmol})$. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Triphosgene (2.56 g ; 8.44 mmol) was charged in one portion. After the mixture was stirred for 1 h , the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed successively with water and brine, and dried with
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was dissolved in hexanes. After the mixture was stirred for 1 h , the solid (small amount of urea) was filtered off. The filtrate was concentrated to give the tert-butyl 4-isocyanatopiperidine-1-carboxylate $\mathbf{1 3}$ as a liquid, which was used for next step directly.

Synthesis of (R)-tert-butyl 4-(6-(2-methylallyl)-2-oxo-6-phenyl-1,3-oxazinan-3-
yl)piperidine-1-carboxylate 1
To a dry flask was charged (R)-1-chloro-5-methyl-3-phenylhex-5-en-3-ol $2(3.20 \mathrm{~g}, 13.67$ mmol) with 87:13 er, tert-butyl 4-isocyanatopiperidine-1-carboxylate $\mathbf{1 3}$ (13.67 mmol) and anhydrous toluene (35 mL). After the mixture was cooled to $\sim 10{ }^{\circ} \mathrm{C}$, LiHMDS (1 M in toluene, 14.36 mL) was added while maintaining the internal temperature below $25^{\circ} \mathrm{C}$. After 1h, the mixture was extracted with EtOAc (2 X 100 mL), washed successively with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and water, and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was stirred in 15 mL of hexanes at rt . After overnight, the white solid was collected and washed with 10 mL of 5:1 hexanes/EtOAc to give the product 1 with 99.4:0.6 er ($3.5 \mathrm{~g}, 62 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.07$ $(\mathrm{m}, 3 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.53(\mathrm{~m}, 5 \mathrm{H}), 2.38-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.6-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.66$ (bs, 4H), $1.42(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.5,152.9$, $141.9,140.5,128.6,127.6,124.8,116.3,83.1,79.6,53.7,50.8,43.1,36.6,30.4,28.4$, 28.3, 24.3. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right): 415.2591$, found: 415.2598 .

Chiral HPLC conditions: Chiralpak AD-H, $4.6 \times 250 \mathrm{~mm}$; 85:15 pentane/iso-propanol, $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ;(\mathrm{S})-\mathbf{1}, t_{\text {minor }}=5.47 \mathrm{~min} ;(R)-1, t_{\text {major }}=6.01 \mathrm{~min}$.

(R)-4-Methylene-1,2-diphenylhexan-2-ol 16

The general procedure was applied to 1,2 -diphenylethanone $(0.20,1.02 \mathrm{mmol})$ in the presence of $5 \mathrm{~mol} \%$ of $7(16.42 \mathrm{mg}, 0.05 \mathrm{mmol})$ and boronate $14(1.53 \mathrm{mmol}, 1.5$ equiv $)$.

The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95)$ to give the product ($251 \mathrm{mg}, 93 \%$ yield, $95: 5 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}), $\delta 7.34-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.70$ (s, 1H), 3.17 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.8,146.0,136.7,130.8,127.8,126.4,126.4,125.6$, 113.3, 75.5, 49.9, 48.5, 29.9, 12.3. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}(\mathrm{M}+$ $\mathrm{NH}_{4}{ }^{+}$): 284.2009, found: 284.2003. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+15.6\left(\mathrm{c}=0.90, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 95:5 er.

Chiral HPLC conditions: Chiralpak OD-H, $4.6 \times 250 \mathrm{~mm}$; 98:2 heptane/iso-propanol, 1.0 $\mathrm{mL} / \mathrm{min} ; 220 \mathrm{~nm} ;(R) \mathbf{- 1 6}, t_{\text {major }}=7.71 \mathrm{~min} ;(S) \mathbf{- 1 6}, t_{\text {minor }}=11.45 \mathrm{~min}$.

(R)-4-Methylene-1,2-diphenyloctan-2-ol 17

The general procedure was applied to 1,2-diphenylethanone in the presence of $5 \mathrm{~mol} \%$ of $7(16.73 \mathrm{mg}, 0.05 \mathrm{mmol})$ and boronate $\mathbf{1 5}(1.53 \mathrm{mmol}, 1.5$ equiv). The crude product was purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=5: 95$) to give the product 17 ($294 \mathrm{mg}, 95 \%$ yield, $93: 7 \mathrm{er}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.34-7.25$ $(\mathrm{m}, 4 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 1.51-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.77(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4,146.0,136.7,130.8,127.8,126.4$, 126.4, 125.6, 114.5, 75.5, 49.9, 48.1, 36.7, 29.9, 22.3, 13.9. HRMS (ES pos.): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$: 312.2322, found: 312.2314. Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+17.1$ (c $=0.55, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 93:7 er.

Chiral HPLC conditions: Chiralcel OJ-RH, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; mobile phase A (acetonitrile), mobile phase $\mathrm{B}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in water, adjusted with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}=$ 4.0), $60: 40 \mathrm{~A} / \mathrm{B}, \lambda=220 \mathrm{~nm}$, flow rate: $1.3 \mathrm{~mL} \mathrm{~min}^{-1}$. The samples for HPLC were diluted with $\mathrm{MeOH} .(R) \mathbf{- 1 7}, t_{\text {major }}=7.09 \mathrm{~min} ;(S) \mathbf{- 1 7}, t_{\text {major }}=8.24 \mathrm{~min}$.

References:

1. X. Wu, T-A. Chen, L. Zhu, R. D. Rieke, Tetrahedron Lett. 1994, 35, 3673.
2. J. A. Turner, W. S. Jacks, J. Org. Chem. 1989, 54, 4229.
3. No racemization was observed in $1: 1 \mathrm{THF}: 3 \mathrm{M} \mathrm{HCl}$ after 16 h at $60^{\circ} \mathrm{C}$. However, the er changed from $>99: 1$ to $90.5: 9.5$ in 2 M NaOH after 16 h at $100^{\circ} \mathrm{C}$.
4. T. R. Hoye, A. W. Aspaas, B. M. Eklov, T. D. Ryba. Org. Lett. 2005, 7, 2205.
5. J. G. Kim, E. H. Camp, P. J. Walsh, Org. Lett. 2006, 8, 4413-4416.
(S)-3,3'-Difluoro-1,1'-binaphthyl-2,2'-diol 7

5,5-Dimethyl-2-(2-methylallyl)-1,3,2-dioxaborinane 4

102711-054-H

(R)-1-Chloro-5-methyl-3-phenylhex-5-en-3-ol 2

(R)-4-Methyl-1,2-diphenylpent-4-en-2-ol 12a

(R)-1-(3-Methoxyphenyl)-4-methyl-2-phenylpent-4-en-2-ol 12b

(\boldsymbol{R})-2-(2-Methoxyphenyl)-4-methyl-1-phenylpent-4-en-2-ol 12c

(R)-2-(4-Fluorophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12d

(R)-2-(4-Chlorophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12e

(R)-2-(4-Bromophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12f

(R)-2-(4-Methoxyphenyl)-4-methyl-1-(naphthalen-1-yl)pent-4-en-2-ol 12g

(R)-2-(4-Methoxyphenyl)-4-methyl-1-(naphthalen-2-yl)pent-4-en-2-ol 12h

(R)-1-Chloro-3-(4-fluorophenyl)-5-methylhex-5-en-3-ol 12i

(R)-4-Methyl-1-phenyl-2-(thiophen-3-yl)pent-4-en-2-ol 12j

102665-030

102665-030

(R)-4-Methyl-1-phenyl-2-(thiophen-3-yl)pent-4-en-2-ol 12k

102665-038-H

(S)-5-Methyl-1,3-diphenylhex-5-en-3-ol 121

102665-009

(S)-2-Methyl-4,7-diphenylhept-1-en-4-ol 12m

(R)-1-(Benzyloxy)-4-methyl-2-phenylpent-4-en-2-ol 12n

102665-026

102665-026

$$
\begin{aligned}
& \begin{array}{l}
\text { Fi- acquisition pazaneters } \\
\text { Dater } \\
\text { Dine- }
\end{array}
\end{aligned}
$$

(S)-4-Methyl-2-phenylpent-4-en-2-ol 120

(R)-tert-Butyl 3-hydroxy-5-methyl-3-phenylhex-5-enoate 12p

(R)-tert-butyl 4-(6-(2-methylallyl)-2-oxo-6-phenyl-1,3-oxazinan-3-yl)piperidine-1carboxylate 1

(R)-4-Methylene-1,2-diphenylhexan-2-ol 16

102615-046-H

(R)-4-Methylene-1,2-diphenyloctan-2-ol 17

102711-024

(R)-4-Methyl-1,2-diphenylpent-4-en-2-ol 12a

(R)-1-(3-Methoxyphenyl)-4-methyl-2-phenylpent-4-en-2-ol 12b

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.643	BV	0.1809	135.64973	11.55721	3.8567
2	7.151		0.1977	3381.61890	263.54947	96.1433
Total	s :			3517.26863	275.10667	

(R)-2-(2-Methoxyphenyl)-4-methyl-1-phenylpent-4-en-2-ol 12c

(R)-2-(4-Fluorophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12d

DAD1 B, Sig=220,8 Ref=500,100 (08-23-20121043-0401.D)								
$4 \quad 4.1$	4.2	4.3 4 4	4.5	4.6	4.7	4.8	4.9	mil
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]					
1 4.388 BV	0.1201	1629.31494	211.03214	49				
24.723 VV	0.1294	1660.70715	194.92235	50				
Totals :		3290.02209	405.95448					

DAD1 B, Sig=220,8 Ref=500,100 (08-22-20121024-0401.D)							
$\begin{aligned} & \text { maU } \\ & 240 \\ & 220 \\ & 200 \\ & 180 \\ & 160 \\ & 140 \\ & 120 \end{aligned}$							
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} s\right]} \end{gathered}$	Height [mAU]	Area \%			
14.413 BV	0.1170	50.69893	6.79719	4.1702			
24.750 VB	0.1297	1165.04358	139.14168	95.8298			
Totals :		1215.74251	145.93887				

(R)-2-(4-Chlorophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12e

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.754	BV	0.1259	37.21839	4.52992	2.7425
2	6.028	VB	0.1649	1319.85571	123.25403	97.2575
Total	s :			1357.07410	127.78395	

(R)-2-(4-bromophenyl)-4-methyl-1-phenylpent-4-en-2-ol 12f

(R)-2-(4-Methoxyphenyl)-4-methyl-1-(naphthalen-1-yl)pent-4-en-2-ol 12g

(R)-2-(4-methoxyphenyl)-4-methyl-1-(naphthalen-2-yl)pent-4-en-2-ol 12h

(R)-1-Chloro-3-(4-fluorophenyl)-5-methylhex-5-en-3-ol 12i

(R)-4-methyl-1-phenyl-2-(thiophen-3-yl)pent-4-en-2-ol 12j

(R)-4-Methyl-1-phenyl-2-(thiophen-3-yl)pent-4-en-2-ol 12k

(S)-5-Methyl-1,3-diphenylhex-5-en-3-ol 121

DAD1 B, Sig $=220,8$ Ref $=500,100$ (08-23-20121044-0501.D)						
6 , 6		7	7.5	8	8.5	mir
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%		
1 7.515 BV	0.2152	1614.78674	116.84342	50.1815		
28.311 VB	0.2364	1603.10864	104.83906	49.8185		
Totals :		3217.89539	221.68248			

(S)-2-methyl-4,7-diphenylhept-1-en-4-ol 12m

(R)-1-(Benzyloxy)-4-methyl-2-phenylpent-4-en-2-ol 12n

(S)-4-Methyl-2-phenylpent-4-en-2-ol 120

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.787		0.1038	651.06793	97.62309	22.0325
2	4.975		0.1372	2303.97070	255.51031	77.967

Totals :
2955.03864353 .13340

(R)-tert-Butyl 3-hydroxy-5-methyl-3-phenylhex-5-enoate 12p

(R)-tert-butyl 4-(6-(2-methylallyl)-2-ox0-6-phenyl-1,3-oxazinan-3-yl)piperidine-1carboxylate 1

(R)-4-Methylene-1,2-diphenylhexan-2-ol 16

(R)-4-Methylene-1,2-diphenyloctan-2-ol 17

X-Ray Crystallograpgic Data for Compound 7

Figure 1. ORTEP (50\% probability level) diagram of asymmetric unit of 7 expanded to show the full fragments.

Table 1. Crystal data and structure refinement for 7.

Identification code	3,3'- ${ }_{2}$-BINOL
Empirical formula	C20 H12 F2 O2
Formula weight	322.30
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Hexagonal
Space group	P3(2)21
Unit cell dimensions	$\mathrm{a}=10.6787(7) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.6787(7) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=23.2221(15) \AA \quad \gamma=120^{\circ}$.
Volume	2293.3(3) \AA^{3}
Z	6
Density (calculated)	$1.400 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.106 \mathrm{~mm}^{-1}$
F(000)	996
Crystal size	$0.32 \times 0.26 \times 0.24 \mathrm{~mm}^{3}$
Theta range for data collection	2.20 to 28.80°.
Index ranges	$-14<=\mathrm{h}<=14,-14<=\mathrm{k}<=14,-30<=1<=31$
Reflections collected	24741
Independent reflections	$3825[\mathrm{R}(\mathrm{int})=0.0253]$
Completeness to theta $=28.80^{\circ}$	96.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9750 and 0.9668
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3825 / 0 / 222
Goodness-of-fit on F^{2}	1.038
Final R indices [I $>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0347, \mathrm{wR} 2=0.1079$
R indices (all data)	$\mathrm{R} 1=0.0391, \mathrm{wR} 2=0.1215$
Absolute structure parameter	0.8(6)
Largest diff. peak and hole	0.267 and -0.226 e. A^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 7. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
F(23)	4952(1)	8248(1)	1064(1)	39(1)
$\mathrm{O}(22)$	6384(1)	6915(1)	856(1)	35(1)
C(21)	4813(1)	5611(1)	55(1)	22(1)
C(24)	3364(2)	7159(1)	286(1)	25(1)
C(29)	3614(1)	5377(2)	-293(1)	24(1)
C(210)	2889(2)	6169(2)	-180(1)	24(1)
C(22)	5251(1)	6593(1)	499(1)	25(1)
C(25)	1725(2)	5950(2)	-536(1)	35(1)
C(26)	1288(2)	4993(2)	-984(1)	48(1)
C(28)	3122(2)	4383(2)	-758(1)	35(1)
C(23)	4491(2)	7335(1)	611(1)	26(1)
C(27)	1988(2)	4196(2)	-1092(1)	48(1)
$\mathrm{O}(12)$	8211(1)	60(1)	742(1)	34(1)
F(13)	9544(1)	2700(1)	338(1)	46(1)
C(18)	11614(1)	1667(2)	2365(1)	28(1)
C(11)	9864(1)	749(1)	1550(1)	21(1)
C(12)	9355(1)	1045(2)	1050(1)	25(1)
C(19)	11070(1)	1896(1)	1841(1)	23(1)
C(14)	11196(2)	3588(2)	1097(1)	31(1)
C(15)	12886(2)	4476(2)	1924(1)	35(1)
C(13)	10064(2)	2473(2)	835(1)	31(1)
C(110)	11731(1)	3332(1)	1620(1)	27(1)
C(17)	12718(2)	2805(2)	2656(1)	35(1)
C(16)	13362(2)	4214(2)	2434(1)	40(1)

Table 3. Bond lengths $\left[\AA \AA\right.$ and angles $\left[{ }^{\circ}\right]$ for 7. Symmetry transformations used to generate equivalent atoms: \#1 y,x,-z \#2 x-y,-y,-z+1/3

$\mathrm{F}(23)-\mathrm{C}(23)$	1.3484(14)	$\mathrm{C}(22)-\mathrm{O}(22)-\mathrm{H}(22)$	107.4(16)
$\mathrm{O}(22)-\mathrm{C}(22)$	$1.3613(16)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(29)$	119.42(11)
$\mathrm{O}(22)-\mathrm{H}(22)$	0.76 (2)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(21) \# 1$	119.19(11)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.3759(17)	C(29)-C(21)-C(21)\#1	121.39(11)
$\mathrm{C}(21)-\mathrm{C}(29)$	$1.4263(17)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(210)$	119.47(11)
C(21)-C(21)\#1	1.498(2)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.3
$\mathrm{C}(24)-\mathrm{C}(23)$	$1.3520(19)$	$\mathrm{C}(210)-\mathrm{C}(24)-\mathrm{H}(24)$	120.3
$\mathrm{C}(24)-\mathrm{C}(210)$	$1.4172(17)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(21)$	121.74(11)
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(210)$	118.41(11)
$\mathrm{C}(29)-\mathrm{C}(28)$	$1.4192(18)$	$\mathrm{C}(21)-\mathrm{C}(29)-\mathrm{C}(210)$	119.84(11)
C(29)-C(210)	$1.4275(17)$	$\mathrm{C}(25)-\mathrm{C}(210)-\mathrm{C}(24)$	121.83(12)
$\mathrm{C}(210)-\mathrm{C}(25)$	$1.4110(17)$	$\mathrm{C}(25)-\mathrm{C}(210)-\mathrm{C}(29)$	119.20(12)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.4137(18)	$\mathrm{C}(24)-\mathrm{C}(210)-\mathrm{C}(29)$	118.97(11)
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.366(2)$	$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}(21)$	124.74(12)
$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500	$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}(23)$	115.66(11)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.407(2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.59(11)
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(210)$	120.85(13)
$\mathrm{C}(28)-\mathrm{C}(27)$	1.366(2)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	119.6
$\mathrm{C}(28)-\mathrm{H}(28)$	0.9500	$\mathrm{C}(210)-\mathrm{C}(25)-\mathrm{H}(25)$	119.6
$\mathrm{C}(27)-\mathrm{H}(27)$	0.9500	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	120.11(14)
$\mathrm{O}(12)-\mathrm{C}(12)$	$1.3506(16)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.9
$\mathrm{O}(12)-\mathrm{H}(12)$	0.8400	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	119.9
$\mathrm{F}(13)-\mathrm{C}(13)$	$1.3536(15)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	120.67(13)
$\mathrm{C}(18)-\mathrm{C}(17)$	$1.376(2)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	119.7
C(18)-C(19)	$1.4200(17)$	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	119.7
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500	$\mathrm{F}(23)-\mathrm{C}(23)-\mathrm{C}(24)$	120.96(11)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.3844(17)$	$\mathrm{F}(23)-\mathrm{C}(23)-\mathrm{C}(22)$	116.37(11)
$\mathrm{C}(11)-\mathrm{C}(19)$	$1.4279(17)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	122.67(11)
$\mathrm{C}(11)-\mathrm{C}(11) \# 2$	1.488(2)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	120.74(14)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.4123(19)$	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27)$	119.6
$\mathrm{C}(19)-\mathrm{C}(110)$	$1.4247(18)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	119.6
$\mathrm{C}(14)-\mathrm{C}(13)$	$1.345(2)$	$\mathrm{C}(12)-\mathrm{O}(12)-\mathrm{H}(12)$	109.5
$\mathrm{C}(14)-\mathrm{C}(110)$	$1.4264(19)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.85(14)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.6
$\mathrm{C}(15)-\mathrm{C}(16)$	1.370(2)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119.6
$\mathrm{C}(15)-\mathrm{C}(110)$	1.4161(19)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(19)$	119.36(11)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(11) \# 2$	119.29(12)
$\mathrm{C}(17)-\mathrm{C}(16)$	1.404(3)	$\mathrm{C}(19)-\mathrm{C}(11)-\mathrm{C}(11) \# 2$	121.33(11)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500	$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(11)$	124.90(12)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500	$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)$	116.20(12)
		$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118.90(12)
		$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(110)$	117.95(12)
		$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(11)$	121.88(12)
		$\mathrm{C}(110)-\mathrm{C}(19)-\mathrm{C}(11)$	120.12(11)
		$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(110)$	119.00(12)
		$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.5
		$\mathrm{C}(110)-\mathrm{C}(14)-\mathrm{H}(14)$	120.5
		$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(110)$	120.43(14)
		$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.8
		$\mathrm{C}(110)-\mathrm{C}(15)-\mathrm{H}(15)$	119.8
		$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{F}(13)$	119.65(12)
		$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	123.72(12)
		$\mathrm{F}(13)-\mathrm{C}(13)-\mathrm{C}(12)$	116.62(12)
		$\mathrm{C}(15)-\mathrm{C}(110)-\mathrm{C}(19)$	119.85(12)
		$\mathrm{C}(15)-\mathrm{C}(110)-\mathrm{C}(14)$	121.29(13)
		$\mathrm{C}(19)-\mathrm{C}(110)-\mathrm{C}(14)$	118.85(12)
		$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.63(14)
		$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
		$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
		$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.25(13)
		$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
		$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 7. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}		U^{22}	U^{33}	U^{23}	U^{13}
				U^{12}		
$\mathrm{~F}(23)$	$46(1)$	$38(1)$	$41(1)$	$-19(1)$	$-14(1)$	$28(1)$
$\mathrm{O}(22)$	$35(1)$	$35(1)$	$44(1)$	$-13(1)$	$-17(1)$	$24(1)$
$\mathrm{C}(21)$	$22(1)$	$23(1)$	$26(1)$	$2(1)$	$1(1)$	$15(1)$
$\mathrm{C}(24)$	$29(1)$	$27(1)$	$28(1)$	$0(1)$	$2(1)$	$20(1)$
$\mathrm{C}(29)$	$25(1)$	$28(1)$	$25(1)$	$-1(1)$	$-1(1)$	$17(1)$
$\mathrm{C}(210)$	$26(1)$	$32(1)$	$23(1)$	$1(1)$	$0(1)$	$20(1)$
$\mathrm{C}(22)$	$24(1)$	$23(1)$	$28(1)$	$0(1)$	$-4(1)$	$12(1)$
$\mathrm{C}(25)$	$36(1)$	$56(1)$	$30(1)$	$-8(1)$	$-7(1)$	$36(1)$
$\mathrm{C}(26)$	$48(1)$	$82(1)$	$36(1)$	$-21(1)$	$-20(1)$	$48(1)$
$\mathrm{C}(28)$	$37(1)$	$45(1)$	$36(1)$	$-15(1)$	$-9(1)$	$29(1)$
$\mathrm{C}(23)$	$29(1)$	$22(1)$	$27(1)$	$-4(1)$	$-2(1)$	$14(1)$
$\mathrm{C}(27)$	$51(1)$	$70(1)$	$41(1)$	$-30(1)$	$-22(1)$	$43(1)$
$\mathrm{O}(12)$	$33(1)$	$30(1)$	$35(1)$	$2(1)$	$-13(1)$	$13(1)$
$\mathrm{F}(13)$	$47(1)$	$44(1)$	$43(1)$	$17(1)$	$-10(1)$	$20(1)$
$\mathrm{C}(18)$	$22(1)$	$37(1)$	$26(1)$	$-3(1)$	$0(1)$	$15(1)$
$\mathrm{C}(11)$	$20(1)$	$23(1)$	$21(1)$	$0(1)$	$1(1)$	$12(1)$
$\mathrm{C}(12)$	$24(1)$	$28(1)$	$26(1)$	$0(1)$	$-2(1)$	$14(1)$
$\mathrm{C}(19)$	$20(1)$	$27(1)$	$22(1)$	$-2(1)$	$4(1)$	$12(1)$
$\mathrm{C}(14)$	$28(1)$	$25(1)$	$38(1)$	$7(1)$	$8(1)$	$12(1)$
$\mathrm{C}(15)$	$29(1)$	$26(1)$	$42(1)$	$-6(1)$	$6(1)$	$8(1)$
$\mathrm{C}(13)$	$32(1)$	$35(1)$	$29(1)$	$8(1)$	$0(1)$	$19(1)$
$\mathrm{C}(110)$	$23(1)$	$25(1)$	$29(1)$	$-1(1)$	$7(1)$	$10(1)$
$\mathrm{C}(17)$	$27(1)$	$49(1)$	$28(1)$	$-8(1)$	$-3(1)$	$18(1)$
$\mathrm{C}(16)$	$27(1)$	$44(1)$	$39(1)$	$-17(1)$	$-2(1)$	$11(1)$

Table 5. Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$\mathrm{D}-\mathrm{H}^{\cdots} \mathrm{A}$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}^{\cdots \mathrm{A}}$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{O}(2)$	0.84	2.19	$2.942(2)$	149
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1)$	0.84	2.11	$2.942(2)$	171
$\mathrm{O}(14)-\mathrm{H}(14 \mathrm{~A}) \cdots \mathrm{F}(2)$	0.95	2.49	$3.232(3)$	134

