Supporting Information

Indoles Synthesized from Amines via Copper Catalysis

Ronald Besandre, Miguel Jaimes, and Jeremy A. May

Department of Chemistry, University of Houston, 136 Fleming Building, Houston, Texas 77204-5003, United States
TABLE OF CONTENTS
General Considerations SI1
Reaction Optimization SI2
Syntheses of the Starting Materials SI4
Synthesis of α-Aryl Ketones SI4
Synthesis of α-Aryl Aldehydes SI6
Synthesis of N-Substituted Indoles SI8
Spectral Data SI19

General Considerations

All reactions were carried out in flame- or oven-dried glassware. THF, toluene, benzene, ether, DMF, dioxane, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purged with argon and dried over activated alumina columns. Flash chromatography was performed on $60 \AA$ silica gel (Sorbent Technologies). Analytical thin layer chromatography was performed on EMD silica gel/TLC plates with fluorescent indicator 254 nm . The ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECA-500 or ECX-400P spectrometer using residual solvent peak as an internal reference $\left(\mathrm{CDCl}_{3}: 7.25 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.16 ppm for ${ }^{13} \mathrm{C}$ NMR. IR spectra were obtained using a ThermoNicolet Avatar 370 FT-IR instrument. GCMS analyses were performed on a Shimadzu GCMS-QP2010S chromatographer equipped with a Shimadzu column (SHRXI-5MS, 0.25 mm x 0.25 u x 30 M). HRMS analyses were performed under contract by UT Austin's mass spectrometric facility via positive mode ESI method and US10252005 instrument. Commercially available compounds were purchased from

Aldrich Chemical Co., Acros Organics, Alfa Aesar, Strem Chemicals, JT Baker, or TCI America and were used without further purification. CuI and powdered $\mathrm{K}_{3} \mathrm{PO}_{4}$ were stored and handled in an inert atmosphere.

Reaction Optimization

	 PhNH_{2} (1.2 equiv) Additive, solvent reflux, 24 hr		
entry	additive	solvent	SM : imine $^{\text {a }}$
$1^{\text {b }}$	MgSO_{4}	PhMe	3:97
2^{b}	$4 \AA$ Å mol. sieves	PhMe	1:99
3	MgSO_{4}	PhMe	70:30
4	3 Å mol. sieves	PhMe	20:80
5	$\mathrm{p}-\mathrm{TsOH}$ (0.1 equiv)	PhMe ($\left.-\mathrm{H}_{2} \mathrm{O}\right)^{\text {c }}$	4:96
6	$\mathrm{p}-\mathrm{TsOH}$ (0.1 equiv)	$\mathrm{PhH}\left(-\mathrm{H}_{2} \mathrm{O}\right)^{c}$	1:99

Figure 1. Optimization table for imine formation
All optimization reactions were performed on a 0.33 mmol scale.
General procedure for imine formation from ketones (entry 6): A flame dried two-neck round-bottom flask that was affixed to a Dean-Stark apparatus was charged with 2bromophenylacetone (SI-1) ($50 \mu \mathrm{~L}, 0.33 \mathrm{mmol}$) under an argon atmosphere. Anhydrous toluene $(3.3 \mathrm{~mL})$ was added. p-Toluenesulfonic acid $(6.25 \mathrm{mg}, 0.033 \mathrm{mmol})$ and aniline ($35 \mu \mathrm{~L}, 0.39$ mmol) were then added. The reaction mixture was stirred at reflux until GCMS analysis revealed consumption of the ketone (16 hours). The reaction mixture was concentrated (either by reduced pressure or distillation of solvent into the Dean-Stark trap), and the crude imine was then immediately used for the following cyclization.

General procedure for imine formation from aldehydes (entries 1 \& 2): A flame dried round-bottom flask containing desiccant was charged with 2-bromophenylacetaldehyde (SI-2) $(50 \mu \mathrm{~L}, 0.33 \mathrm{mmol})$ under an argon atmosphere. Anhydrous toluene $(3.3 \mathrm{~mL})$ was added. Aniline ($35 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) was then added. The reaction mixture was stirred at room temperature until GCMS analysis revealed consumption of the aldehyde. The mixture was then filtered anhydrously through a short plug of flame-dried Celite ${ }^{\circledR}$ via cannula transfer to a receiving flask.

Toluene was used to rinse the donating flask. The mixture containing the crude imine was then concentrated in vacuo and immediately used for the following cyclization.

Entry	Catalyst \%	Base	Ligand	Solvent T	Temp. ${ }^{\circ} \mathrm{C}$	Time (hr)	Indole:Furan:SM
1	20	$\mathrm{K}_{3} \mathrm{PO}_{4}$	--	DMF	90	16	65:35:0
2	10	$\mathrm{K}_{3} \mathrm{PO}_{4}$	--	DMF	90	16	62:37:0
3	5	$\mathrm{K}_{3} \mathrm{PO}_{4}$	--	DMF	90	16	64:37:0
4	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	--	DMF	90	16	80\% ${ }^{\text {a }} 99$:1:0
5	10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	--	DMF	90	16	68:32:0
6	10	NaOtBu	--	DMF	90	16	81:9:10
7	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	--	PhMe	90	16	NR
8	10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	--	PhMe	90	16	NR
9	10	NaOtBu	--	PhMe	90	16	NR
10	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	EN	PhMe	90	16	NR
11	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	TMEDA	PhMe	90	16	10:0:90
12	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	EN	Dioxane	e 90	16	3:26:71
13	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	TMEDA	Dioxane	e 90	16	NR
14	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	EN	DMF	90	16	12:0:88
15	10	$\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{\text {b }}$	TMEDA	DMF	90	16	36:0:64

${ }^{\text {a }}$ Isolated yields. ${ }^{b}$ Flame dried.

Figure 2. Improving indole formation

General procedure (entry 4): To the round-bottom flask containing the crude imine, solvent (2 $\mathrm{mL}), \mathrm{CuI}(6.3 \mathrm{mg}, 0.033 \mathrm{mmol})$, and base (0.66 mmol) were added under a stream of argon. The reaction mixture was then vigorously stirred at $110^{\circ} \mathrm{C}$. After 24 hours, TLC and GC analysis showed no trace of the imine. After cooling, the reaction mixture was diluted in 25% ethyl acetate in hexanes and filtered through a short plug of Celite ${ }^{\circledR}$. Water was added to the filtrate, and the mixture was then extracted 3 times with 25% ethyl acetate in hexanes. The organic phases were combined, washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated to yield crude product. The residue was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes.

Syntheses of the Starting Materials

Synthesis of $\boldsymbol{\alpha}$-Aryl Ketones

General Procedure A: A flame-dried round-bottom flask was charged with 2bromophenylacetic acid ($200 \mathrm{mg}, 0.932 \mathrm{mmol}$) under an argon atmosphere. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added, and the flask was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. DMF ($8 \mu \mathrm{~L}, 0.093 \mathrm{mmol}$) and oxalyl chloride ($96 \mu \mathrm{~L}, 1.116 \mathrm{mmol}$) were then added drop wise to the stirring solution. The reaction mixture was then stirred for six hours while cooling to room temperature. The reaction was concentrated, and the crude acid chloride was dissolved in anhydrous benzene. A flamedried round bottom flask was charged with $\mathrm{AlCl}_{3}(161.6 \mathrm{mg}, 1.21 \mathrm{mmol})$. Anhydrous benzene was added. To the vigorously stirring mixture of AlCl_{3} in benzene, the crude acid chloride was added drop wise and allowed to stir at room temperature for 18 hours. The crude mixture was then added to a stirring mixture of $\mathrm{HCl} /$ ice for 30 minutes. The organic phase was separated, and the aqueous phase was extracted (2x) with 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were combined, washed with $10 \% \mathrm{NaOH}$, brine, dried over anhydrous MgSO_{4}, and concentrated. The crude product was purified by column chromatography on silica gel.

General Procedure B: A flame-dried round-bottom flask was charged with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(9.13 \mathrm{~g}$, $28.0 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(58 \mathrm{mg}, 0.064 \mathrm{mmol})$, and Xantphos ($88 \mathrm{mg}, 0.153 \mathrm{mmol}$). The flask was purged and back-filled with argon three times before anhydrous 1,4-dioxane (12.7 mL) was added. 1-bromo-2-iodobenzene ($1.63 \mathrm{~mL}, 12.74 \mathrm{mmol}$) and cyclohexanone ($2.66 \mathrm{~mL}, 25.48$ mmol) were then added to the mixture, which was allowed to stir vigorously at $80{ }^{\circ} \mathrm{C}$ for 24 hours. After cooling, the reaction mixture was diluted by ether and filtered through a small plug of Celite ${ }^{\circledR}$. Water was added to the filtrate, and the mixture was extracted (3 times) with ether. The organic extracts were combined, washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated. The crude product was purified by column chromatography on silica gel.

2-(2-bromophenyl)-1-phenylethanone (SI-3) was synthesized from 2-bromophenylacetic acid ($200 \mathrm{mg}, 0.932 \mathrm{mmol}$) and benzene following general procedure A. The crude product was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. The product was obtained as white solid ($191.5 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{1}$

2-(2-bromophenyl)-1-(4-chlorophenyl)ethanone (SI-4) was synthesized from 2bromophenylacetic acid ($400 \mathrm{mg}, 1.864 \mathrm{mmol}$) and chlorobenzene following general procedure A . The crude product was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. The product was obtained as a white solid ($373.6 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{2}$

2-(2-bromophenyl)cyclohexanone (SI-5) was synthesized from cyclohexanone ($2.66 \mathrm{~mL}, 25.48$ mmol) and 1-bromo-2-iodobenzene ($1.63 \mathrm{~mL}, 12.74 \mathrm{mmol}$) following general procedure B . The crude product was purified by column chromatography on silica gel using 10% EtOAc in hexanes as the eluent. The product was obtained as a white solid ($810.2 \mathrm{mg}, 25 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{3}$

Synthesis of $\boldsymbol{\alpha}$-Aryl Aldehydes

General Procedure C: A flame-dried round-bottom flask was charged with (methoxymethyl)triphenylphosphonium chloride $(3.94 \mathrm{~g}, 11.49 \mathrm{mmol})$ under an argon atmosphere. Anhydrous THF (25 mL) was added, and the flask was cooled to $0{ }^{\circ} \mathrm{C} . n$ - $\mathrm{BuLi}(4.6$ $\mathrm{mL}, 2.5 \mathrm{M}$ in hexanes) was then added drop wise to the vigorously stirred mixture, which was allowed to stir for 30 minutes at $0{ }^{\circ} \mathrm{C}$. The benzylic carbonyl compound (9.58 mmol) was then added dropwise to the ylide solution. The reaction was allowed to stir for 24 hours at room temperature or until TLC analysis revealed consumption of the ketone or aldehyde. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with ether. The mixture was extracted 3 times with ether, and the organic extracts were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was then diluted in pentane and passed through a short plug of silica to remove the phosphine oxide. The mixture was concentrated, and the crude enol ether was dissolved in THF $(25 \mathrm{~mL}) . \mathrm{HCl}(5 \mathrm{~N}, 10 \mathrm{~mL})$ was added to the reaction mixture, which was then refluxed until TLC analysis revealed complete hydrolysis of the enol ether ($\sim 2-6$ hours). After cooling, the reaction mixture was diluted with ether and neutralized with saturated NaHCO_{3}. The mixture was then extracted 3 times with ether. The organic extracts were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel.

2-(2-bromophenyl)-2-phenylacetaldehyde (SI-6) was synthesized from 2-bromobenzophenone $(1.75 \mathrm{~mL}, 9.58 \mathrm{mmol})$ following general procedure C. The crude product was purified by column chromatography on silica gel using 5% EtOAc in hexanes as the eluent. The product was obtained as a yellow oil ($952.3 \mathrm{mg}, 36 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{4}$

2-(2-bromo-5-fluorophenyl)acetaldehyde (SI-7) was synthesized from 2-bromo-5fluorobenzaldehyde ($971.4 \mathrm{mg}, 4.785 \mathrm{mmol}$) following general procedure C . The crude product was purified by column chromatography on silica gel using 25% EtOAc in hexanes as the eluent. The product was obtained as a white solid ($404.6 \mathrm{mg}, 39 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{5}$

2-(2-bromophenyl)acetaldehyde (SI-2) was synthesized from 2-bromobenzaldehyde (1.6 mL , 13.71 mmol) following general procedure C . The crude product was purified by vacuum distillation $\left(0.30 \mathrm{mmHg}, 65^{\circ} \mathrm{C}\right)$. The product was obtained as a colorless oil ($1.80 \mathrm{~g}, 66 \%$ yield $)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{6}$

2-(6-bromobenzo[d][1,3]dioxol-5-yl)pent-4-enal (SI-9) was synthesized from 2-(6-bromobenzo[d][1,3]dioxol-5-yl)acetaldehyde (SI-8), which was made from 2-bromopiperonal $(5.0 \mathrm{~g}, 21.83 \mathrm{mmol})$ following general procedure C. (SI-8) was purified by column
chromatography on silica gel using a $10-15 \%$ gradient of EtOAc in hexanes as the eluent. The product was obtained as a white solid ($3.0 \mathrm{~g}, 57 \%$ yield).
A flame-dried round-bottom flask was charged with (SI-8) ($3.0 \mathrm{~g}, 12.34 \mathrm{mmol}$) and $4 \AA$ powdered molecular sieves under an argon atmosphere. tert-butylamine (25 mL) was added and the mixture was allowed to stir vigorously at room temperature for 24 hours. The mixture was then filtered anhydrously through a short plug of flame-dried Celite ${ }^{\circledR}$ via cannula transfer to a receiving flask. Benzene was used to rinse the donating flask. The mixture containing the crude imine was then concentrated in vacuo and dissolved in anhydrous THF.
To a flame-dried round-bottom flask, $\mathrm{iPr}_{2} \mathrm{NH}(2.25 \mathrm{~mL}, 16.04 \mathrm{mmol})$ and anhydrous THF (60 mL) were added and cooled to $-78^{\circ} \mathrm{C}$ via dry ice/acetone bath. $n-\operatorname{BuLi}(5.92 \mathrm{~mL}, 14.81 \mathrm{mmol})$ was then added drop wise to the stirring solution to form LDA. After 30 minutes, the crude imine was added via cannula transfer to the stirring solution of LDA. After a period of 30 minutes, allyl iodide ($1.24 \mathrm{~mL}, 13.57 \mathrm{mmol}$) was added via syringe to the reaction mixture, which was then allowed to cool to room temperature over 2 hours. The solvent was removed in vacuo and water was added to the reaction mixture to be stirred over a period of 24 hours. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the flask, and the mixture was extracted 3 times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated. The crude product was purified by column chromatography on silica gel using a $10-20 \%$ gradient of EtOAc in hexanes. The product (SI-9) was obtained as a tan-colored oil ($1.27 \mathrm{~g}, 36 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 5.71-5.63(\mathrm{~m}, 1 \mathrm{H})$, 5.00-4.97 (d, $J=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.94(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.72$ $(\mathrm{m}, 1 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4,148.0,147.9,134.5$, $128.4,117.5,116.1,113.2,109.2,102.1,56.9,33.4$. IR (neat, $\mathbf{c m}^{-1}$): 1725, 1503, 1478, 1251, 1236, 1121, 1037, 928, 862, 832. HRMS-ESI m/z: [M+], calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{3}$, 281.9892; found 281.9890 . $\mathbf{R}_{\mathbf{f}}$: 0.64 in $25 \% \mathrm{EtOAc} /$ hexanes.

Synthesis of \boldsymbol{N}-Substituted Indoles

General Procedure D: A flame dried two-neck round-bottom flask that was affixed to a DeanStark apparatus was charged with the carbonyl compound (1.0 eq) under an argon atmosphere. Anhydrous benzene (0.1 M) was added. p-Toluenesulfonic acid (PTSA, 0.1 eq) and the primary amine (1.2 eq) were then added. The reaction mixture was stirred at reflux until GCMS analysis revealed consumption of the carbonyl compound ($\sim 16-24$ hours). The reaction mixture was concentrated (either by reduced pressure or distillation of solvent into the Dean-Stark trap), and the crude imine was then immediately used for the following cyclization. To the same flask containing the crude imine, N, N-dimethylformamide (0.2 M), $\mathrm{CuI}\left(10 \mathrm{~mol} \%\right.$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(2.0$ eq) were added under a stream of argon. The reaction mixture was then vigorously stirred at 110 ${ }^{\circ} \mathrm{C}$ until TLC analysis showed no trace of the initial carbonyl compound. After cooling, the reaction mixture was diluted in 25% ethyl acetate in hexanes and filtered through a plug of Celite ${ }^{\circledR}$. Water was added to the filtrate, and the mixture was then extracted 3 times with 25% ethyl acetate in hexanes. The organic phases were combined, washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated to yield crude product. The residue was purified by column chromatography on neutralized silica gel.

General Procedure E: A flame dried round-bottom flask containing $4 \AA$ molecular sieves was charged with the carbonyl compound (1.0 eq) under an argon atmosphere. Anhydrous benzene was added $(0.1 \mathrm{M})$, followed by the addition of the amine (1.5 eq). The reaction mixture was stirred vigorously at room temperature until GC analysis revealed consumption of the starting material. The mixture was then filtered anhydrously through a short plug of flame-dried Celite ${ }^{\circledR}$ via cannula transfer to a receiving flask. Benzene was used to rinse the donating flask. The mixture containing the crude imine was then concentrated in vacuo. To the same flask containing the crude imine, N, N-dimethylformamide $(0.2 \mathrm{M})$, $\mathrm{CuI}\left(10 \mathrm{~mol} \%\right.$), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 eq) were added under a stream of argon. The reaction mixture was then vigorously stirred at $110{ }^{\circ} \mathrm{C}$ until TLC analysis showed no trace of the initial carbonyl compound. After cooling, the reaction mixture was diluted in 25% ethyl acetate in hexanes and filtered through a plug of Celite ${ }^{\circledR}$. Water was added to the filtrate, and the mixture was then extracted 3 times with 25% ethyl acetate in hexanes. The organic phases were combined, washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated to yield crude product. The residue was purified by column chromatography on neutralized silica gel.

1-phenyl-2-methyl-1H-indole (Table 3, Entry 1) was synthesized from 2-bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and aniline ($65 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a yellow oil ($77 \mathrm{mg}, 80 \%$ yield). A similar experiment starting with $100 \mathrm{mg}(0.470 \mathrm{mmol})$ of the ketone gave $86 \mathrm{mg}(88 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{7}$

1-(4-chlorophenyl)-2-methyl-1H-indole (Table 3, Entry 2) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and 4-chloroaniline ($90 \mathrm{mg}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-2 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($86 \mathrm{mg}, 76 \%$ yield). A similar experiment starting with $100 \mathrm{mg}(0.470 \mathrm{mmol})$ of the ketone gave 94 mg (83% yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.1,136.8,136.6,133.5,129.8,129.3,128.4,121.4,120.4,119.8$, 109.9, 101.9, 13.4. IR (neat, $\mathbf{c m}^{-1}$): 1492, 1459, 1388, 1323, 1088, 1012, 824, 789, 748, 739. HRMS-ESI m/z: $[\mathrm{M}+\mathrm{H}]$, calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NCl}, 242.0737$; found 242.0731. $\mathbf{R}_{\mathbf{f}}: 0.64$ in 25% EtOAc/hexanes.

1-(4-methoxyphenyl)-2-methyl-1H-indole (Table 3, Entry 3) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and 4-methoxyaniline ($87 \mathrm{mg}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-5 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($97 \mathrm{mg}, 87 \%$ yield). A similar experiment starting with 100 mg (0.470 $\mathrm{mmol})$ of the ketone gave $89 \mathrm{mg}(80 \%$ yield $) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{8}$

2-methyl-1-(4-methylthiophenyl)-1H-indole (Table 3, Entry 4) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and 4-methylthioaniline ($88 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-5 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($106 \mathrm{mg}, 89 \%$ yield). A similar experiment starting with 100 mg (0.470 $\mathrm{mmol})$ of the ketone gave $98 \mathrm{mg}\left(83 \%\right.$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}$, 3H), 2.33 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,138.3,137.2,135.0,128.5,128.3$, 127.2, 121.2, 120.2, 119.7, 110.1, 101.4, 15.9, 13.5. IR (neat, $\mathbf{c m}^{-1}$): 1494, 1458, 1435, 1388, 1320, 1094, 815, 783, 745, 651. HRMS-ESI m/z: $[\mathrm{M}+\mathrm{H}]$, calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NS}, 254.1003$; found 254.1002 . $\mathbf{R}_{\mathbf{f}}$: 0.72 in $25 \% \mathrm{EtOAc} /$ hexanes.

1-benzyl-2-methyl-1H-indole (Table 3, Entry 5) was synthesized from 2-bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and 4-chloroaniline $(90 \mathrm{mg}, 0.705 \mathrm{mmol})$ following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a 0 1% gradient of ethyl acetate in hexanes. The product was obtained as a yellow solid ($81 \mathrm{mg}, 77 \%$
yield). A similar experiment starting with $100 \mathrm{mg}(0.470 \mathrm{mmol})$ of the ketone gave $85 \mathrm{mg}(82 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{9}$

1-(4-fluorobenzyl)-2-methyl-1H-indole (Table 3, Entry 6) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and 4-fluorobenzylamine ($81 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($98 \mathrm{mg}, 87 \%$ yield). A similar experiment starting with 100 mg (0.470 $\mathrm{mmol})$ of the ketone gave $98 \mathrm{mg}\left(87 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1,161.2,137.2,136.7,133.8,128.4,127.8$, 127.7, 121.0, 120.0, 119.8, 115.9, 115.7, 109.3, 45.9, 12.9. IR (neat, $\mathbf{c m}^{-1}$): 1507, 1463, 1220, 1155, 848, 829, 783, 760, 748, 738. HRMS-ESI m/z: $[\mathrm{M}+\mathrm{H}]$, calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NF}$, 240.1189; found 240.1180 . $\mathbf{R}_{\mathbf{f}}$: 0.64 in $25 \% \mathrm{EtOAc} /$ hexanes.

1-(4-methoxybenzyl)-2-methyl-1H-indole (Table 3, Entry 7) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and 4-methoxybenzylamine ($92 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($89 \mathrm{mg}, 76 \%$ yield). Two similar experiments each starting with 100 $\mathrm{mg}(0.470 \mathrm{mmol})$ of the ketone gave $74 \mathrm{mg}\left(63 \%\right.$ yield) and $98 \mathrm{mg}\left(83 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.76 MHz, CDCl_{3}) $\delta 158.8,137.2,136.8,130.0,128.2,127.3,120.8,119.8,119.5$,
114.2, 109.3, 100.4, 55.3, 46.0, 12.9. IR (neat, $\mathbf{c m}^{-1}$): 1510, 1455, 1237, 1174, 1031, 815, 771, 762, 751, 744. HRMS-ESI m/z: [M+], calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}, 251.1310$; found 251.1313. $\mathbf{R}_{\mathbf{f}}$: 0.57 in 25% EtOAc/hexanes.

1-phenethyl-2-methyl-1H-indole (Table 3, Entry 8) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and phenethylamine ($89 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D. The crude product was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a colorless oil ($81 \mathrm{mg}, 74 \%$ yield). Two similar experiments each starting with 100 mg (0.470 $\mathrm{mmol})$ of the ketone gave $81 \mathrm{mg}\left(74 \%\right.$ yield) and $76 \mathrm{mg}\left(69 \%\right.$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,136.7$, 136.4, $129.0,128.7,128.4,126.8,120.6,120.0,119.8,119.5,109.1,100.0,99.9,45.1,36.5,12.6$. IR (neat, $\mathbf{c m}^{-1}$): $1465,1456,1400,1354,1339,1311,771,747,736,699$. HRMS-ESI m/z: [M+H], calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}, 236.1439$; found 236.1436. $\mathbf{R}_{\mathbf{f}}$: 0.63 in $25 \% \mathrm{EtOAc} /$ hexanes.

1-cyclohexylmethyl-2-methyl-1H-indole (Table 3, Entry 9) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and cyclohexanemethylamine ($92 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($68 \mathrm{mg}, 63 \%$ yield). A similar experiment starting with $100 \mathrm{mg}(0.470$ mmol) of the ketone gave $92 \mathrm{mg}\left(86 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=10.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H})$, $3.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 3 \mathrm{H})$, 1.11-1.05 (m, 2H). ${ }^{13} \mathbf{C}$ NMR (125.76 MHz, CDCl_{3}) $\delta 137.2,137.0,128.1,120.3,119.7,119.2$, 109.6, 99.9, 49.8, 39.0, 31.4, 26.5, 26.0, 13.3. IR (neat, $\mathbf{c m}^{-1}$): 2932, 2917, 1468, 1450, 1401, 1356, 1342, 787, 749, 729. HRMS-ESI m/z: $[\mathrm{M}+\mathrm{H}]$, calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}, 228.1752$; found 228.1746. $\mathbf{R}_{\mathrm{f}}: 0.66$ in $25 \% \mathrm{EtOAc} /$ hexanes.

1-(3-isopropoxypropyl)-2-methyl-1H-indole (Table 3, Entry 10) was synthesized from 2bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and 3-isopropoxypropylamine ($98 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a $0-2 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($77 \mathrm{mg}, 71 \%$ yield). Two similar experiments each starting with 100 $\mathrm{mg}(0.470 \mathrm{mmol})$ of the ketone gave $74 \mathrm{mg}\left(68 \%\right.$ yield) and $83 \mathrm{mg}\left(76 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{sept}, J=6.0 \mathrm{~Hz} 1 \mathrm{H}) 3.40(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.51(\mathrm{~s}, 3 \mathrm{H}), 2.06$ (quin, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.25(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.76 MHz, CDCl_{3}) $\delta 136.9,136.8,128.2,120.4,119.7,119.3,109.3,100.0,71.6,64.6,40.1$, 30.7, 22.3, 12.8. IR (neat, $\mathbf{c m}^{-1}$): 2976, 1461, 1400, 1336, 1312, 1143, 1129, 1090, 771, 747, 734. HRMS-ESI m/z: $[\mathrm{M}+\mathrm{H}]$, calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}$, 232.1701; found 232.1699. $\mathbf{R}_{\mathbf{f}}: 0.56$ in 25\% EtOAc/hexanes.

1-octyl-2-methyl-1H-indole (Table 3, Entry 11) was synthesized from 2-bromophenylacetone ($100 \mathrm{mg}, 0.470 \mathrm{mmol}$) and octylamine ($117 \mu \mathrm{~L}, 0.705 \mathrm{mmol}$) following general procedure D . The crude product was purified by column chromatography on neutralized silica gel using a 0 1% gradient of ethyl acetate in hexanes. The product was obtained as a clear, yellow oil (90 mg ,
79% yield $)$. A similar experiment starting with $100 \mathrm{mg}(0.470 \mathrm{mmol})$ of the ketone gave 90 mg (79% yield). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}$, $1 \mathrm{H}), 1.82$ (quin, $J=7.4 \mathrm{~Hz}$), $1.41-1.36(\mathrm{~m}, 10 \mathrm{H}), 0.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.76 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.8,136.5,128.2,120.5,119.8,119.3,109.2,99.9,43.4,32.0,30.4,29.6$, 29.4, 27.3, 22.8, 14.3, 13.0. IR (neat, $\mathbf{c m}^{-1}$): 2954, 2926, 2855, 1462, 1401, 1355, 1311, 770, 731, 746. HRMS-ESI m/z: $[\mathrm{M}+\mathrm{H}]$, calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}$, 244.2065; found 244.2062. $\mathbf{R}_{\mathrm{f}}: 0.69$ in $25 \% \mathrm{EtOAc} /$ hexanes.

1-benzyl-1H-indole (Table 4, Entry 1) was synthesized from 2-bromophenylacetaldehyde (SI2) $(100 \mathrm{mg}, 0.502 \mathrm{mmol})$ and benzylamine $(82 \mu \mathrm{~L}, 0.754 \mathrm{mmol})$ following general procedure E . The crude product was purified by column chromatography on neutralized silica gel using a 0 1% gradient of ethyl acetate in hexanes. The product was obtained as a clear, yellow oil (45 mg , 43% yield). A similar experiment starting with $100 \mathrm{mg}(0.502 \mathrm{mmol})$ of the aldehyde gave 39 mg (37% yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{10}$

1-benzyl-5-fluoro-1H-indole (Table 4, Entry 2) was synthesized from 2-bromo-5fluorophenylacetaldehyde (SI-7) ($400 \mathrm{mg}, 1.84 \mathrm{mmol}$) and benzylamine ($302 \mu \mathrm{~L}, 2.76 \mathrm{mmol}$) following general procedure D. PTSA was omitted. The crude product was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a yellow oil ($260 \mathrm{mg}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{9}$

7-allyl-5-tert-butyl-5H-[1,3]dioxolo[4,5-f]indole (Table 4, Entry 3) was synthesized from 2-(6-bromobenzo[d][1,3]dioxol-5-yl)pent-4-enal (SI-9) ($100 \mathrm{mg}, 0.353 \mathrm{mmol}$) following general procedure E. t-Butylamine (0.1 M) was used as the solvent for the imine-forming step. The crude product was purified by column chromatography on neutralized silica gel using hexanes as the eluent. The product was obtained as a light brown solid ($52 \mathrm{mg}, 57 \%$ yield). A similar experiment starting with $100 \mathrm{mg}(0.353 \mathrm{mmol})$ of the aldehyde gave $55 \mathrm{mg}(61 \%$ yield $) .{ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.08-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 1.66(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,141.8,137.6,130.2,123.6,121.7,115.1,111.7,100.6$, 97.9, 94.4, 55.5, 30.2, 29.8. IR (neat, cm $^{-1}$): 3089, 2979, 1639, 1466, 1279, 1243, 1222, 1196, 1065, 1034, 949, 907, 837. HRMS-ESI m/z: [M+H], calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}, 258.1494$; found 258.1485. $\mathbf{R}_{\mathbf{f}}: 0.75$ in $25 \% \mathrm{EtOAc} /$ hexanes.

1-(adamantan-1-yl)-3-phenyl-1H-indole (Table 4, Entry 4) was synthesized from 2-(2-bromophenyl)-2-phenylacetaldehyde (SI-6) ($100 \mathrm{mg}, 0.363 \mathrm{mmol}$) and adamantylamine (82 $\mathrm{mg}, 0.545 \mathrm{mmol}$) following general procedure D. PTSA was omitted. The crude product was purified by column chromatography on neutralized silica gel using a $0-0.5 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a cream colored solid ($111 \mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{11}$

1-benzyl-2-phenyl-1H-indole (Table 4, Entry 5) was synthesized from 2-(2-bromophenyl)-1phenylethanone (SI-3) ($100 \mathrm{mg}, 0.363 \mathrm{mmol}$) and benzylamine ($60 \mu \mathrm{~L}, 0.545 \mathrm{mmol}$) following general procedure D. Toluene was used in lieu of benzene. The crude product was purified by column chromatography on neutralized silica gel using a $0-1 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($60 \mathrm{mg}, 58 \%$ yield). A similar experiment starting with $100 \mathrm{mg}(0.363 \mathrm{mmol})$ of the ketone gave $81 \mathrm{mg}(79 \%$ yield $) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{12}$

1-benzyl-2-(4-chlorophenyl)-1H-indole (Table 4, Entry 6) was synthesized from 2-(2-bromophenyl)-1-(4-chlorophenyl)ethanone (SI-4) ($100 \mathrm{mg}, 0.323 \mathrm{mmol}$) and benzylamine (52 $\mu \mathrm{L}, 0.485 \mathrm{mmol}$) following general procedure D . Toluene was used in lieu of benzene. The crude product was purified by column chromatography on neutralized silica gel using a $0-0.5 \%$ gradient of ethyl acetate in hexanes. The product was obtained as a white solid ($60 \mathrm{mg}, 58 \%$ yield). A similar experiment starting with $100 \mathrm{mg}(0.353 \mathrm{mmol})$ of the ketone gave $65 \mathrm{mg}(63 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 4 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 6 \mathrm{H})$, $7.04(\mathrm{~d}, J=6.9,2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.6,138.3$, $138.1,134.4,131.3,130.5,129.0,128.9,128.3,127.4,126.0,122.4,120.8,120.5,110.7,102.8$, 47.8. IR (neat, $\mathbf{c m}^{-1}$): $1459,1346,1088,1015,839,784,751,737,729,717$. HRMS-ESI m/z: $[\mathrm{M}+\mathrm{H}]$, calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}, 318.10440$; found 318.10426. $\mathbf{R}_{\mathbf{f}}$: 0.69 in 25% EtOAc/hexanes.

9-benzyl-2,3,4,9-tetrahydro-1H-carbazole (Table 4, Entry 7) was synthesized from 2-(2bromophenyl)cyclohexanone (SI-5) ($100 \mathrm{mg}, 0.395 \mathrm{mmol}$) and benzylamine ($65 \mu \mathrm{~L}, 0.594$ mmol) following general procedure D . Toluene was used in lieu of benzene. The crude product was purified by column chromatography on neutralized silica gel using hexanes as the eluent. The product was obtained as a yellow solid ($93 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in accord with the data reported in literature. ${ }^{13}$

References

1. Sutherland, A. G., et al. Org. Biomol. Chem., 2003, 1, 4138-4140.
2. Bonnamour, J.; Piedrafita, M.; Bolm, C. Adv. Synth. Catal., 2010, 352, 1577-1581.
3. Willis, M. C.; Taylor, D.; Gillmore, A. T. Org. Lett., 2004, 6, 4755-4757.
4. Xia, Yi, et al. (Anacor Pharmaceuticals, Inc.; GlaxoSmithKline). Boron-containing Small Molecules. U.S. Patent 2010/0256092, October 7, 2010.
5. Baker, S. J., et al. J. Med. Chem., 2006, 49, 4447-4450.
6. Pedrosa, R.; Andrés, C.; Iglesias, J. M. J. Org. Chem., 2001, 66, 243-250.
7. Barluenga, J.; Jiménez-Aquino, A.; Aznar, F.; Valdés, C. J. Am. Chem. Soc., 2009, 131, 4031-4041.
8. Liu, B.; Hong, X.; Yan, D.; Xu, S.; Huang, X.; Xu, B. Org. Lett., 2012, 14, 4398-4401
9. Choy, P. Y.; Lau, C. P.; Kwong, F. Y. J. Org. Chem., 2011, 76, 80-84.
10. Potavathri, S.; Pereira, K.; Gorelsky, S.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc., 2010, 132, 14676-14681.
11. Shirok, H. Synthesis, 2008, 9, 1404-1414.
12. Ackermann, L.; Song, W.; Sandmann, R. J. Organomet Chem., 2011, 696, 195-201.
13. Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem. Int. Ed. 2005, 44, 403-406.

SI-27

