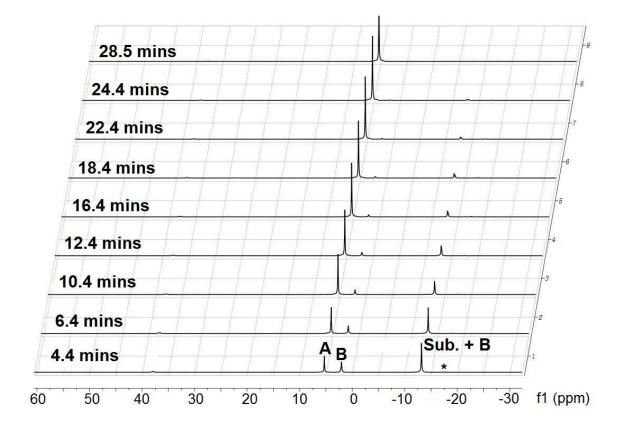
Supporting Information

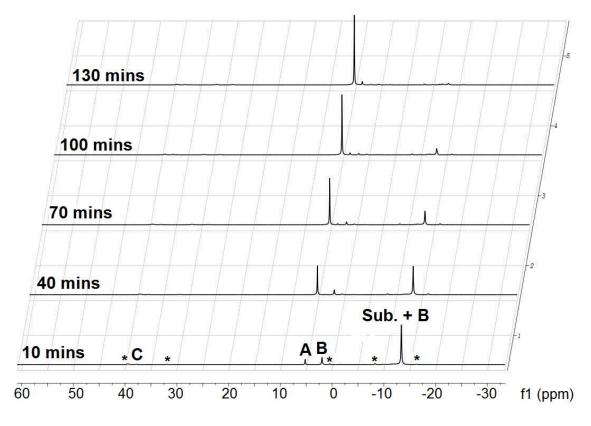
1-Methyl Boratabenzene Yttrium Alkyl: A Highly Active Catalyst for Dehydrocoupling of Me₂NH·BH₃

Erli Lu, Yuanyuan Yuan, Yaofeng Chen, Wei Xia

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences


Corresponding Author: Yaofeng Chen E-mail: yaofchen@mail.sioc.ac.cn

Contents

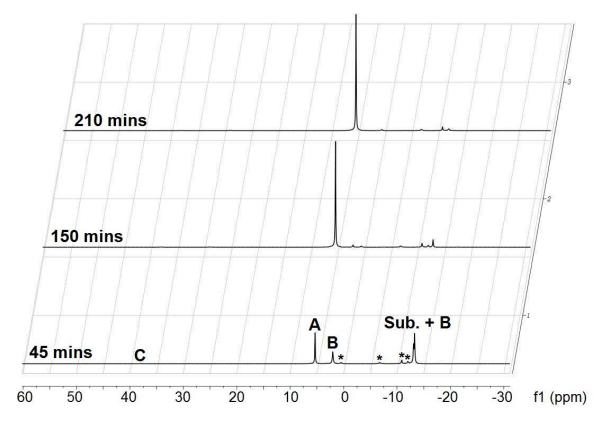
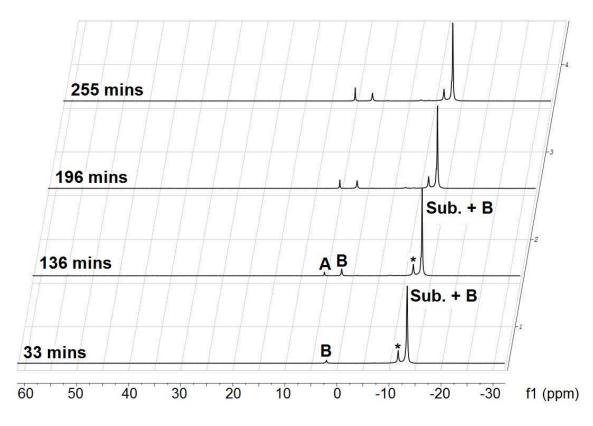
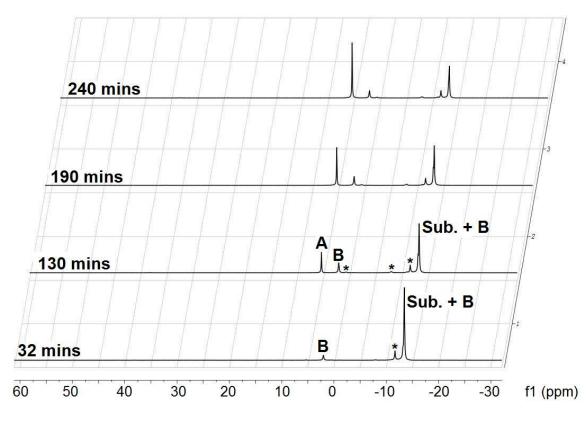

1. General
2. ¹¹ B{ ¹ H} spectra of dehydrocoupling catalyzed by 3-7 and 9 S3-S8
3. References

General. All operations were carried out under an atmosphere of argon using Schlenk techniques or in a nitrogen filled glovebox. C_6D_6 was dried over Na/K alloy, distilled under vacuum, and stored in the glovebox. Me₂NH·BH₃ was purchased from Aldrich, sublimed at ambient temperature for three times, and stored in the glovebox at -35 °C. ¹¹B{¹H} NMR spectra were recorded on a Bruker DXP 400 MHz spectrometer at 128 MHz, and the boron chemical shifts were reported in δ units with reference to external BF₃·OEt₂. Boratabenzene rare-earth metal alkyls (1-4),¹ rare-earth metal trialkyls (5-7),² bis(cyclopentadienyl) yttrium alkyl (8),¹ and mono(indenyl) yttrium dialkyl (9)³ were prepared according to the published procedures.

General procedure of NMR experiments. Rare-earth metal complex $(1.7 \times 10^{-3} \text{ mmol} \text{ for } 1, 3.4 \times 10^{-3} \text{ mmol} \text{ for } 3 \text{ and } 8, 1.7 \times 10^{-2} \text{ mmol} \text{ for } 2, 4-7, \text{ and } 9) \text{ and Me}_2\text{NH}\cdot\text{BH}_3$ (20 mg, 0.34 mmol) were mixed in 0.5 mL of C₆D₆ and transferred into a J. Young NMR tube in a glovebox. In all reactions, the initial concentration of substrate is 0.68 M. The mixed reaction solution was immediately frozen in liquid N₂, and was defrosted just before being inserted into the probe of the Bruker DXP 400 MHz spectrometer, which had been previously set to 50±0.1 °C. The concentrations of **A**, **B** and **Sub.** were obtained from the areas of the signals at 5.1 ppm (for **A**), 2.0 ppm (for **B**) and -13.2 ppm ($I_{\text{Sub.}} = I$. 13.2 ppm – $I_{2.0 \text{ ppm}}$). $I_{\text{Sub.}}$ is the integration area for substrate, $I_{-13.2 \text{ ppm}}$ is the total integration area for peak at 2.0 ppm), respectively. TopSpinTM and MestReNovaTM NMR software package (Version 6.0.3) were used to process the spectrum and obtain accurate integrations. No color change and no precipitate were observed during the reaction.

Figure S1. ¹¹B{¹H} spectra showing the dehydrocoupling of Me₂NH·BH₃ catalyzed by 1.0 mol% of **3**. Conditions: [**Sub.**]₀ = 0.68 mol/L, C₆D₆ as the solvent, 50 °C. **A**: [Me₂N-BH₂]₂; **B**: Me₂NH-BH₂-NMe₂-BH₃; **C**: Me₂N=BH₂; *: other boron containing species.

Figure S2. ¹¹B{¹H} spectra showing the dehydrocoupling of Me₂NH·BH₃ catalyzed by 5.0 mol% of **4**. Conditions: [**Sub.**]₀ = 0.68 mol/L, C₆D₆ as the solvent, 50 °C. **A**: [Me₂N-BH₂]₂; **B**: Me₂NH-BH₂-NMe₂-BH₃; **C**: Me₂N=BH₂; *: other boron containing species.

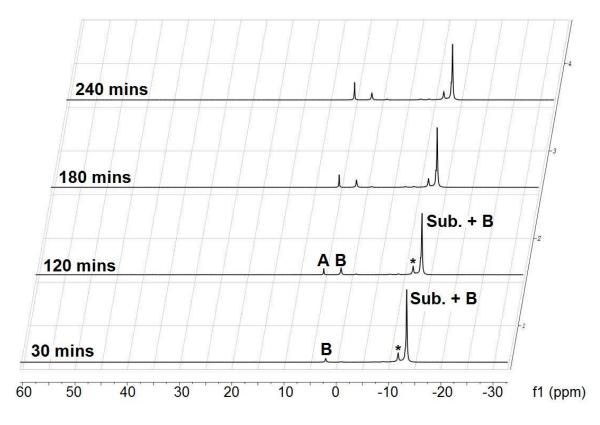

Figure S3. ¹¹B{¹H} spectra showing the dehydrocoupling of Me₂NH·BH₃ catalyzed by 5.0 mol% of 5. Conditions: $[Sub.]_0 = 0.68 \text{ mol/L}, C_6D_6$ as the solvent, 50 °C. A: $[Me_2N-BH_2]_2$; B: Me₂NH-BH₂-NMe₂-BH₃; C: Me₂N=BH₂; *: other boron containing species.

Figure S4. ¹¹B{¹H} spectra showing the dehydrocoupling of Me₂NH·BH₃ catalyzed by 5.0 mol% of **6**. Conditions: [**Sub.**]₀ = 0.68 mol/L, C₆D₆ as the solvent, 50 °C. **A**: [Me₂N-BH₂]₂; **B**: Me₂NH-BH₂-NMe₂-BH₃; **C**: Me₂N=BH₂; *: other boron containing species.

Figure S5. ¹¹B{¹H} spectra showing dehydrocoupling of Me₂NH·BH₃ catalyzed by 5.0 mol% of 7. Conditions: [**Sub.**]₀ = 0.68 mol/L, C₆D₆ as the solvent, 50 °C. A: [Me₂N-BH₂]₂; **B**: Me₂NH·BH₂-NMe₂·BH₃; **C**: Me₂N=BH₂; *: other boron containing species.

Figure S6. ¹¹B{¹H} spectra showing the dehydrocoupling of Me₂NH·BH₃ catalyzed by 5.0 mol% of **9**. Conditions: [**Sub.**]₀ = 0.68 mol/L, C₆D₆ as the solvent, 50 °C. **A**: [Me₂N-BH₂]₂; **B**: Me₂NH-BH₂-NMe₂-BH₃; **C**: Me₂N=BH₂; *: other boron containing species.

References:

- (1) Yuan, Y. Y.; Chen, Y. F.; Li, G. Y.; Xia, W. Organometallics 2010, 29, 3722.
- (2) Lappert, M. F.; Pearce, R. J. Chem. Soc., Chem. Commun. 1973, 126.
- (3) Xu, X.; Chen, Y. F.; Feng, J.; Zou G.; Sun, J. Organometallics 2010, 29, 549.