An Highly Enantioselective Synthesis of Multifunctionalized Dihydrofurans by Copper-Catalyzed Asymmetric [4+1] Cycloadditions of α-Benzylidene- β-Ketoester with Diazo Compound

Supporting Information

Jiao-Long Zhou, Li-Jia Wang, Hao Xu, Xiu-Li Sun, Yong Tang*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
E-mail: tangy@mail.sioc.ac.cn

Contents

1. General information
2. General Procedure for the Synthesis of Chiral Sidearm Oxazolines
3. General procedure for the Synthesis of Chiral 2, 3-dihydrofuran
4. X-ray Data of 3g
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
6. HPLC spectra

1. General information

All reactions were carried out under dry nitrogen atmosphere. Dichloromethane (DCM) was distilled over calcium hydride prior to use. $\mathrm{CuPF}_{6}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}, \mathrm{CuCl}$, and AgSbF_{6} were purchased from Aldrich, and the diazo esters, ${ }^{[1]}$ substrate, ${ }^{[2]}$ and ligand ${ }^{[3]}$ were prepared according to literature procedures. Powdered M.S. $4 \AA$ was preactivated for 8 hours at $250{ }^{\circ} \mathrm{C}$ under vacuum prior to use.

NMR spectra were recorded on a Varian Mercury-300 or a Varian Mercury-400 nuclear magnetic resonance spectrometer. Chemical shifts are reported in parts per million (ppm) down field from TMS, using residual CDCl_{3} as an internal standard.

2. General Procedure for the Synthesis of Chiral Sidearm Oxazolines.

To a solution of bisoxazoline (2 mmol) in dried THF (30 mL) was added dropwise t-BuLi (1.3 $\mathrm{mL}, 1.7 \mathrm{M}$ in hexanes, 2.2 mmol) within $15-20 \mathrm{~min}$ at $-78^{\circ} \mathrm{C}$. The resulting yellow solution was stirred for an additional 1 h at this temperature. Then a solution of halide (2.8 mmol) in THF (10 mL) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ over 10 min . The solution was slowly warmed to room temperature and was stirred for a further 10 h . The mixture was filtered through a thin layer (40 mm) of silica gel (100-200 mesh). Then concentrated and the residue was purified by flash chromatography that filled with silica gel (400 mesh), and PE (petroleum ether) /Actone $3 / 1$ as eluent.

(3aS,3a'S,8aR,8a'R)-2,2'-(1-(3,5-dimethoxyphenyl)propane-2,2-diyl)bis(8,8a-dihydro-3aH-in deno[1,2-d]oxazole)

Yield: 45%. bp: $119-121^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-302.6^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J$
$=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.21(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 3 \mathrm{H}), 3.07$ $(\mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ABd}, J=6.8 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 168.1,167.5,160.0,141.5,141.5,139.5,139.4,138.5,128.2,128.1,127.2,127.1,125.5$, $125.4,124.9,124.8,108.1,98.4,82.9,82.8,76.3,54.8,42.7,41.6,39.4,39.3,20.5$; IR (neat) 3024, $2938,2836,1648,1596,1460,1429,1346,1310,1294,1275,1205,1152,1089,1059,998,856$, 751, 699; LRMS-ESI (m / z): $495.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$; Anal. Calcd. For $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 75.28 ; \mathrm{H}, 6.11$; N , 5.66; Found: C, 75.13 ; H, 6.12; N, 5.60.

3. General procedure for the Synthesis of Chiral 2, 3-dihydrofuran.

$\mathrm{CuCl}(2.5 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{AgSbF}_{6}(8.6 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathbf{L} 4(13 \mathrm{mg}, 0.03 \mathrm{mmol}), 200 \mathrm{mg}$ M.S. $4 \AA$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were stirred under nitrogen for 1 hour at room temperature. Then the substrate (0.5 mmol) was added, and the mixture was stirred for another 5 min . Then, a solution of the 2,6-diisopropylphenyl diazoacetate (2) (492 $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was dropwise added through a syringe pump for 9-10 hours. After another 1 h of stirring at room temperature, the mixture was filtered through a thin layer (40 mm) of silica gel (100-200 mesh), and washed with DCM to remove the catalyst. The filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl 3,5-diphenyl-2,3-dihydrofuran-2,4-dicarboxylate
Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield : 82\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{dd}, J=1.5 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.16(\mathrm{~m}$, $11 \mathrm{H}), 5.29(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.96(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{br}, 2 \mathrm{H})$, 1.24-1.06 (m, 15H); The ee of 3a listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD column with Hexane $/ i-\operatorname{PrOH} 95 / 5$ as eluent, 314 nm , Flow $=0.6 \mathrm{~mL} / \mathrm{min}$, ee $=96 \%$, $\mathrm{t}_{\mathrm{r}}($ minor $)=7.06 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=18.01 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+185.8^{\circ}\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

5-phenyl-3-(o-tolyl)-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh $), \mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield: 71\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.19(\mathrm{dd}$, $J=3.0 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.10-3.96(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{br}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.04(\mathrm{~m}, 15 \mathrm{H})$; The ee of 3b listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD column with Hexane $/ i-\operatorname{PrOH} 95 / 5$ as eluent, 314 nm , Flow $=0.6 \mathrm{~mL} / \mathrm{min}$, ee $=95 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=5.98 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ $($ major $)=11.32 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+199.1^{\circ}\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

 5-phenyl-3-(p-tolyl)-2,3-dihydrofuran-2,4-dicarboxylatePurified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield: 89%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.15(\mathrm{~m}, 10 \mathrm{H}), 5.28(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{br}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.06$ $(\mathrm{m}, 15 \mathrm{H})$; The ee of $\mathbf{3 c}$ listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD column with Hexane $/ i-\mathrm{PrOH} 95 / 5$ as eluent, 314 nm , Flow $=0.6 \mathrm{~mL} / \mathrm{min}$, ee $=95 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=$ $7.29 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=20.29 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+332.7^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

3-(4-methoxyphenyl)-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield: $85 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{dd}, J=0.9 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.16(\mathrm{~m}, 8 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.99(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{br}, 2 \mathrm{H}), 1.24-1.07(\mathrm{~m}, 15 \mathrm{H})$; The ee of $\mathbf{3 d}$ listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD column with Hexane $/ i-\operatorname{PrOH} 97 / 3$ as eluent, 314 nm , Flow $=$ $0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{ee}=90 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=10.02 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=25.71 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+186.2^{\circ}(\mathrm{c}=1.06$, CHCl_{3}).

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

5-phenyl-3-(4-(trifluoromethyl)phenyl)-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh $), \mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield: 82%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-3.97(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{br}, 2 \mathrm{H}), 1.25-1.06(\mathrm{~m}, 15 \mathrm{H})$; The ee of 3e listed in table 3 was determined by HPLC analysis using a Chiralpak AD column with Hexane/i-PrOH 95/5 as eluent, 314 nm , Flow $=0.6 \mathrm{~mL} / \mathrm{min}$, ee $=90 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=6.51 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=11.69 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+175.3^{\circ}\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

3-(4-chlorophenyl)-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield: 93\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.25(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{br}, 2 \mathrm{H}), 1.24-1.06(\mathrm{~m}, 15 \mathrm{H}) ;$

The ee of $\mathbf{3 f}$ listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD column with Hexane $/ i-\operatorname{PrOH} 95 / 5$ as eluent, 314 nm , Flow $=0.6 \mathrm{~mL} / \mathrm{min}$, ee $=96 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=7.20 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ major $)=19.38 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+205.3^{\circ}\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

3-(4-bromophenyl)-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield: 81%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.17(\mathrm{~m}$, $5 \mathrm{H}), 5.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{br}, 2 \mathrm{H}), 1.23-1.08$ $(\mathrm{m}, 15 \mathrm{H})$; The ee of $\mathbf{3 g}$ listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD column with Hexane $/ \mathrm{i}-\mathrm{PrOH} 95 / 5$ as eluent, 314 nm , Flow $=0.6 \mathrm{~mL} / \mathrm{min}$, ee $=96 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=$ $7.40 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=19.04 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+193.5^{\circ}\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-methyl

5-isopropyl-3-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate . Yield: 79\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.17(\mathrm{~m}, 8 \mathrm{H}), 5.12(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J$ $=3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{hep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{hep}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.17(\mathrm{~m}$, $18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.5,168.9,165.0,145.0,142.2,140.1,128.8,127.4$, $126.9,124.0,104.4,85.6,52.6,50.9,27.5,27.0,23.4,19.7,19.3$; IR (neat) $3183,3065,3029$, 2966, 2872, 1820, 1757, 1709, 1643, 1495, 1468, 1385, 1347, 1306, 1257, 1163, 1114, 1067, 1035, 936, 867, 840, 792, 756, 729, 699, 608; LRMS-ESI $(m / z): 451.3\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS-ESI calcd. For $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{5}{ }^{+}$is 451.2484: Found: 451.2475; The ee of $\mathbf{3 h}$ listed in table $\mathbf{3}$ was determined by HPLC
analysis using a Chiralpak OD-H column with Hexane $/ i-\operatorname{PrOH} 97 / 3$ as eluent, 235 nm , Flow $=0.5$ $\mathrm{mL} / \mathrm{min}$, ee $=89 \%, \mathrm{t}_{\mathrm{r}}($ major $)=7.59 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=9.71 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+207.6^{\circ}(\mathrm{c}=1.07$, $\left.\mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

5-methyl-3-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ as eluate. Yield: $65 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.16(\mathrm{~m}, 8 \mathrm{H}), 5.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{br}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.09(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 168.7,168.4,164.7,145.0,142.1,140.1,128.7,127.4,127.1,126.9,124.0$, $106.5,85.7,59.6,52.7,27.6,22.9,14.1$; IR (neat) $3030,2965,2929,2871,1774,1705,1654$, 1456, 1383, 1313, 1250, 1164, 1094, 1029, 938, 841, 783, 757, 700; LRMS-ESI (m/z): $437(\mathrm{M}+$ H^{+}); HRMS-ESI calcd. For $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NaO}_{5}{ }^{+}$is 459.2147: Found: 459.2143; The ee of 3i listed in table 3 was determined by HPLC analysis using a Chiralpak AD column with Hexane $/ i-\mathrm{PrOH}$ $98 / 2$ as eluent, 254 nm , Flow $=0.4 \mathrm{~mL} / \mathrm{min}$, ee $=90 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=10.61 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=11.73$ $\min ;[\alpha]_{\mathrm{D}}{ }^{20}=+247.1^{\circ}\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

3-octyl-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ as eluate. Yield: 68\%. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}$, $3 \mathrm{H}), 5.09(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{tt}, J=3.6 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{br}$, $2 H), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.14(\mathrm{~m}, 29 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.7, 164.9, 164.2, 145.1, 140.1, 130.7, 129.7, 129.3, 127.5, 126.8, 123.9, 106.4, 82.0, 59.8, 48.9,
33.9, 31.7, 29.6, 29.2, 29.1, 27.5, 26.2, 23.6, 22.6, 14.1, 14.0; IR (neat): 2962, 2927, 2856, 1754, $1692,1629,1447,1374,1258,1219,1163,1142,1084,1061,1029,793,762,728,693$; LRMS-EI $(m / z): \mathrm{m} / \mathrm{z}\left(\%\right.$ relative intensity): $315\left(\mathrm{M}^{+}, 100.00\right), 343\left(\mathrm{M}^{+}, 38.38\right)$; Anal. Calcd. For: $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{5}$: C: 76.37, H: 8.67 , Found: C: $76.20, \mathrm{H}: 8.48$; The ee of $\mathbf{3 j}$ listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD-H column with Hexane/i-PrOH 93/7 as eluent, 320 nm , Flow $=0.7 \mathrm{~mL} / \mathrm{min}$, ee $=81 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=5.27 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=8.03 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+70.0^{\circ}(\mathrm{c}$ $\left.=0.915, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

3-dodecyl-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

Purified by flash chromatography that filled with silica gel (400 mesh), $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ as eluate. Yield: 74\%. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.88-8.86(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.16(\mathrm{~m}$ $3 \mathrm{H}), 5.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{tt}, J=3.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}), 2.89(\mathrm{br}, 2 \mathrm{H})$, 2.00-1.90 (m, 1H), 1.77-1.57(m, 1H), 1.33-1.17 (m, 37 H$), 0.90-0.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 169.7,164.9,164.2,145.1,140.1,130.7,129.8,129.3,127.5,126.8,124.0,106.5,82.0$, $59.8,49.0,33.9,31.9,31.4,30.1,29.6,29.6,29.5,29.3,27.5,26.2,23.7,22.6,14.15,14.08$; IR (neat): $3064,2962,2927,2856,1755,1692,1630,1493,1462,1373,1313,1217,1163,1143$, 1083, 1062, 1030, 966, 848, 827, 792, 762, 727,693; LRMS-ESI (m / z): m/z (\% relative intensity): $315\left(\mathrm{M}^{+}, 100.00\right), 343\left(\mathrm{M}^{+}, 41.08\right), 475(\mathrm{M}+, 14.57)$; Anal. Calcd. For: $\mathrm{C}_{38} \mathrm{H}_{4} \mathrm{O}_{5}: \mathrm{C}: 77.25, \mathrm{H}$: 9.21, Found: C: $77.24, \mathrm{H}: 9.07$; The ee of $\mathbf{3 k}$ listed in table $\mathbf{3}$ was determined by HPLC analysis using a Chiralpak AD-H column with Hexane $/ i-\operatorname{PrOH} 95 / 5$ as eluent, 320 nm , Flow $=0.7 \mathrm{~mL} / \mathrm{min}$, $\mathrm{ee}=78 \%, \mathrm{t}_{\mathrm{r}}($ minor $)=5.23 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=8.43 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+63.0^{\circ}\left(\mathrm{c}=0.978, \mathrm{CHCl}_{3}\right)$.

References:

[1] S. Son and G. C. Fu, J. Am. Chem. Soc. 2007, 129, 1046.
[2] J.-L. Zhou, Y. Liang, C. Deng, H.-L. Zhou, Z. Wang, X.-L. Sun, J.-C. Zheng, Z.-X. Yu and Y. Tang, Angew. Chem. Int. Ed., 2011, 50, 7874.
[3] a) J. Li, S.-H. Liao, H. Xiong, Y.-Y. Zhou, X.-L. Sun, Y. Zhang, X.-G. Zhou, and Y. Tang,

Tetrahedron, 2012, 68, 5042.

4. X-ray Data of 3g

Crystal of $\mathbf{3 g}$ suitable for X-ray crystallographic analysis was obtained by recrystallization from petrol ether/DCM. The ORTEP drawing of $\mathbf{3 g}$ is shown in Figure 1 (deposition number: CCDC 915948).

Temperature	$293(2) \mathrm{K}$
Radiation	$\mathrm{MoK} \alpha$
$\lambda(\AA)$	0.71073
Reflections collected/unique	$18158 / 6845[(\mathrm{int})=0.1015]$
Refinement method	Full-matrix least-squares on F^{2}
θ range $\left({ }^{\circ}\right)$	$1.81-27.50$
Formula	$\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{BrO} 5$
Formula weight	577.49
Crystal size (mm)	$0.369 \times 0.357 \times 0.231 \mathrm{~mm}$
Crystal system	Orthorhombic
Space group	$\mathrm{P} 2(1) 2(1) 2(1)$
a (\AA)	$11.8375(15)$
$\mathrm{b}(\AA)$	$15.0508(19)$
$\mathrm{c}(\AA)$	$16.968(2)$
v $\left(\AA^{3}\right)$	$3023.0(7)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	90
Z	4
dcalc $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.269
Representative bonds: (\AA)	
$\mathrm{C}(2)-\mathrm{O}(1)$	$1.436(4)$

$\mathrm{C}(2)-\mathrm{C}(1)$	$1.521(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.522(5)$
$\mathrm{C}(3)-\mathrm{C}(12)$	$1.527(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.519(5)$
$\mathrm{C}(4)-\mathrm{C}(30)$	$1.452(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.363(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.458(5)$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.361(4)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9800

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

(3aS,3a'S,8aR,8a'R)-2,2'-(1-(3,5-dimethoxyphenyl)propane-2,2-diyl)bis(8,8a-dihydro-3aH-in deno[1,2-d]oxazole)

(2S,3S)-2-(2,6-diisopropylphenyl) 4-methyl
5-isopropyl-3-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl

5-methyl-3-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

75 MHz in CDCl_{3}

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl
3-octyl-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

75 MHz in CDCl_{3}

(2S,3S)-2-(2,6-diisopropylphenyl) 4-ethyl
3-dodecyl-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate

6. HPLC spectra

Jiaolong Zhou HPLC Report

$\stackrel{\text { Peak }}{\#}$	$\begin{aligned} & \text { Time } \\ & {\left[\begin{array}{c} \text { min }] \end{array}\right.} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]
1	7.03	1183485.7777	75496.7122	50.13	50.13
2	19.85	1177501.3369	16144.4718	49.87	49.87
		2360987.1146	91641.1840	100.00	100.00

AD column, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \mathrm{oC}$

Jiaolong Zhou HPLC Report

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]	Norm. Area [\%]
1	7.06	348847.7419	22836.6238	1.93	1.93
2	18.01	17690570.7018	295245.4500	98.07	98.07
		039418.4	82.07	0.00	100.

Jiaolong Zhou HPLC Report

Jiaolong Zhou HPLC Report
zil

$\begin{aligned} & \text { Peak } \\ & \# \end{aligned}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]
1	5.98	337700.5983	$3.055 \mathrm{e}+04$	2.30	2.30
2	11.32	$1.4335 \mathrm{e}+07$	$4.420 \mathrm{e}+05$	97.70	97.70
		$1.4672 \mathrm{e}+07$	$4.725 \mathrm{e}+05$	100.00	100.00

zjl: AD, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}$

Jiaolong Zhou HPLC Report

AD column, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \circ \mathrm{C}$

Jiaolong Zhou HPLC Report

AD column, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \mathrm{oC}$

Jiaolong Zhou HPLC Report

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {[u \mathrm{~V} \text { *sec }]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]
1	10.05	9211558.9533	388126.2180	49.91	49.91
2	25.82	9245798.6013	122153.8330	50.09	50.09
		18457357.5546	510280.0510	100.00	100.00

AD column, Hexane/iPrOH 97/3, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \mathrm{oC}$

Jiaolong Zhou HPLC Report

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV} \mathrm{~V}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]
1	10.02	443391.7552	19143.4808	4.87	4.87
2	25.71	8669986.4924	114583.1057	95.13	95.13
		9113378.2475	133726.5865	0.00	100.00

Jiaolong Zhou HPLC Report

Peak \#	$\begin{aligned} & \text { Time } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{uV} \text { *sec] }} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]
1	6.50	6225211.3002	425346.6407	50.00	50.00
2	11.68	6225752.0747	179680.0487	50.00	50.00
		12450963.3749	605026.6893	100.00	100.00

AD column, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \mathrm{oC}$

Jiaolong Zhou HPLC Report

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{uV}]} \end{aligned}$	Area [\%]	Norm. Area [\%]
1	6.51	283182.4250	19889.2111	5.14	5.14
2	11.69	5227235.2142	149371.8095	94.86	94.86
		5510417.6392	169261.0206	100.00	100.00

Jiaolong Zhou HPLC Report

Peak \#	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]	Norm. Area [\%]
1	7.19	3092696.6699	191124.0123	49.94	49.94
2	19.57	3099884.5611	54935.6799	50.06	50.06
		6192581.2310	246059.6922	100.00	100.00

AD column, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \circ \mathrm{C}$

Jiaolong Zhou HPLC Report

$\stackrel{\text { Peak }}{\#}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{u} \mathrm{~V}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]
1	7.20	238571.8736	14964.6312	2.16	2.16
2	19.38	10789690.2978	184213.0722	97.84	97.84
		11028262.1714	199177.7034	100.00	100.00

AD column, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \mathrm{oC}$

Jiaolong Zhou HPLC Report

zjl: AD, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}$

AD column, Hexane/iPrOH 95/5, $0.6 \mathrm{~mL} / \mathrm{min}, 314 \mathrm{~nm}, 25 \circ \mathrm{C}$

Jiaolong Zhou HPLC Report

Peak \#	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]	Norm. Area [\%]
1	7.56	29435025.2148	2655142.3186	50.01	50.01
2	9.64	29424222.6066	1834432.8502	49.99	49.99
		58859247.8214	4489575.1688	100.00	100.00

Warning -- Signal level out-of-range in peak

Jiaolong Zhou HPLC Report

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]	Norm. Area [\%]
1	7.59	11953859.2233	1104391.9837	94.58	94.58
2	9.71	685537.9996	44769.3137	5.42	5.42
		12639397.2229	1149161.2974	100.00	100.00

Jiaolong Zhou HPLC Report

Peak \#	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]	Norm. Area [\%]	Area/Height [s]	Absorbance Ratio
1	10.65	1419783.5621	68677.1863	49.90	49.90	20.6733	----------
2	11.76	1425412.9965	59362.0071	50.10	50.10	24.0122	----------
		2845196.5586	128039.1935	100.00	100.00		0.0000

AD column, Hexane/iProH 98/2, $0.4 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 25 \circ \mathrm{C}$

Jiaolong Zhou HPLC Report

Peak \#	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]	Norm. Area [\%]
1	10.61	904455.4561	41689.5039	4.89	4.89
2	11.73	17583418.2491	685118.1619	95.11	95.11
		18487873.7052	726807.6658	100.00	100.00

Description : AD-H; 320 nm ; Flow $=0.7 \mathrm{~mL} / \mathrm{min} ;$ i-PrOH $/$ Hexane $=7 / 93$

<Chromatogram>

PeakTable
Detector A Ch1 320 nm

Peak $\#$	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	5.281	2495681	163981	50.073	62.599
2	8.172	2488419	97973	49.927	37.401
Total		4984100	261953	100.000	100.000

Description : AD-H; 320 nm ; Flow $=0.7 \mathrm{~mL} / \mathrm{min} ;$ i-PrOH $/$ Hexane $=7 / 93$
<Chromatogram>

PeakTable
Detector A Ch1 320nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	5.270	471322	31900	9.684	17.268
2	8.026	4395945	152833	90.316	82.732
Total		4867267	184733	100.000	100.000

Description : AD-H; 320 nm ; Flow $=0.7 \mathrm{~mL} / \mathrm{min} ; \mathrm{i}-\mathrm{PrOH} /$ Hexane $=5 / 95$
<Chromatogram>

Description : AD-H; 320 nm ; Flow $=0.7 \mathrm{~mL} / \mathrm{min} ;$ i-PrOH $/$ Hexane $=5 / 95$
<Chromatogram>

Det.A Ch1/320nm
PeakTable

Detector A Chl 320nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	5.233	488845	26950	10.818	19.444
2	8.432	4029913	111650	89.182	80.556
Total		4518759	138600	100.000	100.000

