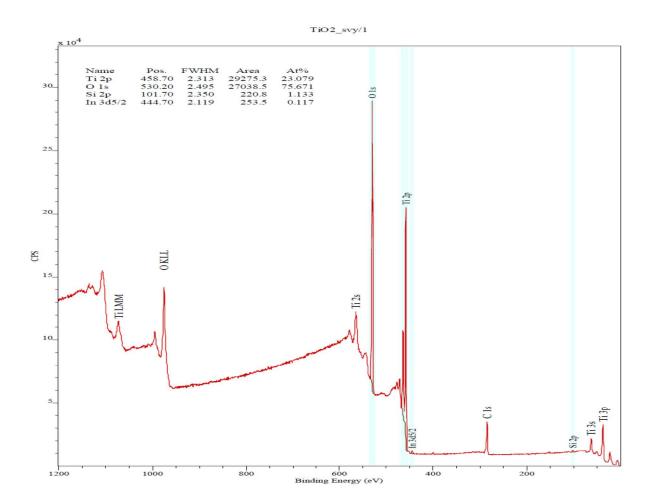
The adhesion of mussel foot protein-3 to TiO₂ surfaces: the effect of pH

Jing Yu^{1*}, Wei Wei^{2*}, Matthew S. Menyo³, Admir Masic⁴, J. Herbert Waite^{2,5}


and Jacob N. Israelachvili^{1,2};

¹Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
²Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.
³Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA

⁴Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, 14424 Potsdam-Golm, Germany

⁵Department of Molecular, Cell & Developmental Biology, University of California, Santa Barbara, California 93106, USA.

Supporting information

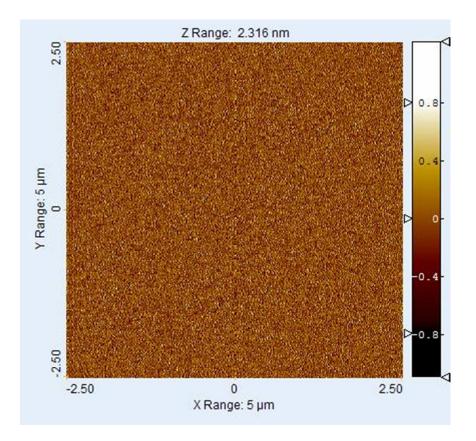


Figure S1. XPS spectra of a TiO_2 layer (10 nm thick) deposited on a mica surface.

Figure S2. Tapping model image (5 μ m × 5 μ m) of the surface profile of a 10 nm thick TiO₂ layer deposited on a molecularly smooth mica substrate. The RMS roughness of the TiO₂ surface is ~ 1nm. The RMS roughness of mica is 0.1 nm.

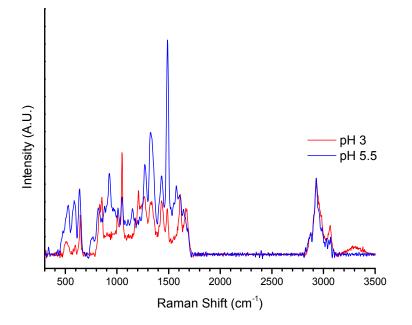


Figure S3. Complete Raman spectra showing normalization to C-H region from 2800-3000 cm⁻¹.

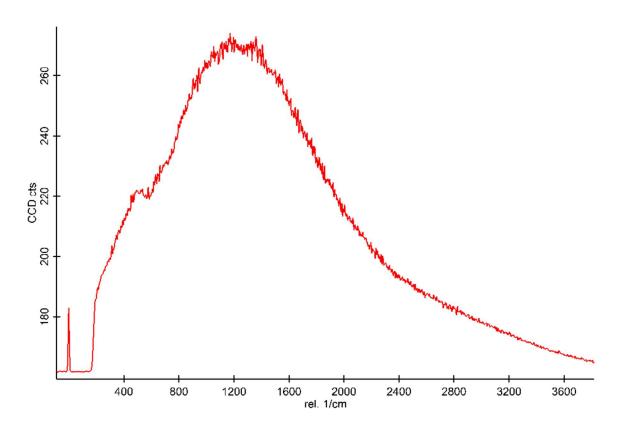


Figure S4. Very strong fluorescence was observed for at the pH=7.5, indicating possible oxidation processes.

Calculation of the binding energy of Dopa to TiO₂

Mfp-3 adsorption was done by putting a droplet of 10-15 μ L mfp-3 solution (Conc. 5 μ g/ml) one TiO₂ surface. The proteins were allowed to adsorb for 20 min followed by rinsing thoroughly with buffer. Assuming full adsorption of mfp-3 gives 1.07×10^{-11} mole of mfp-3 adsorbed on the TiO₂ surface with a Dopa density of 5.4×10^{-7} /m². The strongest adhesion energy measured by SFA is about 6.6 mJ/m². Although the actual adsorption efficiency of Dopa to each mica surface is unknown, the maximum possible would be 50% - half on each of two surfaces. This provides a lower energy estimation for the Dopa-TiO₂ interaction and leads to a Dopa-TiO₂ binding energy of ~ 12 kJ/mol or 4.9 *k*_BT per bond (T = 298K), which is an order of magnitude larger than the Dopa-mica binding energy (~ 0.9 kJ/mol).