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Detailed Proof of the Solutions to the tICA Problem

Recall that the first solution to the tICA problem is found by solving the maximization problem

shown below.
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We solve this using the same strategy used in a classical proof of the PCA problem, which is to use

Lagrange multipliers.
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First we set up the Lagrangian:
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Next we differentiate with respect to |a
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i and l
0

yielding a system of two equations:
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The solution to this system is an eigenvector of the generalized eigenvalue problem in Eq. (5) such

that it has unit variance.
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Now that we have the slowest component, we wish to find the next slowest component, |a
1

i,

such that it is uncorrelated with the first. This can be written as another maximization problem but

with an additional constraint:
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ha
1

|S|a
1

i= 1

ha
1

|S|a
0

i= 0

We can again solve this with the method of Lagrange multipliers. First we set up the Lagrangian:
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Taking derivatives with respect to |a
1

i, l
1

, and f
1

produces a system of three equations:
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Now we multiply Eq. (8) by ha
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| on the left to get:
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Now using Eq. (5), we can solve this equation for f
1

. First notice that:

ha
0

|C(Dt)|a
1

i= ha
1

|C(Dt)|a
0

i

= ha
1

|l
0

S|a
0

i

= l
0

ha
1

|S|a
0

i

= l
0

(0)

= 0

3



Plugging this result into Eq. (11) we find that:
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And then we can see that Eq. (8) becomes:
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Now, we finally consider the case that we have k solutions {|a
i

i}k�1

i=0

, and wish to find the next

solution |a
k

i. Again we set up a maximization problem but with more constraints:
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We can setup the Lagrangian as before:
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Again we can differentiate with respect to a
k

, l
k

, and all f
i

’s. This results in a system of k+ 2

equations:
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Now for each previous solution, {|a
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, we first multiply Eq. (16) by |a
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Now it is obvious to see that Eq. (19) can be simplified and become:
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Again, we see that Eq. (16) can be re-written and we find the next solution |a
k

i satisfies:
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Finally, we see that all solutions to the tICA problem satisfy the same generalized eigenvalue

problem:

C

(Dt)|ai= lS|ai (22)

Selection of Tunable Parameters for tICA

The tICA metric requires the use of two tunable parameters. The first is the correlation lag time,

Dt, used in calculating the cross-correlation matrix, C

(Dt)
. We have used a value of 200 ns above,

but we believe the analysis is fairly robust to the choice of Dt. We found that using 100 or 500 ns

also led to similar models (Fig. 1). We chose Dt = 200 ns because the folding timescale remained

as slow as the 100 ns model, but the faster timescales were flatter and slower than the 100 ns model.

In contrast to the correlation lag time, we found that the tICA method was less robust to choices of

the number of tICs to project onto. We found that using too few tICs produced poor models that

could only capture the folding timescale, while using too many tICs produced models that were

simply too fast. This behavior can be explained by realizing that adding extra, faster tICs includes

more degrees of freedom into the distance calculation, however if these degrees of freedom do not

decorrelate slowly, then we are essentially adding noise into our state decomposition, which can
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Figure 1: The tICA metric applied to MSM construction is fairly robust to choices of Dt. Models

built using 100, 200, and 500 ns for Dt showed very similar timescales.

produce artificially fast processes. For this system, as well as several other, unpublished protein

folding systems we found that using between five and seven degrees of freedom produced similar

MSMs.

Figure 2: Models built with five or six tICs had very similar timescales, whereas including more

tICs produced an MSM that was too fast. Using even fewer tICs (not depicted) resulted in a similar

plot but with one faster µs timescale removed. Notice that the N = 10 model has slower timescales

in the sub-microsecond regime, suggesting that picking a larger N makes your model better able to

predict the faster motions, but at the expense of the slower eigenvectors. Although, it is important

to note, that the timescales are just subtly different, suggesting that the method is at least somewhat

robust to choices of N.

Folding Timescales in the MSM Comparison

The folding timescale in the tICA MSM is significantly slower than those produced by building

MSMs with PCA or the contact map approach. As has been shown by Djurdjevac et al.,

2

slower

timescales indicate a reduced discretization error. This is even more apparent when the timescales

are plotted in a linear scale.
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Figure 3: The folding timescale of the tICA MSM is significantly slower than MSMs built using

the PCA and contact map (CM) approaches with the same number of states. The folding timescales

increase linearly, which is a generally observed phenomenon in most MSMs built on “real” data.
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