Supporting Information

Chemical Management for Colourful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells

Jun Hong Noh, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok

Experimental Section

Solar cell fabrication. A 60-nm-thick dense blocking TiO₂ (bl-TiO₂) was deposited onto a Fdoped SnO₂ (FTO, Pilkington, TEC8) substrate by a spray pyrolysis deposition with a 20 mM titanium diisopropoxide bis(acetylacetonate) (Aldrich) solution at 450 °C to prevent direct contact between FTO and the hole-conducting layer. A 600-nm-thick mesoporous TiO₂ (mp-TiO₂) films were screen-printed onto the bl-TiO₂/FTO substrate using the paste, which was prepared according to a reported method,¹ and the films were calcined at 500 °C for 1 h to remove the organic part. The films were then immersed in a 40 mM TiCl₄ aqueous solution at 60 °C for 1 h and then were heat-treated at 500 °C for 30 min to improve interfacial contact with the nanocrystalline TiO₂. CH₃NH₃I and CH₃NH₃Br were synthesized from 30 mL hydroiodic acid (57% in water, Aldrich) or 44 mL hydrobromide acid (48% in water, Aldrich), respectively, by reacting 27.86 mL methylamine (40% in methanol, Junsei Chemical Co., Ltd.) in a 250-mL round-bottomed flask at 0 °C for 2 h with stirring. The precipitates were recovered by evaporation at 50 °C for 1 h. The products were dissolved in ethanol, recrystallized from diethyl ether, and finally dried at 60 °C in a vacuum oven for 24 h. The CH₃NH₃PbI₃ solution of 40 wt% was made by reacting the synthesized CH₃NH₃I powder and PbI₂ (Aldrich) at a 1:1 mol ratio in γ-butyrolactone at 60 °C for 12 h. The CH₃NH₃PbBr₃ solution of 28.5 wt% was made by reacting the synthesized CH₃NH₃Br powder and PbBr₂ (Aldrich) at a 1:1 mol ratio in dimethylformamide at 60 °C for 12 h. The desired $CH_3NH_3Pb(I_{1-x}Br_x)_3$ solutions were made by stoichiometric mixing of synthesized

CH₃NH₃PbI₃ and CH₃NH₃PbBr₃ solutions at 60 °C for 1 h. The CH₃NH₃Pb(I_{1-x}Br_x)₃ solution was then coated onto the mp-TiO₂/bl-TiO₂/FTO substrate by consecutive spin coating at 2000 rpm for 60 s and at 3000 rpm for 60 s and then dried on a hot plate at 100 °C for 5 min. A poly-triarylamine (PTAA) (EM index, Mw = 17,500 g/mol)/toluene (15 mg/1ml) solution with an additive of 13.6 µl Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)/acetonitrile (28.3 mg/1 ml) and 6.8 µl 4-*tert*-butylpyridine (TBP) was spin-coated on CH₃NH₃PbI₃/mp-TiO₂/bl-TiO₂/FTO substrate at 3000 rpm for 30 s. Finally, an Au counterelectrode was deposited by thermal evaporation. The active area was fixed at 0.16 cm².

Materials characterization. The morphology of the mp-TiO₂/CH₃NH₃PbI₃ bilayer nanocomposites was observed with a field-emission scanning electron microscopy (FESEM, Tescan Mira 3 LMU FEG). The structure analysis of CH₃NH₃Pb(I_{1-x}Br_x)₃ deposited on mp-TiO₂ was conducted by X-ray diffraction (XRD, Rigaku D/Max II X-ray diffractometer) using Cu K α radiation (λ =0.1542 nm). The absorption spectra of the mp-TiO₂/CH₃NH₃PbI₃ bilayer nanocomposites were measured using a UV-Vis spectrometer (Hitachi U-3300) with an integrated sphere.

Device characterization. The IPCE was measured by a power source (Newport 300W Xenon lamp, 66920) with a monochromator (Newport Cornerstone 260) and a multimeter (Keithley 2001). The current density-voltage (*J-V*) curves were measured by a solar simulator (Newport, Oriel Class A, 91195A) with a source meter (Keithley 2420) at 100 mA cm⁻² illumination AM 1.5G and a calibrated Si-reference cell certificated by NREL. The *J-V* curves of all devices were measured by masking the active area with a metal mask of 0.096 cm².

Reference

Chang, J. A.; Rhee, J. H.; Im, S. H.; Lee, Y. H.; Kim, H.; Seok, S. I.; Nazeeruddin, Md. K.; Grätzel, M. *Nano Lett.* **2010**, *10*, 2609–2612.

Figure S1. XRD patterns of MAPbI₃ (black line) and MAPbBr₃ (red line) deposited on mp-TiO₂/FTO glass substrate. (*hkl*)t and Br(*hkl*)c indicate diffraction peak for (*hkl*) plane of tetragonal MAPbI₃ and cubic MAPbBr₃, respectively.

Figure S2. XRD patterns of MAPb($I_{1-x}Br_x$)₃ (x = 0, 0.06, and 0.20) deposited on mp-

TiO₂/FTO glass substrate after exposure to 55% humidity for 1 day. The peak around 12.5° at x=0 and 0.06 appeared after the exposure which is indexed by (001) peak of PbI₂. I(*hkl*) and Br(*hkl*) indicate diffraction peak for (*hkl*) plane of MAPbI₃ and MAPbBr₃, respectively.

Figure S3. The relationship between reciprocal series resistance and short circuit current density (J_{sc}) for the cells fabricated from MAPbI₃ and MAPb $(I_{0.9}Br_{0.1})_3$ as light harvesters. Jsc was obtained as a function of light intensity.