Carbamoyl Anion Addition to *N*-Sulfinylimines: Highly Diastereoselective Synthesis of α-Amino Amides

Jonathan T. Reeves,* Zhulin Tan, Melissa A. Herbage, Zhengxu S. Han, Maurice A. Marsini, Zhibin Li, Guisheng Li, Yibo Xu, Keith R. Fandrick, Nina C. Gonnella, Scot Campbell, Shengli Ma, Nelu Grinberg, Heewon Lee, Bruce Z. Lu, and Chris H. Senanayake

Chemical Development and Analytical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road/P.O. Box 368, Ridgefield, Connecticut 06877-0368, USA

jonathan.reeves@boehringer-ingelheim.com

Supporting Information

General	1
Procedures and data for N-sulfinylimines	3
Procedures and data for α -aminoamides	15
Procedures and data for ester synthesis	
Procedure and data for diamine synthesis	29
Procedures and data for dipeptide synthesis	
Synthesis of ¹³ C-labeled DIPF and low	
temperature ¹³ C NMR experiment	31
Computational modeling studies	32
HPLC spectra of crude α-aminoamides	
Chiral HPLC spectrum of 3	
¹ H and ¹³ C NMR spectra of all compounds	

General. All starting materials and reagents were purchased from commercial sources and used as received unless otherwise noted. (*R*)- and (*S*)-tert-butanesulfinamide (>99% ee) and (*R*)-2,4,6-triisopropylphenylsulfinamide (>99% ee) were purchased from AstaTech, Inc. Melting points are uncorrected. Optical rotations were measured on a Perkin-Elmer polarimeter. NMR spectra were recorded on Bruker 400 or 500 MHz instruments. All ¹H and ¹³C NMR data were referenced to the internal deuterated solvent relative to TMS at 0 ppm. High resolution mass spectroscopy (HRMS) was performed on a TOF instrument with ESI in positive ionization mode. Flash chromatography was performed on a Combi-Flash automated system with silica columns. HPLC analysis for reaction monitoring and diastereoselectivity determination was performed on an Agilent

1100 LC system with one of the following three methods (the method used is listed in the experimental part for each addition product): **Method A:** TSK-gel SuperODS column (ID 4.6mm, length 5.0cm), detection at 220 nm, run time 5 min, mobile phase A = water with 0.2% TFA, mobile phase B = MeCN with 0.2% TFA, ramp from 10% B to 90% B in 3.5 min, hold at 90% B until 5 min, column temperature 25 °C; **Method B:** SB Phenyl column (ID 4.6mm, length 10.0cm), detection at 220 nm, run time 30 min, mobile phase A = water with 0.2% H₃PO₄, mobile phase B = MeOH, ramp from 65 to 75% B in 14 min, ramp from 75% B to 85% B from 14 to 25 min, ramp from 85% B to 90% B from 25 to 30 min, column temperature 25 °C; **Method C:** Chiralpak AD-3 column (ID 4.6mm, length 15.0cm), detection at 220 nm, run time 6.0 min, isocratic 65/35 heptane/isopropanol, column temperature 35 °C. Chiral HPLC analysis of **3** was performed using the following method: Chiralpak AD-3 column (ID 4.6mm, length 15.0cm), detection at 230 nm, run time 8.5 min, isocratic 94/6 heptane/isopropanol, column temperature 25 °C.

4,4-Dimethyl-1-phenylpent-1-yn-3-one, the ketone used to prepare TBS ketimine **32**, was prepared by the procedure of Kim and co-workers (ZnBr₂ mediated coupling of trimethylacetyl chloride with phenylacetylene).¹

Sulfinyl aldimines were prepared by the $Ti(OEt)_4$ procedure of Ellman and coworkers, with some modifications in the workup.² Instead of adding the reaction mixtures to brine, the reaction mixtures were diluted with EtOAc and treated with a small amount of water to effect controlled formation of TiO_2 . This procedure allowed the subsequent filtration of TiO_2 to proceed more quickly. Sulfinyl ketimines were prepared by a modified procedure, using neat $Ti(OEt)_4$ (no co-solvent). This resulted in much faster reactions than when a co-solvent was used.

Stereochemistry Assignments. The stereochemistry of aldimine addition product **2b** was assigned from X-ray crystal structure determination. The stereochemistry of aldimine addition product **2a** was determined by comparision of the chiral HPLC of **3** obtained by deprotection of its *tert*-butanesulfinyl group with **3** obtained by deprotection of the 2,4,6-triisopropylphenylsulfinyl group of **2b**. Both **2a** and **2b** gave the same (S)-enantiomer of **3** after sulfinyl deprotection. All the other aldimine addition products in Table 1 were inferred to have the same relative stereochemistry based on the assignments of **2a** and **2b**. The stereochemistry of ketimine addition product **21** was assigned from X-ray crystal structure determination. All the other ketimine addition products in Table 2 were inferred to have the same relative stereochemistry based on the assignment of **21**. The stereochemistry of dipeptide **42** was assigned by X-ray crystal structure determination.

Diastereoselectivity Determination. The reaction diastereoselectivity was determined from the crude reaction mixture by HPLC analysis. Authentic mixtures of diastereomers were prepared from the purified product by the procedure of Ellman and co-workers.³ In the case of ketimine derived substrates **21**, **23**, **25**, **27**, **29**, **31**, and **33**, this procedure was not effective for generating the diastereomeric mixture (sulfinyl deprotection occurred, but re-sulfinylation did not occur on addition of Et₃N, likely due to the sterically hindered nature of these amines). For these substrates, after sulfinyl

¹ Lee, K. Y.; Lee, M. J.; Kim, J. N. Tetrahedron **2005**, *61*, 8705.

² Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.

³ Brak, K.; Barrett, K. T.; Ellman, J. A. J. Org. Chem. **1999**, 74, 3606.

deprotection was complete, excess commercially available racemic *tert*-butanesulfinyl chloride (10-20 equiv) was added followed by Et₃N (20-40 equiv). For TIPPS ketimine addition product **35**, authentic diastereomer preparation was not possible, and the reaction diastereoselectivity was estimated as >97:3 by ¹H NMR analysis of the crude reaction mixture (the minor diastereomer was not detected). Likewise, in the formation of dipeptide **42**, the diastereoselectivity of the addition reaction was estimated as >97:3 by ¹H NMR analysis of the crude reaction mixture (the minor diastereomer was not detected).

Procedures and data for N-sulfinylimines.

(*R*)-*N*-(2,2-Dimethylpropylidene)-2-methylpropane-2-sulfinamide (1a). To a flask containing (R)-tert-butanesulfinamide (5.00 g, 41.3 mmol, 1.0 equiv) and THF (17 mL) was added trimethylacetaldehyde (5.38 mL, 49.5 mmol, 1.2 equiv) followed by Ti(OEt)₄ (17.3 mL, 82.5 mmol, 2.0 equiv). The reaction mixture was stirred at rt for 5 h, and then diluted with MTBE (150 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with MTBE (50 mL), and the filtrate was washed with water (3 x 100 mL), dried (Na₂SO₄), filtered, and concentrated to an oil. The oil was further dried under vacuum to give the product (5.70 g, 73% yield) as an oil which crystallized on standing to a white solid. mp 37-39 °C; $[\alpha]_D^{20}$ –267.0 (*c* 3.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1 H), 1.19 (s, 9 H), 1.16 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 56.5, 37.9, 26.7, 22.3; HRMS: calcd for C₉H₂₀NOS [M + H]: 190.1260. Found: 190.1261.

(*R*)-*N*-(2,2-Dimethylpropylidene)-2,4,6-triisopropylbenzenesulfinamide (1b). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (10.00 g, 37.4 mmol, 1.0 equiv) and THF (31 mL) was added trimethylacetaldehyde (10.0 mL, 92.1 mmol, 2.5 equiv) followed by Ti(OEt)₄ (31.0 mL, 149.6 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 16 h, and then diluted with EtOAc (300 mL). Water (10.0 mL) was added

dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated to an oil. The oil was chased with MeOH, and subsequent crystallization from MeOH at 0 °C gave the pure product (10.65 g, 85% yield) as an off-white solid. mp 89-90 °C; $[\alpha]_D^{20}$ –208.0 (c 3.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1 H), 7.07 (s, 2 H), 3.78-3.68 (m, 2 H), 2.93-2.83 (m, 1 H), 1.27-1.21 (m, 18 H), 1.16 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 152.5, 149.6, 134.7, 122.9, 37.9, 34.4, 27.8, 26.4, 24.5, 24.1, 23.8, 23.7; HRMS: calcd for C₂₀H₃₄NOS [M + H]: 336.2356. Found: 336.2354.

$$Me_2N$$
 H
 (R) -TBSA
 Me_2N
 Me_2N
 Me_2N
 Me_2N
 Me_2N
 Me_2N
 Me_2N

(R)-N-(3-(Dimethylamino)-2,2-dimethylpropylidene)-2-methylpropane-2-sulfin-

amide (**6a**). To a flask containing (R)-tert-butanesulfinamide (4.69 g, 38.7 mmol, 1.0 equiv) and THF (16 mL) was added 3-(dimethylamino)-2,2-dimethylpropanal (5.00 g, 38.7 mmol, 1.0 equiv) followed by Ti(OEt)₄ (16.2 mL, 77.4 mmol, 2.0 equiv). The reaction mixture was stirred at rt for 16 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (3 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (10 to 70% EtOAc/hexanes) to give the pure product (4.34 g, 48% yield) as a yellow oil. $[\alpha]_D^{20}$ –213.6 (*c* 6.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1 H), 2.48 (d, J = 13.4 Hz, 1 H), 2.40 (d, J = 13.4 Hz, 1 H), 2.25 (s, 6 H), 1.20 (s, 9 H), 1.15 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 68.8, 56.6, 48.0, 43.1, 23.6, 23.3, 22.3; HRMS: calcd for C₁₁H₂₅N₂OS [M + H]: 233.1682. Found: 233.1677.

(*R*)-*N*-(3-(Dimethylamino)-2,2-dimethylpropylidene)-2,4,6-triisopropylbenzene-sulfinamide (6b). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (5.00 g, 18.7 mmol, 1.0 equiv) and THF (15 mL) was added 3-(dimethylamino)-2,2-dimethylpropanal (3.62 g, 28.0 mmol, 1.5 equiv) followed by Ti(OEt)₄ (15.5 mL, 74.8

mmol, 4.0 equiv). The reaction mixture was stirred at rt for 16 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (20 to 40% MTBE/hexanes) to give the pure product (4.75 g, 67% yield) as a yellow oil. $[\alpha]_D^{20}$ –71.5 (*c* 4.49, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1 H), 7.07 (s, 2 H), 3.78-3.68 (m, 2 H), 2.93-2.83 (m, 1 H), 2.44 (d, *J* = 1.8 Hz, 2 H), 2.25 (s, 6 H), 1.27-1.22 (m, 18 H), 1.16 (s, 3 H), 1.13 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 152.5, 149.6, 134.8, 122.8, 68.8, 48.2, 43.0, 34.4, 27.9, 24.6, 24.0, 23.8, 23.7, 23.6, 22.7; HRMS: calcd for C₂₂H₃₉N₂OS [M + H]: 379.2778. Found: 379.2779.

(*R*)-*N*-(Cyclohexylmethylene)-2,4,6-triisopropylbenzenesulfinamide (8). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (5.00 g, 18.7 mmol, 1.0 equiv) and THF (15 mL) was added cyclohexanecarbaldehyde (4.53 mL, 37.4 mmol, 2.0 equiv) followed by Ti(OEt)₄ (15.5 mL, 74.8 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 16 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (5% MTBE/hexanes) to give the pure product (5.02 g, 74% yield) as a white solid. mp 80-83 °C; $[\alpha]_D^{20}$ –156.4 (*c* 4.32, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 5.0 Hz, 1 H), 7.06 (s, 2 H), 3.79-3.69 (m, 2 H), 2.92-2.82 (m, 1 H), 2.51-2.39 (m, 1 H), 1.94-1.65 (m, 5 H), 1.40-1.28 (m, 4 H), 1.27-1.21 (m, 18 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 152.6, 149.7, 134.6, 122.9, 44.2, 34.4, 29.2, 29.0, 27.8, 25.8, 25.35, 25.33, 24.5, 24.0, 23.8, 23.7; HRMS: calcd for C₂₂H₃₆NOS [M + H]: 362.2512. Found: 362.2512.

(*R*)-2,4,6-Triisopropyl-*N*-(3-phenylpropylidene)benzenesulfinamide (10). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (5.48 g, 20.5 mmol, 1.0 equiv) and THF (17 mL) was added hydrocinnamaldehyde (3.00 mL, 20.5 mmol, 90.0 wt.%, 1.0 equiv) followed by Ti(OEt)₄ (17.0 mL, 82.0 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 1 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (5 to 20% MTBE/hexanes) to give the pure product (5.44 g, 69% yield) as a thick yellow oil. [α]_D²⁰ –140.6 (*c* 5.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (t, *J* = 4.6 Hz, 1 H), 7.28-7.24 (m, 2 H), 7.20-7.16 (m, 3 H), 7.07 (s, 2 H), 3.81-3.71 (m, 2 H), 2.97-2.80 (m, 5 H), 1.27-1.20 (m, 18 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 152.9, 149.7, 140.5, 134.5, 128.6, 128.4, 126.4, 123.0, 38.0, 34.5, 31.5, 27.9, 24.5, 23.9, 23.82, 23.79; HRMS: calcd for C₂₄H₃₄NOS [M + H]: 384.2356. Found: 384.2346.

O H
$$\frac{(R)-TBSA}{Ti(OEt)_4, THF, rt}$$
 O 12a

(R)-N-((2,3-Dihydrobenzo[b][1,4]dioxin-6-vl)methylene)-2-methylpropane-2-

sulfinamide (12a). To a flask containing (*R*)-*tert*-butanesulfinamide (3.18 g, 26.25 mmol, 1.05 equiv) and 2,3-dihydrobenzo[b][1,4]dioxine-6-carbaldehyde (4.19 g, 25.0 mmol, 1.0 equiv) was added THF (80 mL) followed by Ti(OEt)₄ (15.6 mL, 75.0 mmol, 3.0 equiv). The reaction mixture was stirred at rt for 16 h, and then poured into ice-cold brine. The resultant slurry was filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water, dried (MgSO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (10 to 60% EtOAc/hexanes) to give the pure product (3.85 g, 58% yield) as an off-white solid. mp 73-74.5 °C; $[\alpha]_D^{20}$ –22.2 (*c* 3.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1 H), 7.40 (br, 1 H), 7.35-7.33 (m, 1 H), 6.93 (d, *J* = 8.3 Hz, 1 H), 4.33-4.27 (m, 4 H), 1.24 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 147.5, 143.8, 128.1, 123.7, 117.8, 117.7, 64.7, 64.1, 57.6, 22.6; HRMS: calcd for C₁₃H₁₈NO₃S [M + H]: 268.1002. Found: 268.0998.

(R)-N-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methylene)-2,4,6-triisopropylbenzene**sulfinamide** (12b). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (3.26)g, 12.2 mmol, 1.0 equiv) and THF (10 mL) was added 2,3-dihydrobenzo[b][1,4]dioxine-6-carbaldehyde (2.00 g, 12.2 mmol, 1.0 equiv) followed by Ti(OEt)₄ (10.1 mL, 48.7 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 2 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by crystallization from MeCN with a few drops of water to give the pure product (4.59 g, 91% yield) as a white solid. mp 135-136 °C; $[\alpha]_D^{20}$ +7.8 (c 2.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1 H), 7.39-7.38 (m, 1 H), 7.34 (dd, J = 8.4, 1.9 Hz, 1 H), 7.08 (s, 2 H), 6.91 (d, J = 8.4 Hz, 1 H), 4.30-4.24 (m, 4 H), 3.91-3.81 (m, 2 H), 2.93-2.83 (m, 1 H), 1.28 (d, J = 6.8 Hz, 6 H), 1.24 (d, J = 7.0 Hz, 6 H), 1.15 (d, J = 6.9 Hz, 6 H); 13 C NMR (100 MHz, CDCl₃) δ 160.3, 152.7, 149.7, 147.5, 143.9, 135.0, 128.4, 123.5, 122.9, 118.0, 117.7, 64.6, 64.1, 34.4, 27.9, 24.4, 24.1, 23.79, 23.76; HRMS: calcd for $C_{24}H_{32}NO_3S [M + H]: 413.2020$. Found: 413.2024.

(*R*)-*N*-(4-Bromobenzylidene)-2,4,6-triisopropylbenzenesulfinamide (14). To a flask containing (*R*)-2,4,6-triisopropylbenzenesulfinamide (5.00 g, 18.7 mmol, 1.0 equiv) and THF (15 mL) was added 4-bromobenzaldehyde (3.46 g, 18.7 mmol, 1.0 equiv) followed by Ti(OEt)₄ (15.5 mL, 74.8 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 2 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was

washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by crystallization from MeOH with a few drops of water to give the pure product (5.86 g, 72% yield) as a white solid. mp 140-142 °C; $[\alpha]_D^{20}$ –2.1 (c 5.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1 H), 7.72-7.70 (m, 2 H), 7.59-7.57 (m, 2 H), 7.09 (s, 2 H), 3.88-3.78 (m, 2 H), 2.94-2.84 (m, 1 H), 1.29 (d, J = 6.8 Hz, 6 H), 1.24 (d, J = 6.9 Hz, 6 H), 1.14 (d, J = 6.8 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 152.9, 149.8, 134.4, 133.2, 132.3, 130.7, 127.2, 123.0, 34.4, 28.0, 24.4, 24.0, 23.79, 23.76; HRMS: calcd for $C_{22}H_{29}BrNOS$ [M + H]: 434.1148. Found: 434.1151.

(R)-N-((9-Ethyl-9H-carbazol-2-yl)methylene)-2,4,6-triisopropylbenzenesulfinamide

(16). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (3.59 g, 13.4 mmol, 1.0 equiv) and THF (11 mL) was added 9-ethyl-9H-carbazole-2-carbaldehyde (3.00 g, 13.4 mmol, 1.0 equiv) followed by Ti(OEt)₄ (11.1 mL, 53.7 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 18 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by crystallization from heptane to give the pure product (4.95 g, 78% yield) as a white solid. mp 158-160 °C; $[\alpha]_D^{20}$ +45.2 (c 2.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.99 (s, 1 H), 8.57 (s, 1 H), 8.11 (d, J = 7.6 Hz, 1 H), 7.98 (d, J = 7.6 Hz, 1 H), 7.51-7.47 (m, 1 H), 7.42-7.39 (m, 2 H), 7.28-7.23 (m, 1 H), 7.10 (s, 2 H), 4.37-4.32 (m, 2 H), 3.99-3.92 (m, 2 H), 2.93-2.85 (m, 1 H), 1.43 (t, J = 7.2 Hz, 3 H), 1.33 (d, J = 6.5 Hz, 6 H), 1.25 (d, J = 6.8 Hz, 6 H), 1.17 (d, J = 6.8 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 152.6, 149.8, 142.5, 140.6, 135.5, 127.3, 126.5, 126.0, 123.3, 123.0, 122.8, 120.9, 120.0, 109.0, 108.7, 37.9, 34.5, 28.0, 24.4, 24.3, 23.84, 23.81, 13.9; HRMS: calcd for $C_{30}H_{37}N_2OS$ [M + H]: 473.2621. Found: 473.2609.

(R)-2,4,6-Triisopropyl-N-(pyridin-2-ylmethylene)benzenesulfinamide (18). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (5.62 g, 21.0 mmol, 1.0 equiv) and THF (17 mL) was added pyridine-2-carbaldehyde (2.00 mL, 21.0 mmol, 1.0 equiv) followed by Ti(OEt)₄ (17.4 mL, 84.1 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 18 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by by flash column chromatography on SiO₂ (30 to 50% MTBE/hexanes) to give the pure product (3.92 g, 52% yield) as an offwhite solid. mp 133-136 °C; $[\alpha]_D^{20}$ –59.4 (c 3.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1 H), 8.75-8.73 (m, 1 H), 8.01 (d, J = 8.0 Hz, 1 H), 7.79-7.75 (m, 1 H), 7.39-7.36 (m, 1 H), 7.09 (s, 2 H), 3.92-3.82 (m, 2 H), 2.94-2.84 (m, 1 H), 1.29 (d, <math>J = 6.6 Hz, 6 H),1.24 (d, J = 7.1 Hz, 6 H), 1.15 (d, J = 6.9 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 153.0, 152.7, 150.2, 149.9, 136.8, 134.3, 125.8, 123.2, 123.0, 34.4, 28.0, 24.3, 24.0, 23.8, 23.7; HRMS: calcd for $C_{21}H_{29}N_2OS[M + H]$: 357.1995. Found: 357.1997.

(S)-N-(2,2-Dimethyl-1-phenylpropylidene)-2-methylpropane-2-sulfinamide (20). To a flask containing (S)-tert-butanesulfinamide (7.47 g, 61.6 mmol, 2.00 equiv) and 2,2-dimethyl-1-phenylpropan-1-one (5.00 g, 30.8 mmol, 1.0 equiv) was added Ti(OEt)₄ (51.7 mL, 246.6 mmol, 8.0 equiv). The reaction mixture was stirred at 85 °C for 21 h, and then poured into EtOAc (400 mL). Water (25 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 200 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (10 to 50% EtOAc/hexanes) to give the pure product (5.62 g, 69% yield) as an off-white solid. mp 80-81.5 °C; $[\alpha]_D^{20}$ +129.6 (c 5.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.36 (m, 3 H), 7.11-7.06 (m, 2 H), 1.23 (s, 9 H), 1.19 (s, 9 H);

 13 C NMR (100 MHz, CDCl₃) δ 192.5, 136.9, 128.3, 127.7, 126.5, 55.7, 42.5, 28.0, 22.0; HRMS: calcd for $C_{15}H_{24}NOS$ [M + H]: 266.1573. Found: 266.1577.

4-Fluorophenyl 1-adamantyl ketone. To a flask containing CuCl (498 mg, 5.03 mmol, 0.10 equiv), 1-adamantanecarbonyl chloride (10.0 g, 50.3 mmol, 1.0 equiv) and THF (100 mL) cooled to -45 °C was added dropwise 4-fluorophenylmagnesium bromide (50.3 mL, 50.3 mmol, 1.0 M in THF, 1.0 equiv). After the addition was complete, the reaction mixture was stirred for 30 min with warming to -10 °C. The reaction mixture was then quenched with saturated aqueous NH₄Cl solution and extracted with MTBE. The organic phase was dried (MgSO₄), filtered, and concentrated. The crude product was crystallized from MeOH to give the pure product (8.12 g, 63% yield) as a white solid. mp 77-78 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.62 (m, 2 H), 7.09-7.04 (m, 2 H), 2.11-2.06 (m, 3 H), 2.02-2.00 (m, 6 H), 1.81-1.70 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 163.9 (d, J = 250 Hz), 135.3 (d, J = 3.4 Hz), 130.0 (d, J = 8.2 Hz), 115.0 (d, J = 21.2 Hz), 46.9, 39.2, 36.5, 28.2; HRMS: calcd for C₁₇H₂₀FO [M + H]: 259.1493. Found: 259.1487.

(S)-N-(1-Adamantyl(4-fluorophenyl)methylene)-2-methylpropane-2-sulfinamide

(22). To a flask containing (S)-tert-butanesulfinamide (4.93 g, 40.6 mmol, 1.5 equiv) and 4-fluorophenyl 1-adamantyl ketone (7.00 g, 27.1 mmol, 1.0 equiv) was added Ti(OEt)₄ (45.4 mL, 216.8 mmol, 8.0 equiv). The reaction mixture was stirred at 85 °C for 24 h, and then poured into EtOAc (400 mL). Water (25 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 200 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by crystallization from isopropanol (100 mL) and water (50 mL) to give the pure product (8.22 g, 84% yield) as an off-white solid. mp 128-129 °C; $[\alpha]_D^{20}$ +100.2 (c 0.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.10-6.99 (m, 4 H), 2.07-2.01 (m, 3 H), 1.84-1.81 (m, 6 H), 1.75-1.69 (m, 3 H), 1.66-1.59 (m, 3 H), 1.20 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 162.4 (d, J = 247 Hz), 132.3 (d, J = 3.8 Hz), 128.6, 114.8 (d, J = 21.6 Hz), 56.0, 44.5, 39.6, 36.4, 28.2, 22.2; HRMS: calcd for C₂₁H₂₉FNOS [M + H]: 362.1948. Found: 362.1955.

(1-(4-Methoxyphenyl)cyclohexyl)(phenyl)methanone. A flask was charged with 1-(4-methoxyphenyl)cyclohexanecarbonitrile (10.0 g, 46.4 mmol, 1.0 equiv) and THF (30 mL), and the solution was treated at rt with PhMgBr (27.9 mL, 55.7 mmol, 2.0 M, 1.2 equiv). The reaction mixture was heated at 75 °C for 22 h. The reaction mixture was cooled to rt and 6N HCl (100 mL) was added, and the mixture was heated at 75 °C for 18 h. After cooling to rt, the mixture was extracted with hexanes, the organic phase dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (1% EtOAc/hexanes) to give the pure product (7.11 g, 52% yield) as a thick colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.30 (m, 5 H), 7.21-7.17 (m, 2 H), 6.93-6.89 (m, 2 H), 3.78 (s, 3 H), 2.49-2.46 (m, 2 H), 1.84-1.70 (m, 2 H), 1.66-1.57 (m, 3 H), 1.48-1.36 (m, 2 H), 1.30-1.19 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 158.5, 138.7, 136.1, 131.0, 128.6, 127.8, 127.4, 114.4, 55.2, 37.6, 36.1, 25.9, 23.4; HRMS: calcd for C₂₀H₂₃O₂ [M + H]: 295.1693. Found: 295.1690.

sulfinamide (**24**). To a flask containing (S)-tert-butanesulfinamide (7.41 g, 61.1 mmol, 3.0 equiv) and (1-(4-methoxyphenyl)cyclohexyl)(phenyl)methanone (6.00 g, 20.4 mmol, 1.0 equiv) was added Ti(OEt)₄ (25.6 mL, 122.2 mmol, 6.0 equiv). The reaction mixture was stirred at 85 °C for 8 h, and then poured into EtOAc (300 mL). Water (15 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 200 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by crystallization from heptane (50 mL) to give the pure product (5.33 g, 66% yield) as an off-white solid. mp 114-116 °C; $[\alpha]_D^{20}$ +61.8 (*c* 4.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.20 (m, 3 H), 7.18-7.13 (m, 2 H), 6.89-6.85 (m, 2 H), 6.57-6.42 (br, 2 H), 3.81 (s, 3 H), 2.24-2.10 (m, 2 H), 2.07-1.99 (m, 1 H), 1.95-1.88 (m, 1 H), 1.72-1.60 (m, 2 H), 1.58-1.45 (m, 3 H), 1.44-1.35 (m, 1 H), 1.24 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 158.7, 136.8, 133.7, 129.1, 128.4, 127.3, 127.0, 113.9, 55.9, 55.3, 52.5.

34.5, 34.4, 26.0, 22.9, 22.8, 22.3; HRMS: calcd for $C_{24}H_{32}NO_2S$ [M + H]: 398.2148.

Found: 398.2139.

(S)-N-((1-(4-Methoxyphenyl)cyclohexyl)(phenyl)methylene)-2-methylpropane-2-

(4-Bromophenyl)(1-methylcyclopropyl)methanone. A flask was charged with (4-bromophenyl)(cyclopropyl)methanone (5.0 g, 22.2 mmol, 1.0 equiv) and THF (50 mL), and the solution was cooled to -78 °C and treated dropwise with LHMDS (26.7 mL, 26.7 mmol, 1.0 M, 1.2 equiv). The reaction mixture was stirred at -78 °C for 10 min, and then MeI (1.94 mL, 31.1 mmol, 1.4 equiv) was added. The reaction was allowed to warm to rt and stirred for 16 h. The reaction mixture was quenched with water, extracted with hexanes, the organic phase dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (hexanes) to give the pure product (1.46 g, 28% yield) as a yellow oil. 1 H NMR (400 MHz, CDCl₃) δ 7.69-7.66 (m, 2 H), 7.59-7.55 (m, 2 H), 1.42 (s, 3 H), 1.28-1.25 (m, 2 H), 0.80-0.78 (m, 2 H); 13 C NMR (100 MHz, CDCl₃) δ 203.2, 136.3, 131.5, 129.9, 126.5, 25.4, 21.8, 15.3; HRMS: calcd for C₁₁H₁₂BrO [M + H]: 239.0066. Found: 239.0069.

(S)-N-((4-Bromophenyl)(1-methylcyclopropyl)methylene)-2-methylpropane-2-sulfinamide (26). To a flask containing (S)-tert-butanesulfinamide (2.13 g. 17.6)

sulfinamide (26). To a flask containing (S)-tert-butanesulfinamide (2.13 g, 17.6 mmol, 3.0 equiv) and (4-Bromophenyl)(1-methylcyclopropyl)methanone (1.40 g, 5.86 mmol, 1.0 equiv) was added Ti(OEt)₄ (7.29 mL, 35.1 mmol, 6.0 equiv). The reaction mixture was stirred at 85 °C for 2 h, and then poured into EtOAc (100 mL). Water (5 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 50 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (10% MTBE/hexanes) to give the pure product (1.81 g, 90% yield) as a yellow oil. [α]_D²⁰ +112.0 (c 3.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25-7.60 (br, 0.5 H), 7.51-7.49 (m, 2 H), 7.24-6.80 (br, 1.5 H), 1.38-1.08 (m, 12 H), 1.08-1.00 (m, 2 H), 0.92-0.77 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 134.7, 131.4, 128.6, 123.3, 56.1, 25.7, 22.2, 21.4, 17.0, 16.5; HRMS: calcd for C₁₅H₂₁BrNOS [M + H]: 342.0522. Found: 342.0523.

(*S*,*Z*)-2-Methyl-*N*-(2-methyl-1-phenylpropylidene)propane-2-sulfinamide (28). To a flask containing (*S*)-tert-butanesulfinamide (8.08 g, 66.7 mmol, 2.0 equiv) and isobutyrophenone (5.00 mL, 33.3 mmol, 1.0 equiv) was added Ti(OEt)₄ (28.0 mL, 133.3 mmol, 4.0 equiv). The reaction mixture was stirred at 65 °C for 24 h, and then poured into EtOAc (300 mL). Water (20 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 200 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by crystallization from heptane at 0 °C to give the pure product (3.80 g, 45% yield) as a light yellow solid. mp 32-33 °C; $[\alpha]_D^{20}$ +146.9 (*c* 5.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.38 (m, 3 H), 7.34-7.25 (br, 2 H), 3.24-2.74 (br, 1 H), 1.24-1.18 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 138.1, 129.3, 128.2, 126.7, 56.2, 40.6, 22.1, 20.1, 19.7; HRMS: calcd for C₁₄H₂₂NOS [M + H]: 252.1422. Found: 252.1420.

(*S,E*)-*N*-((*E*)-1,3-Diphenylallylidene)-2-methylpropane-2-sulfinamide (30). To a flask containing (S)-tert-butanesulfinamide (4.66 g, 38.4 mmol, 1.5 equiv) and chalcone (8.00 g, 38.4 mmol, 1.0 equiv) was added THF (16 mL) and Ti(OEt)₄ (16.1 mL, 76.8 mmol, 2.0 equiv). The reaction mixture was stirred at 75 °C for 16 h, and then poured into EtOAc (300 mL). Water (15 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by recrystallization from hexanes/MTBE to give the pure product (8.02 g, 67% yield) as a bright yellow solid. mp 71-72.5 °C; $[\alpha]_D^{20} + 323.5$ (*c* 5.54, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 16.1 Hz, 1 H), 7.69-7.60 (br, 2 H), 7.53-7.43 (m, 6 H), 7.38-7.33 (m, 4 H), 6.90 (d, *J* = 16.1 Hz, 1 H), 1.34 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 144.0, 138.8, 135.2, 130.7, 130.1, 129.3, 128.9, 128.4, 128.1, 122.5, 58.6, 22.9; HRMS: calcd for C₁₉H₂₂NOS [M + H]: 312.1417. Found: 312.1424.

(S)-N-(4,4-Dimethyl-1-phenylpent-1-yn-3-ylidene)-2-methylpropane-2-sulfinamide

(32). To a flask containing (S)-tert-butanesulfinamide (5.21 g, 43.0 mmol, 2.0 equiv) and 4,4-dimethyl-1-phenylpent-1-yn-3-one¹ (5.00 g, 21.5 mmol, 80 wt.%, 1.0 equiv) was added THF (16 mL) and Ti(OEt)₄ (26.7 mL, 128.9 mmol, 6.0 equiv). The reaction mixture was stirred at 85 °C for 2 h, and then poured into EtOAc (300 mL). Water (15 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by flash column chromatography on SiO₂ (10-15% EtOAc/hexanes) to give the pure product (2.68 g, 43% yield) as a yellow oil. [α]_D²⁰ +271.8 (c 4.76, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.56 (m, 2 H), 7.45-7.35 (m, 3 H), 1.32 (s, 9 H), 1.27 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 132.7, 130.2, 128.6, 120.9, 103.8, 82.4, 57.3, 42.6, 27.8, 22.3; HRMS: calcd for C₁₇H₂₄NOS [M + H]: 290.1573. Found: 290.1579.

O (R)-TIPPSA
$$CF_3$$
 $Ti(OEt)_4$, THF, rt Me_2N 34

(R)-N-(1-(4-(Dimethylamino)phenyl)-2,2,2-trifluoroethylidene)-2,4,6-triisopropylbenzenesulfinamide (34).To flask containing (R)-2,4,6triisopropylbenzenesulfinamide (5.00 g, 18.7 mmol, 1.0 equiv) and THF (15 mL) was added 4-dimethylaminotrifluoroacetophenone (4.06 g, 18.7 mmol, 1.0 equiv) followed by Ti(OEt)₄ (15.5 mL, 74.8 mmol, 4.0 equiv). The reaction mixture was stirred at rt for 24 h, and then diluted with EtOAc (300 mL). Water (10.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by recrystallization from heptane to give the pure product (5.12 g, 58% yield) as a yellow solid. mp 112-114 °C; $[\alpha]_D^{20}$ +195.5 (c 3.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 2 H), 7.07 (s, 2 H), 6.66 (d, J = 8.8 Hz, 2 H), 4.01-3.71 (br, 2 H), 3.03 (s, 6 H), 2.92-2.85 (m, 1 H), 1.26-1.23 (m, 12 H), 1.19 (d, J = 6.5 Hz,

6 H); 13 C NMR (100 MHz, CDCl₃) δ 161.9 (q, J = 33.7 Hz), 153.1, 152.2, 149.8, 138.2, 130.3, 123.0, 119.4 (q, J = 282 Hz), 117.0, 110.9, 39.9, 34.4, 29.0, 24.7, 24.1, 23.74, 23.71; HRMS: calcd for $C_{25}H_{34}F_{3}N_{2}OS$ [M + H]: 467.2338. Found: 467.2341.

Procedures and data for α-aminoamides.

General Procedure for Carbamoyl Anion Addition to N-Sulfinylimines. A solution of N-sulfinylimine (1.00 equiv), formamide (3.1 equiv) and toluene (10 volumes based on N-sulfinylimine) was cooled to -78 °C. LDA (3.0 equiv of commercially available 2.0M solution) was added dropwise. The reaction mixture was stirred at -78 °C for 10 min, and then quenched by the addition of water. After warming to rt, the reaction mixture was diluted with EtOAc and the layers were separated. The organic phase was washed with water (2-3 times), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by either flash column chromatography or crystallization as indicated.

(*S*)-2-((*R*)-1,1-Dimethylethylsulfinamido)-*N*,*N*-diisopropyl-3,3-dimethylbutanamide (2a). According to the general procedure, sulfinimine 1a (5.00 g, 26.4 mmol), *N*,*N*-diisopropylformamide (11.89 mL, 81.9 mmol), and toluene (50 mL) were treated with LDA (39.6 mL, 79.2 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 98.1:1.9. Purification by crystallization from hexanes gave 2a as a white solid (6.49 g, 77% yield). HPLC (Method A): major diastereomer $t_r = 2.618$ min; minor diastereomer $t_r = 2.901$ min. mp 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.38 (d, J = 10.0 Hz, 1 H), 4.12-4.02 (m, 1 H), 3.88 (d, J = 9.6 Hz, 1 H), 3.42-3.32 (m, 1 H), 1.34-1.32 (m, 6 H), 1.18-1.13 (m, 6 H), 1.12 (s, 9 H), 0.98 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 62.7, 56.3, 49.3, 46.3, 35.5, 26.8, 22.4, 21.5, 20.5, 20.3, 20.1; HRMS: calcd for $C_{16}H_{35}N_2O_2S$ [M + H]: 319.2414. Found: 319.2417.

(*S*)-2-Amino-*N*,*N*-diisopropyl-3,3-dimethylbutanamide hydrochloride (3) from 2a. A solution of 2a (5.00 g, 15.7 mmol) in MeOH (80 mL) was treated with HCl in dioxane (11.8 mL, 47.1 mmol). After stirring at rt for 1 h, the reaction mixture was concentrated on a rotovap, and the residue was repeatedly chased with CH₂Cl₂ to give 3 as an off-white solid (3.86 g, 98% yield). Chiral HPLC: (*S*)-enantiomer: 3.45 min, (*R*)-enantiomer: 3.85 min. (R)-enantiomer not detected, er >99.5:0.5. mp 194-195 °C; $\left[\alpha\right]_D^{20}$ +54.6 (*c* 1.06, MeOH); ¹H NMR (400 MHz, *d*-6 DMSO) δ 8.26 (br s, 3 H), 4.27-4.17 (m, 1 H), 4.08-4.01 (m, 1 H), 3.55-3.46 (m, 1 H), 1.37 (d, *J* = 6.4 Hz, 3 H), 1.30 (d, *J* = 6.4 Hz, 3 H), 1.20 (d, *J* = 6.4 Hz, 3 H), 1.15 (d, *J* = 6.4 Hz, 3 H), 1.00 (s, 9 H); ¹³C NMR (100 MHz, *d*-6 DMSO) δ 166.8, 55.8, 49.0, 45.6, 33.5, 26.3, 20.9, 20.5, 19.8, 19.5; HRMS: calcd for C₁₂H₂₇N₂O [M – HCl + H]: 215.2118. Found: 215.2115.

(S)-N,N-Diisopropyl-3,3-dimethyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)-

butanamide (**2b**). According to the general procedure, sulfinimine **1b** (1.00 g, 2.98 mmol), *N*,*N*-diisopropylformamide (1.34 mL, 9.24 mmol), and toluene (10 mL) were treated with LDA (4.47 mL, 8.94 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 99.7:0.3. Purification by chromatography on SiO₂ (10-40% MTBE/hexanes) gave **2b** as a white solid (1.14 g, 82% yield). HPLC (Method A): major diastereomer t_r = 4.230 min; minor diastereomer t_r = 4.447 min. mp 141-144 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 2 H), 4.69 (d, *J* = 10.6 Hz, 1 H), 4.65-3.55 (br, 2 H), 4.35-4.25 (m, 1 H), 4.02 (d, *J* = 10.5 Hz, 1 H), 3.52-3.42 (m, 1 H), 2.92-2.81 (m, 1 H), 1.41-1.38 (m, 6 H), 1.31-1.26 (m, 12 H), 1.24-1.22 (m, 12 H), 1.04 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 152.5, 149.0, 137.8, 123.1, 61.8, 49.5, 46.4, 35.3, 34.4, 28.1, 27.0, 24.5, 24.4, 23.8, 21.8, 20.8, 20.3, 20.1; HRMS: calcd for C₂₇H₄₉N₂O₂S [M + H]: 465.3509. Found: 465.3514.

$$\begin{array}{c|c}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

(S)-2-Amino-N,N-diisopropyl-3,3-dimethylbutanamide hydrochloride (3) from 2b. A solution of 2b (13.85 g, 29.8 mmol) in MeOH (150 mL) was treated with HCl in dioxane (22.4 mL, 89.4 mmol). After stirring at rt for 18 h, the reaction mixture was concentrated on a rotovap. The residue was triturated with Et_2O , and the solid was filtered and washed with Et_2O and hexanes to give 3 as an off-white solid (6.96 g, 93% yield). Chiral HPLC: er >99.5:0.5. Spectral data for 3 obtained from 2b were identical with 3 obtained from 2a.

(S)-2-((R)-1,1-Dimethylethylsulfinamido)- N_rN_r ,3,3-tetramethylbutanamide (4a). According to the general procedure, sulfinimine 1a (1.00 g, 5.28 mmol), N_rN_r -dimethylformamide (1.27 mL, 16.4 mmol), and toluene (10 mL) were treated with LDA (7.92 mL, 15.8 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 92.8:7.2. Purification by chromatography on SiO₂ (10-70% MTBE/hexanes) gave 4a as a colorless oil (998 mg, 72% yield). HPLC (Method A): major diastereomer $t_r = 1.673$ min; minor diastereomer $t_r = 2.070$ min. 1H NMR (400 MHz, CDCl₃) δ 4.37 (d, J = 9.7 Hz, 1 H), 4.00 (d, J = 10.0 Hz, 1 H), 3.10 (s, 3 H), 2.97 (s, 3 H), 1.18 (s, 9 H), 1.04 (s, 9 H); ^{13}C NMR (100 MHz, CDCl₃) δ 172.6, 60.5, 56.5, 38.0, 35.7, 35.6, 26.6, 22.2; HRMS: calcd for $C_{12}H_{27}N_2O_2S$ [M + H]: 263.1788. Found: 263.1791.

(S)-N,N,3,3-Tetramethyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)butanamide

(**4b**). According to the general procedure, sulfinimine **1b** (500 mg, 1.49 mmol), *N*,*N*-dimethylformamide (0.358 mL, 4.62 mmol), and toluene (5 mL) were treated with LDA (2.24 mL, 4.47 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 97.8:2.2. Purification by chromatography on SiO₂ (10-50% MTBE/hexanes) gave **4b** as a colorless oil (507 mg, 83% yield). HPLC (Method A): major diastereomer $t_r = 3.514$ min; minor diastereomer $t_r = 3.727$ min. ¹H NMR (400 MHz, CDCl₃) δ 6.97 (s, 2 H), 4.79 (d, J = 10.4 Hz, 1 H), 4.55-3.63 (m, 3 H), 3.06 (s, 3 H), 2.84 (s, 3 H), 2.82-2.72 (m, 1 H), 1.23 (d, J = 6.9 Hz, 6 H), 1.17-1.11 (m, 12 H), 0.95 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 161.5, 152.1, 148.0, 138.5, 123.0, 62.1, 38.2, 35.5, 35.48, 34.3, 28.3, 26.5, 24.4, 24.1, 23.8; HRMS: calcd for $C_{23}H_{41}N_2O_2S[M + H]$: 409.2883. Found: 409.2874.

(*S*)-*N*,*N*,3,3-Tetramethyl-2-((*R*)-2,4,6-triisopropylphenylsulfinamido)butanethioamide (5b). According to the general procedure, sulfinimine 1b (500 mg, 1.49 mmol), *N*,*N*-dimethylthioformamide (0.393 mL, 4.62 mmol), and toluene (5 mL) were treated with LDA (2.24 mL, 4.47 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 99.0:1.0. Purification by chromatography on SiO₂ (10-70% MTBE/hexanes) gave 5b as a yellow solid (533 mg, 84% yield). HPLC (Method A): major diastereomer $t_r = 3.846$ min; minor diastereomer $t_r = 4.084$ min. mp 103-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (s, 2 H), 5.26 (d, J = 10.8 Hz, 1 H), 4.91-3.21 (br, 2 H), 4.38 (d, J = 11.0 Hz, 1 H), 3.48 (s, 3 H), 3.475 (s, 3 H), 2.92-2.82 (m, 1 H), 1.32-1.29 (m, 6 H), 1.25-1.22 (m, 12 H), 1.08 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 205.1, 152.5, 149.0, 138.0, 123.1, 65.8, 44.9,

42.6, 36.7, 34.3, 28.2, 27.0, 24.6, 24.3, 23.8; HRMS: calcd for $C_{23}H_{41}N_2OS_2$ [M + H]:

425.2655. Found: 425.2661.

(S)-4-(Dimethylamino)-2-((R)-1,1-dimethylethylsulfinamido)-N,N,3,3-tetramethylbutanamide (7a). According to the general procedure, sulfinimine 6a (500 mg, 2.15)

mmol), *N*-formylmorpoline (0.671 mL, 6.67 mmol), and toluene (5 mL) were treated with LDA (3.23 mL, 6.46 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 92.7:7.3. Purification by chromatography on SiO₂ (MTBE) gave **7a** as a colorless oil (571 mg, 76% yield). HPLC (Method A): major diastereomer $t_r = 0.909$ min; minor diastereomer $t_r = 1.494$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 5.8 Hz, 1 H), 4.24 (d, J = 5.8 Hz, 1 H), 3.84-3.46 (m, 8 H), 2.97 (d, J = 13.9 Hz, 1 H), 2.36 (s, 6 H), 2.05 (d, J = 13.8 Hz, 1 H), 1.20 (s, 9 H), 1.14 (s, 3 H), 0.90 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 68.7, 67.1, 66.8, 60.2, 55.8, 47.9, 47.1, 42.3, 37.7, 26.0, 23.5, 22.6; HRMS: calcd for C₁₆H₃₄N₃O₃S [M + H]: 348.2315. Found: 348.2323.

(*R*)-*N*-((*S*)-4-(Dimethylamino)-3,3-dimethyl-1-morpholino-1-oxobutan-2-yl)-2,4,6-triisopropylbenzenesulfinamide (7b). According to the general procedure, sulfinimine 6b (500 mg, 1.32 mmol), *N*-formylmorpoline (0.412 mL, 4.09 mmol), and toluene (5 mL) were treated with LDA (1.98 mL, 3.96 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 97.4:2.6. Purification by chromatography on SiO₂ (MTBE) gave 7b as a colorless oil (535 mg, 82% yield). HPLC (Method A): major diastereomer $t_r = 2.568$ min; minor diastereomer $t_r = 2.658$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 2 H), 5.89 (d, *J* = 9.1 Hz, 1 H), 4.48 (d, *J* = 9.1 Hz, 1 H), 4.34-3.86 (br, 2 H), 3.80-3.61 (m, 7 H), 3.55-3.47 (m, 1 H), 2.90-2.80 (m, 1 H), 2.78 (d, *J* = 13.6 Hz, 1 H), 2.32 (s, 6 H), 2.00 (d, *J* = 13.9 Hz, 1 H), 1.31 (d, *J* = 6.5 Hz, 6 H), 1.23 (d, *J* = 6.4 Hz, 12 H), 1.07 (s, 3 H), 0.89 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 151.9, 147.9, 138.5, 122.9, 67.6, 67.0, 66.8, 58.8, 48.6, 47.0, 42.2, 39.5, 34.4, 28.4, 24.4, 24.3, 23.8, 22.5; HRMS: calcd for C₂₇H₄₈N₃O₃S [M + H]: 494.3411. Found: 494.3404.

(*R*)-*N*-((*S*)-1-Cyclohexyl-2-oxo-2-(pyrrolidin-1-yl)ethyl)-2,4,6-triisopropylbenzene-sulfinamide (9). According to the general procedure, sulfinimine 8 (500 mg, 1.38 mmol), *N*-formylpyrrolidine (0.409 mL, 4.29 mmol), and toluene (5 mL) were treated with LDA (2.07 mL, 4.15 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 96.8:3.2. Purification by chromatography on SiO₂ (10-40% MTBE/hexanes) gave 9 as a colorless oil (505 mg, 79% yield). HPLC (Method A): major diastereomer $t_r = 3.769$ min; minor diastereomer $t_r = 4.015$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 2 H), 4.82 (d, *J* = 9.5 Hz, 1 H), 4.31-3.85 (br, 2 H), 3.89 (dd, *J* = 9.6, 6.0 Hz, 1 H), 3.67-3.61 (m, 1 H), 3.53-3.38 (m, 3 H), 2.91-2.80 (m, 1 H), 2.03-1.96 (m, 2 H), 1.93-1.84 (m, 3 H), 1.81-1.71 (m, 2 H), 1.68-1.60 (m, 3 H), 1.32-1.01 (m, 23 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 152.0, 148.0, 138.5, 123.0, 62.4, 46.7, 45.8, 41.4, 34.4, 30.0, 28.3, 26.2, 26.1, 26.0, 24.4, 24.2, 23.8; HRMS: calcd for C₂₇H₄₅N₂O₂S [M + H]: 461.3196. Found: 461.3199.

(S)-N,N-Diisopropyl-4-phenyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)butanamide (11). A flask was charged with toluene (20 mL) and LDA (3.91 mL, 7.82 mmol, 2.0 M) and the solution was cooled to -78 °C. N,N-Diisopropylformamide (1.17 mL, 8.08 mmol) was added dropwise. After 5 min, a solution of 10 (1.00 g, 2.61 mmol) in toluene (3 mL) was added dropwise. The reaction was quenched after 10 min by the addition of water, and the reaction mixture was allowed to warm to rt. Reaction diastereoselectivity (from HPLC): 98.7:1.3. The reaction mixture was diluted with EtOAc, and the layers separated. The organic phase was washed with water (2 times), dried over Na₂SO₄, filtered, and concentrated. Purification by chromatography on SiO₂ (5-40% MTBE/hexanes) gave 11 as a colorless oil (948 mg, 71% yield). HPLC (Method A): major diastereomer $t_r = 4.241$ min; minor diastereomer $t_r = 4.344$ min. ¹H NMR (400) MHz, CDCl₃) δ 7.32-7.25 (m, 4 H), 7.21-7.17 (m, 1 H), 7.07 (s, 2 H), 5.11 (d, J = 9.8 Hz, 1 H), 4.58-3.73 (br, 2 H), 4.16-4.10 (m, 1 H), 3.64-3.54 (m, 1 H), 3.50-3.34 (br, 1 H), 2.92-2.82 (m, 3 H), 1.92-1.87 (m, 2 H), 1.32 (d, J = 6.8 Hz, 12 H), 1.24 (d, J = 6.8 Hz, 12 H), 1.11 (d, J = 6.6 Hz, 3 H), 1.08 (d, J = 6.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 152.1, 148.5, 141.4, 138.3, 128.9, 128.5, 126.1, 123.0, 55.8, 48.0, 46.1, 37.3, 34.4, 31.5, 28.3, 24.5, 24.4, 23.83, 23.81, 21.2, 20.6, 20.5, 20.3; HRMS: calcd for $C_{31}H_{49}N_2O_2S$ [M + H]: 513.3509. Found: 513.3501.

(*S*)-2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-2-((*R*)-1,1-dimethylethylsulfinamido)-*N*,*N*-diethylacetamide (13a). According to the general procedure, sulfinimine 12a (500 mg, 1.87 mmol), *N*,*N*-diethylformamide (0.644 mL, 5.80 mmol), and toluene (5 mL) were treated with LDA (2.80 mL, 5.61 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 89.9:10.1. Purification by chromatography on SiO₂ (10-80% MTBE/hexanes) gave 13a as a colorless oil (570 mg, 83% yield). HPLC (Method A): major diastereomer $t_r = 2.162$ min; minor diastereomer $t_r = 2.226$ min. ¹H NMR (400 MHz, CDCl₃) δ 6.90-6.81 (m, 3 H), 5.05 (d, J = 8.1 Hz, 1 H), 4.91 (d, J = 8.6 Hz, 1 H), 4.23 (br s, 4 H), 3.55-3.46 (m, 1 H), 3.39-3.22 (m, 2 H), 3.20-3.10 (m, 1 H), 1.19 (s, 9 H), 1.10 (t, J = 7.1 Hz, 3 H), 1.05 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 143.7, 143.6, 131.5, 120.9, 117.7, 116.7, 64.3, 64.2, 56.52, 56.49, 41.6, 40.7, 22.5, 14.0, 12.7; HRMS: calcd for C₁₈H₂₉N₂O₄S [M + H]: 362.1843. Found: 362.1832.

(*S*)-2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-*N*,*N*-diethyl-2-((*R*)-2,4,6-triisopropyl-phenylsulfinamido)acetamide (13b). According to the general procedure, sulfinimine 12b (500 mg, 1.21 mmol), *N*,*N*-diethylformamide (0.421 mL, 3.75 mmol), and toluene (5 mL) were treated with LDA (1.81 mL, 3.63 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 95.7:4.3. Purification by chromatography on SiO₂ (30-40% EtOAc/hexanes) gave 13b as a white solid (476 mg, 77% yield). HPLC (Method B): major diastereomer $t_r = 7.338$ min; minor diastereomer $t_r = 7.545$ min. mp 125.5-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 2 H), 6.83-6.78 (m, 3 H), 5.46 (d, J = 9.2 Hz, 1 H), 5.15 (d, J = 9.0 Hz, 1 H), 4.22 (s, 4 H), 4.18-3.90 (m, 2 H), 3.53-3.44 (m, 1 H), 3.40-3.24 (m, 2 H), 3.19-3.10 (m, 1 H), 2.91-2.81 (m, 1 H), 1.28 (d, J = 6.8 Hz, 6 H), 1.24-1.21 (m, 12 H), 1.12-1.06 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 151.9, 148.1, 143.7, 143.5, 138.3, 131.7, 123.0, 120.7, 117.8, 116.5, 64.5, 59.3, 41.7, 40.7, 34.4, 28.2, 24.4, 24.3, 23.8, 23.78, 14.2, 12.8; HRMS: calcd for $C_{29}H_{43}N_2O_4S$ [M + H]: 515.2938. Found: 515.2924.

(*S*)-2-(4-Bromophenyl)-*N*,*N*-diphenyl-2-((*R*)-2,4,6-triisopropylphenylsulfinamido)-acetamide (15). Note: THF was used as solvent due to the insolubility of *N*,*N*-diphenylformamide in toluene. According to the general procedure, sulfinimine 14 (500 mg, 1.15 mmol), *N*,*N*-diphenylformamide (0.704 g, 3.57 mmol), and THF (10 mL) were treated with LDA (1.73 mL, 3.45 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 98.1:1.9. Purification by chromatography on SiO₂ (10-40% MTBE/hexanes) gave 15 as a white solid (569 mg, 78% yield). HPLC (Method A): major diastereomer t_r = 4.222 min; minor diastereomer t_r = 4.404 min. mp 84-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.04 (m, 12 H), 7.04 (s, 2 H), 7.01-6.99 (m, 2 H), 5.40 (d, *J* = 9.0 Hz, 1 H), 5.23 (d, *J* = 9.0 Hz, 1 H), 4.17-3.83 (br, 2 H), 2.91-2.80 (m, 1 H), 1.27 (d, *J* = 6.9 Hz, 6 H), 1.24-1.22 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 152.2, 147.9, 142.1, 141.0, 138.1, 137.2, 132.0, 130.0, 129.4, 129.1, 128.7, 126.7, 126.0, 123.0, 122.6, 60.1, 34.4, 28.3, 24.5, 24.2, 23.8, 23.78; HRMS: calcd for C₃₅H₄₀BrN₂O₂S [M + H]: 631.1988. Found: 631.1972.

(S)-2-(9-Ethyl-9H-carbazol-2-yl)-*N*,*N*-diisopropyl-2-((*R*)-2,4,6-triisopropylphenyl-sulfinamido)acetamide (17). According to the general procedure, sulfinimine 16 (331 mg, 0.700 mmol), *N*,*N*-diisopropylformamide (0.315 mL, 2.17 mmol), and toluene (2.5 mL) were treated with LDA (1.05 mL, 2.10 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 99.1:0.9. Purification by chromatography on SiO₂ (10-40% MTBE/hexanes) gave 17 as a yellow solid (380 mg, 90% yield). HPLC (Method C):

major diastereomer $t_r = 2.063$ min; minor diastereomer $t_r = 2.772$ min. mp 148-150 °C; 1 H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 7.7 Hz, 1 H), 7.99 (s, 1 H), 7.47-7.38 (m, 3 H), 7.35-7.33 (m, 1 H), 7.23-7.20 (m, 1 H), 7.05 (s, 2 H), 5.57 (d, J = 9.3 Hz, 1 H), 5.42 (d, J = 9.5 Hz, 1 H), 4.34 (q, J = 7.3 Hz, 2 H), 4.29-4.00 (m, 3 H), 3.44-3.35 (m, 1 H), 2.90-2.82 (m, 1 H), 1.48-1.41 (m, 9 H), 1.29-1.21 (m, 21 H), 0.59 (d, J = 6.3 Hz, 3 H); 13 C NMR (125 MHz, CDCl₃) δ 169.8, 151.9, 148.4, 140.3, 139.6, 138.1, 129.3, 125.8, 125.6, 123.1, 123.0, 122.9, 120.5, 119.6, 118.9, 108.9, 108.6, 61.3, 48.6, 46.3, 37.7, 34.4, 28.2, 24.5, 24.3, 23.83, 23.79, 23.5, 21.1, 20.8, 20.2, 19.9, 19.5, 13.8; HRMS: calcd for $C_{37}H_{52}N_3O_2S$ [M + H]: 602.3775. Found: 602.3775.

(*S*)-*N*,*N*-Dibutyl-2-(pyridin-2-yl)-2-((*R*)-2,4,6-triisopropylphenylsulfinamido)acetamide (19). According to the general procedure, sulfinimine 18 (500 mg, 1.40 mmol), *N*,*N*-dibutylformamide (0.791 mL, 4.35 mmol), and toluene (5 mL) were treated with LDA (2.10 mL, 4.21 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 97.1:2.9. Purification by chromatography on SiO₂ (10-40% MTBE/hexanes) gave 19 as a light yellow oil (583 mg, 81% yield). HPLC (Method B): major diastereomer t_r = 16.101 min; minor diastereomer t_r = 16.713 min. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 4.8 Hz, 1 H), 7.67-7.63 (m, 1 H), 7.50 (d, *J* = 7.8 Hz, 1 H), 7.17-7.14 (m, 1 H), 7.05 (s, 2 H), 6.04 (d, *J* = 8.5 Hz, 1 H), 5.55 (d, *J* = 8.5 Hz, 1 H), 4.33-3.80 (br, 2 H), 3.68-3.60 (m, 1 H), 3.45-3.38 (m, 1 H), 3.19-3.12 (m, 1 H), 2.90-2.79 (m, 1 H), 1.55-1.38 (m, 3 H), 1.36-1.16 (m, 23 H), 0.89-0.81 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 158.3, 151.8, 148.8, 147.7, 138.6, 137.1, 122.9, 121.8, 61.8, 47.5, 46.1, 34.3, 31.2, 29.5, 28.4, 24.4, 24.2, 23.8, 20.0, 19.98, 13.8, 13.78; HRMS: calcd for $C_{30}H_{48}N_3O_2S$ [M + H]: 514.3462. Found: 514.3463.

(*R*)-2-((*S*)-1,1-Dimethylethylsulfinamido)-*N*,*N*,3,3-tetramethyl-2-phenylbutanamide (21). According to the general procedure, sulfinimine 20 (500 mg, 1.88 mmol), *N*,*N*-dimethylformamide (1.47 mL, 19.0 mmol), and toluene (10 mL) were treated with LDA (9.4 mL, 18.8 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 97.7:2.3.

Purification by chromatography on SiO_2 (10-90% MTBE/hexanes) gave **21** as an off-white solid (497 mg, 78% yield). HPLC (Method A): major diastereomer t_r = 2.650 min; minor diastereomer t_r = 2.803 min. mp 127-130 °C; 1H NMR (400 MHz, CDCl₃) δ 7.39-7.26 (br, 5 H), 6.00-4.30 (br, 1 H), 3.14-2.73 (br, 3 H), 2.51-2.06 (br, 3 H), 1.32 (s, 9 H), 1.19 (br s, 9 H); ^{13}C NMR (100 MHz, CDCl₃) δ 170.3, 139.4, 128.1, 127.7, 127.4, 73.1, 57.7, 40.5, 40.3, 37.7, 28.0, 23.4; HRMS: calcd for $C_{18}H_{31}N_2O_2S$ [M + H]: 339.2101. Found: 339.2102.

(R) - 2 - ((S) - 1, 1 - Dimethylethylsulfinamido) - N, N - dimethyl - 2 - (1 - adamantyl) - 2 - (4 - adamantyl) - (4 -

fluorophenyl)acetamide (23). According to the general procedure, sulfinimine 22 (1.00 g, 2.77 mmol), *N*,*N*-dimethylformamide (0.664 mL, 8.58 mmol), and toluene (10 mL) were treated with LDA (4.15 mL, 8.30 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 96.9:3.1. Purification by chromatography on SiO₂ (10-70% MTBE/hexanes) gave 23 as a white solid (972 mg, 81% yield). HPLC (Method A): major diastereomer t_r = 3.399 min; minor diastereomer t_r = 3.811 min. mp 184-185 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.14 (br, 2 H), 7.12-6.93 (br, 2 H), 2.95 (br s, 3 H), 2.28 (br s, 3 H), 2.13-1.69 (br, 6 H), 2.01 (br s, 3 H), 1.68-1.53 (br s, 6 H), 1.34 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 160.5, 129.8, 114.9, 114.2, 72.4, 58.0, 53.5, 42.4, 40.2, 37.3, 36.8, 28.9, 23.5; HRMS: calcd for $C_{24}H_{36}FN_{2}O_{2}S$ [M + H]: 435.2476. Found: 435.2477.

(*S*)-2-((*S*)-1,1-Dimethylethylsulfinamido)-*N*,*N*-diethyl-2-(1-(4-methoxyphenyl)cyclohexyl)-2-phenylacetamide (25). According to the general procedure, sulfinimine 24 (500 mg, 1.26 mmol), *N*,*N*-diethylformamide (0.854 mL, 7.67 mmol), and toluene (5 mL) were treated with LDA (3.77 mL, 7.54 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 96.9:3.1. Purification by chromatography on SiO₂ (5-50% MTBE/hexanes) gave 25 as a white solid (472 mg, 75% yield). HPLC (Method A): major diastereomer $t_r = 3.757$ min; minor diastereomer $t_r = 4.071$ min. mp 185-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.40 (m, 1 H), 7.31-7.27 (m, 1 H), 7.23-7.18 (m, 2 H), 7.03-6.99 (m, 1 H),

6.89-6.86 (m, 1 H), 6.45-6.41 (m, 1 H), 6.11 (d, J = 7.7 Hz, 1 H), 5.69 (d, J = 8.3 Hz, 1 H), 4.63 (s, 1 H), 3.78 (s, 3 H), 3.45-3.26 (m, 2 H), 3.14-3.07 (m, 1 H), 3.04-2.95 (m, 1 H), 2.88-2.80 (m, 2 H), 2.57-2.47 (m, 1 H), 1.93 (d, J = 12.4 Hz, 1 H), 1.66 (d, J = 13.2 Hz, 1 H), 1.47-1.34 (m, 3 H), 1.26 (s, 9 H), 1.20 (t, J = 6.9 Hz, 3 H), 1.13-0.98 (m, 1 H), 0.87-0.72 (m, 1 H), 0.20 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 158.0, 140.4, 133.1, 131.7, 130.4, 129.2, 127.0, 126.7, 125.9, 113.0, 112.3, 72.6, 58.5, 55.2, 53.7, 43.8, 40.8, 30.6, 28.1, 25.8, 23.7, 23.1, 12.3, 11.0; HRMS: calcd for $C_{29}H_{43}N_2O_3S$ [M + H]: 499.2989. Found: 499.2994.

(*R*)-2-(4-Bromophenyl)-2-((*S*)-1,1-dimethylethylsulfinamido)-*N*,*N*-dimethyl-2-(1-methylcyclopropyl)acetamide (27). According to the general procedure, sulfinimine 26 (500 mg, 1.46 mmol), *N*,*N*-dimethylformamide (0.351 mL, 4.53 mmol), and toluene (5 mL) were treated with LDA (2.19 mL, 4.38 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 95.1:4.9. Purification by chromatography on SiO₂ (10-100% MTBE/hexanes) gave 27 as a white solid (426 mg, 70% yield). HPLC (Method A): major diastereomer $t_r = 2.793$ min; minor diastereomer $t_r = 3.050$ min. mp 125-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.50 (m, 4 H), 6.04 (s, 1 H), 2.79 (br s, 6 H), 1.17 (s, 12 H), 0.96-0.90 (m, 1 H), 0.89-0.83 (m, 1 H), 0.58-0.54 (m, 1 H), 0.30-0.26 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 135.4, 131.7, 131.6, 122.9, 69.0, 57.0, 39.8, 23.4, 23.2, 23.0, 22.1, 12.7, 9.3; HRMS: calcd for $C_{18}H_{28}BrN_2O_2S$ [M + H]: 415.1049. Found: 415.1051.

(*R*)-2-((*S*)-1,1-Dimethylethylsulfinamido)-*N*,*N*-diisopropyl-3-methyl-2-phenylbutanamide (29). A flask was charged with toluene (10 mL) and LDA (2.99 mL, 5.97 mmol, 2.0 M) and the solution was cooled to -78 °C. *N*,*N*-Diisopropylformamide (0.90 mL, 6.17 mmol) was added dropwise. After 5 min, a solution of 28 (500 mg, 1.99 mmol) in toluene (2 mL) was added dropwise. The reaction was quenched after 10 min by the addition of water, and the reaction mixture was allowed to warm to rt. Reaction diastereoselectivity (from HPLC): 97.1:2.9. The reaction mixture was diluted with EtOAc, and the layers separated. The organic phase was washed with water (2 times), dried over Na₂SO₄,

filtered, and concentrated. Purification by chromatography on SiO₂ (10-40% MTBE/hexanes) gave **29** as a white solid (568 mg, 75% yield). HPLC (Method A): major diastereomer $t_r = 3.124$ min; minor diastereomer $t_r = 3.387$ min. mp 186-187.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.29 (m, 2 H), 7.19-7.15 (m, 2 H), 7.11-7.06 (m, 1 H), 6.56 (s, 1 H), 3.73-3.63 (m, 1 H), 3.10-3.00 (m, 1 H), 2.59-2.49 (m, 1 H), 1.23 (d, J = 6.6 Hz, 3 H), 1.18 (d, J = 6.6 Hz, 3 H), 1.11 (d, J = 6.6 Hz, 3 H), 1.08 (s, 9 H), 0.82 (d, J = 6.6 Hz, 3 H), 0.77 (d, J = 6.6 Hz, 3 H), 0.01 (d, J = 6.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 138.3, 127.8, 127.9, 70.4, 58.0, 48.6, 47.4, 31.7, 23.7, 19.9, 19.8, 19.7, 18.9, 18.0; HRMS: calcd for C₂₁H₃₇N₂O₂S [M + H]: 381.2576. Found: 381.2572.

(*S*)-2-Methyl-*N*-((*S*,*E*)-1-morpholino-1-oxo-2,4-diphenylbut-3-en-2-yl)propane-2-sulfinamide (31). According to the general procedure, sulfinimine 30 (500 mg, 1.61 mmol), *N*-formylmorpholine (0.500 mL, 4.98 mmol), and toluene (5 mL) were treated with LDA (2.41 mL, 4.82 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 91.7:8.3. Purification by chromatography on SiO_2 (10-40% EtOAc/hexanes) gave 31 as a white solid (460 mg, 67% yield). HPLC (Method A): major diastereomer $t_r = 2.664$ min; minor diastereomer $t_r = 2.807$ min. mp 181-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.49 (m, 2 H), 7.45-7.28 (m, 8 H), 7.05 (d, J = 16.1 Hz, 1 H), 6.88 (d, J = 16.1 Hz, 1 H), 5.69 (s, 1 H), 3.96-2.81 (br m, 8 H), 1.08 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 140.8, 136.2, 134.1, 128.9, 128.7, 128.5, 128.4, 127.5, 127.3, 127.0, 68.5, 66.5, 65.6, 56.5, 47.4, 43.9, 22.6; HRMS: calcd for $C_{24}H_{31}N_2O_3S$ [M + H]: 427.2050. Found: 427.2054.

(*S*)-2-Methyl-*N*-((*S*,*E*)-1-pyrrolidino-1-oxo-2-tert-butyl-2-(2-phenylethynyl))propane -2-sulfinamide (33). According to the general procedure, sulfinimine 32 (500 mg, 1.73 mmol), *N*-formylpyrrolidine (1.00 mL, 10.54 mmol), and toluene (5 mL) were treated with LDA (5.18 mL, 10.37 mmol, 2.0 M). Reaction diastereoselectivity (from HPLC): 94.0:6.0. Purification by chromatography on SiO_2 (10-100% MTBE/hexanes) gave 33 as a light brown oil (491 mg, 73% yield). HPLC (Method A): major diastereomer $t_r = 3.130$ min; minor diastereomer $t_r = 3.272$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.53 (m, 2 H), 7.36-7.33 (m, 3 H), 5.80 (s, 1 H), 4.11-4.05 (m, 1 H), 3.99-3.92 (m, 1 H), 3.77-3.71

(m, 1 H), 3.53-3.46 (m, 1 H), 2.01-1.71 (m, 4 H), 1.31 (s, 9 H), 1.11 (s, 9 H); 13 C NMR (100 MHz, CDCl₃) δ 167.2, 131.6, 128.9, 128.4, 122.2, 93.6, 85.3, 65.8, 55.9, 49.3, 49.0, 42.2, 27.3, 25.8, 23.4, 23.1; HRMS: calcd for $C_{22}H_{33}N_2O_2S$ [M + H]: 389.2257. Found: 389.2250.

(*S*)-2-(4-(Dimethylamino)phenyl)-3,3,3-trifluoro-*N*,*N*-diisopropyl-2-((*R*)-2,4,6-triisopropylphenylsulfinamido)propanamide (35). According to the general procedure, sulfinimine 34 (500 mg, 1.07 mmol), *N*,*N*-Diisopropylformamide (0.482 mL, 3.32 mmol), and toluene (5 mL) were treated with LDA (1.61 mL, 3.21 mmol, 2.0 M). Reaction diastereoselectivity (from 1 H NMR): >97:3 (minor diastereomer not detected). Purification by chromatography on SiO₂ (10-40% MTBE/hexanes) gave 35 as a white solid (486 mg, 76% yield). mp 92-94 °C; 1 H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1 H), 7.35 (d, *J* = 8.8 Hz, 2 H), 7.03 (s, 2 H), 6.77-6.75 (m, 2 H), 4.40-3.70 (m, 3 H), 3.45-3.35 (m, 1 H), 3.00 (s, 6 H), 2.90-2.80 (m, 1 H), 1.49 (d, *J* = 7.1 Hz, 3 H), 1.38 (d, *J* = 6.6 Hz, 3 H), 1.35-1.26 (m, 6 H), 1.26-1.20 (m, 12 H), 0.98 (d, *J* = 6.5 Hz, 3 H), 0.64 (d, *J* = 6.4 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 163.9, 150.6, 150.5, 147.0, 139.9, 129.7, 124.6 (q, *J* = 283 Hz), 122.8, 118.2, 112.0, 71.1 (q, *J* = 27 Hz), 49.5, 48.0, 40.1, 34.2, 28.3, 24.6, 24.2, 23.8, 23.79, 20.3, 20.0, 19.5, 19.3; HRMS: calcd for C₃₂H₄₉F₃N₃O₂S [M + H]: 596.3492. Found: 596.3485.

Procedures and data for ester synthesis.

(*R*)-2-Amino-*N*,*N*,3,3-tetramethyl-2-phenylbutanamide hydrochloride (36). A solution of **21** (600 mg, 1.77 mmol) in MeOH (20 mL) was treated with HCl in dioxane (1.33 mL, 5.32 mmol). After stirring at rt for 30 min, the reaction mixture was concentrated on a rotovap, and the residue was repeatedly chased with CH₂Cl₂ to give **36**

as a light yellow solid (446 mg, 93% yield). mp 210-212 °C; $[\alpha]_D^{20}$ –28.4 (c 0.44, MeOH); ¹H NMR (400 MHz, d-6 DMSO) δ 8.84 (br s, 3 H), 7.49-7.39 (m, 3 H), 7.36-7.31 (m, 2 H), 2.62 (br s, 6 H), 1.18 (s, 9 H); ¹³C NMR (100 MHz, d-6 DMSO) δ 167.3, 135.3, 128.4, 128.38, 127.2, 70.4, 38.7, 38.5, 26.9; HRMS: calcd for $C_{14}H_{23}N_2O$ [M – HCl + H]: 235.1805. Found: 235.1804.

(*R*)-*N*-(1-(Dimethylamino)-3,3-dimethyl-1-oxo-2-phenylbutan-2-yl)benzamide (37). A solution of **36** (1.00 g, 3.69 mmol) in pyridine (20 mL) was treated with benzoyl chloride (1.29 mL, 11.1 mmol). The reaction was heated at 50 °C for 22 h. After cooling to rt, the reaction mixture was diluted with MTBE and washed sequentially with saturated aqueous NH₄Cl solution and water. The organic phase was dried (Na₂SO₄), filtered and concentrated, and the residue was crystallized from heptane to give **37** as an off white solid (1.01 g, 81% yield). mp 176-178 °C; $[\alpha]_D^{20}$ –14.9 (*c* 0.57, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.84 (m, 2 H), 7.57-7.48 (m, 3 H), 7.42-7.30 (m, 5 H), 7.07 (s, 2 H), 2.96 (s, 3 H), 2.37 (s, 3 H), 1.15 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 165.5, 138.0, 135.2, 131.7, 128.9, 127.9, 127.5, 126.8, 126.6, 69.1, 42.7, 37.6, 37.4, 27.5; HRMS: calcd for C₂₁H₂₆N₂O₂[M + H]: 339.2067. Found: 339.2068.

(*R*)-Methyl 2-benzamido-3,3-dimethyl-2-phenylbutanoate (39). A solution of 37 (100 mg, 0.295 mmol) in CH₂Cl₂ (3 mL) was treated with 4M HCl in dioxane (0.30 mL, 1.20 mmol). The reaction was stirred at rt for 1 h. MeOH (3 mL) was then added, and the reaction mixture was stirred at rt for 18 h. The reaction mixture was then concentrated to dryness, and the residual solid was chased with Et₂O twice. The solid was then triturated with Et₂O and filtered to remove the solid Me₂NH•HCl. The filtrate was concentrated to give 39 as a white solid (87 mg, 91% yield). mp 149.5-151 °C; $[\alpha]_D^{20}$ –57.8 (*c* 1.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.82 (m, 4 H), 7.56-7.52 (m, 1 H), 7.49-7.45 (m, 2 H), 7.31-7.22 (m, 3 H), 6.83 (s, 1 H), 3.72 (s, 3 H), 1.06 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 166.9, 136.9, 134.8, 131.8, 128.8, 128.4, 127.2, 127.1, 127.0, 70.0, 52.2, 38.6, 26.6; HRMS: calcd for C₂₀H₂₄NO₃ [M + H]: 326.1751. Found: 326.1746.

Procedure and data for diamine synthesis.

$$t-Bu$$
 O
 $t-Bu$
 O
 $t-Bu$
 O
 $t-Bu$
 O
 $t-Bu$
 O
 $t-Bu$
 O
 $t-Bu$
 $t-Bu$

(*S*)-*N*¹,*N*¹-Diisopropyl-3,3-dimethylbutane-1,2-diamine (40). A flask was charged with LiAlH₄ (303 mg, 7.97 mmol) and THF (35 mL). To the resultant slurry was added in portions at rt 3 (1.00 g, 3.99 mmol). After stirring at rt for 1 h, the reaction was quenched by the slow dropwise addition of aqueous 2N NaOH (4 mL). The resultant mixture was treated with Na₂SO₄ (5 g) and was filtered. The filtrate was treated with 4N HCl in dioxane (4.0 mL, 16.0 mmol), and was concentrated to dryness. The resultant solid was triturated with EtOAc, filtered, and the solid washed with EtOAc and dried under vacuum to afford 40 as a white solid (842 mg, 77% yield). mp 256-260 °C; $[\alpha]_D^{20}$ +21.8 (*c* 1.03, MeOH); ¹H NMR (400 MHz, D₂O) δ 4.01-3.91 (m, 1 H), 3.84-3.74 (m, 1 H), 3.55-3.48 (m, 2 H), 3.34-3.28 (m, 1 H), 1.42 (d, *J* = 6.6 Hz, 3 H), 1.36-1.33 (m, 6 H), 1.28 (d, *J* = 6.6 Hz, 3 H), 1.05 (s, 9 H); ¹³C NMR (100 MHz, D₂O) δ 56.3, 56.2, 54.6, 46.5, 33.8, 24.9, 18.9, 18.0, 16.5, 16.1; HRMS: calcd for C₁₂H₂₉N₂ [M – 2HCl + H]: 201.2325. Found: 201.2332.

Procedures and data for dipeptide synthesis.

HCI O HCO₂H, CDI, THF H O N*i*-Pr₂

$$t-\bar{B}u$$

3

(*S*)-2-Formamido-*N*,*N*-diisopropyl-3,3-dimethylbutanamide. A flask was charged with CDI (1.29 g, 7.97 mmol) and THF (20 mL). To the resultant slurry was added dropwise at rt formic acid (0.30 mL, 7.97 mmol). After stirring at rt for 30 min, the reaction mixture was treated with 3 (1.00 g, 3.99 mmol) followed by Et₃N (1.67 mL, 11.96 mmol). The reaction was stirred at rt for 15 min, and then diluted with water and EtOAc. The layers were separated, and the organic phase was washed with 0.5 N aqueous HCl and water (2 x), dried (Na₂SO₄), filtered, and concentrated to give (*S*)-2-formamido-*N*,*N*-diisopropyl-3,3-dimethylbutanamide as a white solid (833 mg, 86% yield). mp 96-99 °C; $[\alpha]_D^{20}$ -63.9 (*c* 0.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 1.4 Hz, 1 H), 6.63 (d, J = 9.6 Hz, 1 H), 4.98 (d, J = 9.6 Hz, 1 H), 4.35-4.25 (m, 1 H), 3.52-3.42 (m, 1 H), 1.39 (d, J = 6.6 Hz, 6 H), 1.25 (d, J = 6.6 Hz, 3 H), 1.20 (d, J =

6.6 Hz, 3 H), 1.02 (s, 9 H); 13 C NMR (100 MHz, CDCl₃) δ 170.0, 160.9, 53.3, 49.6, 46.3, 35.5, 26.7, 21.6, 20.7, 20.2, 20.1; HRMS: calcd for $C_{13}H_{27}N_2O_2$ [M + H]: 243.2067. Found: 243.2070.

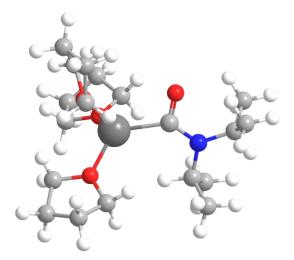
(*S*)-*N*,*N*-Diisopropyl-3,3-dimethyl-2-(*N*-methylformamido)butanamide (41). A flask was charged with (*S*)-2-formamido-*N*,*N*-diisopropyl-3,3-dimethylbutanamide (2.00 g, 8.25 mmol) and DMF (10 mL) and the solution was cooled to 0 °C. NaH (363 mg, 9.08 mmol, 60 wt.% in mineral oil) was added in portions. After 5 min, MeI (0.62 mL, 9.90 mmol) was added. After 30 min, the reaction mixture was quenched with water (150 mL), resulting in the precipitation of the product. The solid was filtered and washed with water, and then dried under vacuum to provide 41 as a white solid (1.95 g, 92% yield). mp 113-115 °C; $[\alpha]_D^{20}$ –74.9 (*c* 2.03, CHCl₃); Note: product is a ~1:1 mixture of amide rotomers. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1 H), 8.15 (s, 1 H), 4.99 (s, 1 H), 4.17-4.07 (m, 1 H), 3.92-3.82 (m, 1 H), 3.90 (s, 1 H), 3.49-3.34 (m, 1 H), 3.07 (s, 3 H), 2.99 (s, 3 H), 1.44-1.40 (m, 6 H), 1.24-1.07 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 166.6, 164.1, 163.4, 65.0, 57.2, 49.0, 48.4, 46.5, 46.2, 36.7, 36.4, 33.5, 30.3, 29.6, 27.8, 27.3, 21.1, 20.9, 20.7, 20.5, 20.47, 20.4, 20.3; HRMS: calcd for C₁₄H₂₉N₂O₂ [M + H]: 257.2224. Found: 257.2221.

(S)-2-((S)-2-(4-Bromophenyl)-N-methyl-2-((R)-2,4,6-triisopropylphenylsulfinamido) acetamido)-N,N-diisopropyl-3,3-dimethylbutanamide (42). A flask was charged with sulfinimine 14 (1.69 g, 3.89 mmol, 1.00 equiv), 41 (1.50 g, 5.84 mmol, 1.50 equiv) and toluene (15 mL) and the resultant solution was cooled to -78 °C. The solution was treated with LDA (2.92 mL, 5.84 mmol, 2.0 M, 1.50 equiv). After 10 min at -78 °C, the reaction was quenched with water and allowed to warm to rt. The mixture was diluted with EtOAc and the layers were separated. The organic phase was dried (Na₂SO₄), filtered, and concentrated. Reaction diastereoselectivity (from 1 H NMR in CDCl₃): >97:3 (minor diastereomer not detected). Purification by crystallization from heptane gave 42 as a white solid (2.12 g, 79% yield). mp 130-131.5 °C; $[\alpha]_{D}^{20}$ -115.9 (c 1.46, CHCl₃); 1 H

NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.3 Hz, 2 H), 7.22 (d, J = 8.3 Hz, 2 H), 7.06 (s, 2 H), 5.33 (d, J = 9.2 Hz, 1 H), 5.24 (s, 1 H), 5.17 (d, J = 9.2 Hz, 1 H), 4.28-3.77 (m, 3 H), 3.36-3.23 (m, 1 H), 3.14 (s, 3 H), 2.90-2.82 (m, 1 H), 1.37 (d, J = 6.7 Hz, 3 H), 1.28-1.21 (m, 21 H), 1.13 (d, J = 6.7 Hz, 3 H), 1.09 (s, 9 H), 0.81 (d, J = 6.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 168.1, 152.5, 148.8, 137.2, 136.5, 132.1, 129.5, 123.0, 122.6, 59.0, 58.9, 48.5, 46.1, 37.3, 34.4, 32.9, 31.9, 29.0, 28.1, 27.8, 24.4, 24.3, 23.8, 23.76, 22.7, 21.05, 21.0, 20.6, 20.3, 14.1; HRMS: calcd for C₃₆H₅₇BrN₃O₃S [M + H]: 690.3299. Found: 690.3295.

Synthesis of ¹³C-labeled DIPF and low temperature ¹³C NMR experiment.

¹³C-*N*,*N*-Diisopropylformamide (43). A flask was charged with CDI (17.25 g, 106.4 mmol) and THF (100 mL). To the resultant slurry was added dropwise at rt >99% ¹³C-labeled formic acid (5.00 g, 106.4 mmol). After stirring at rt for 30 min, the reaction mixture was treated with diisopropylamine (16.4 mL, 117.0 mmol). The reaction was stirred at rt for 30 min, and then diluted with water and MTBE. The layers were separated, and the organic phase was washed with water, dried (MgSO₄), filtered, and concentrated. The crude product was purified by vacuum distillation (bp 82 °C, 12 mm Hg) using a short path distillation head to give **43** as a colorless liquid (4.98 g, 36% yield). bp 82 °C, 12 mm Hg; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 188.3 Hz, 1 H), 4.24-4.13 (m, 1 H), 3.68-3.56 (m, 1 H), 1.29 (d, J = 6.9 Hz, 6 H), 1.26 (d, J = 6.9 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 46.5 (d, J = 16.3 Hz), 43.8, 23.3 (d, J = 4.7 Hz), 20.1; HRMS: calcd for C₆¹³CH₁₆NO [M + H]: 131.1260. Found: 131.1259.


Deprotonation of 43 and low temperature ¹³C NMR analysis of the anion. To a flask containing **43** (400 mg, 3.10 mmol), d-8 THF (5 mL), Et₂O (5 mL), and pentane (1.25 mL) cooled to -100 °C was added dropwise t-BuLi (2.00 mL, 3.41 mmol, 1.7 M/pentane, 1.1 equiv). After stirring for 5 min at -100 °C, approximately 1.0 mL of the anion solution was transferred via cannula to an inerted NMR tube immersed in an EtOH/liquid nitrogen dewar (temperature -90 °C). The NMR tube was transferred quickly to a 500 MHz NMR spectrometer, the probe of which had previously been cooled to -68 °C. After shimming, the ¹³C NMR spectrum was recorded using a broad sweep width. The spectrum was referenced to the α-C of d-8 THF at 67.57 ppm. Due to ⁶Li and ⁷Li coupling with ¹³C, the signals were broad. See page S104 for copies of the spectrum

taken at -68 °C, from 370 to 130 ppm, and from 220 to -30 ppm. 13 C NMR (125 MHz, d-8 THF, -68 °C) δ 259.6 (broad).

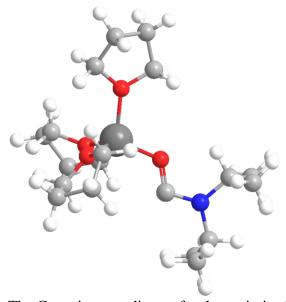
Computational Modeling Studies.

All calculations were conducted with the Guassian 09⁴ Unix version on a HPC system at the DFT B3LYP level of theory with the 6-311G+(d,2p) basis set with the CPCM (THF) solvation model. All optimized conformers were subjected to a frequency check to verify the optimized structure is a stable structure (zero imaginary frequencies). To complete the tetrahedral structure of the Li species, the lithium atom was saturated with THF molecules. All structures were subjected to a Conformation search employing the Moe2011.10 program with the LowModeMd method. The lowest energy conformer was then subjected to the DFT optimization with the Gaussian 09 program.⁴ The optimized structures were then subjected to a NMR calculation (B3LYP/6-311G+(d,2p)) with the CPCM (THF) solvation model employing the IGAIM method within Gaussian 09. The final carbon shift was determined by referencing to a separately calculated reference carbon NMR with the optimized TMS structure (B3LYP/6-311G+(d,2p)) with the CPCM (THF) solvation model employing the IGAIM method within Gaussian 09.

Anion Structure 44:

⁴ Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

The Cartesian coordinates for the optimized structure are as follows:

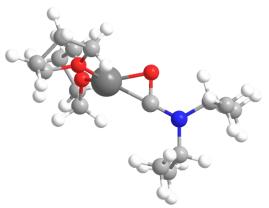

Charge:	0	Spin:	1	Coc	ordinates (Angs Y	stroms) Z
C N C H C				-1.45679711 -2.72535521 -4.00973331 -4.79187836 -2.79035621	-0.22372802 0.10378201 -0.27404702 0.13223201 0.84912506	0.71660306 0.21805402 0.85675106 0.21245602 -1.04522108
H C H H				-1.74312813 -3.43940326 -4.49397134 -3.38498026 -2.92741923	1.00673008 0.04791200 -0.15991101 0.60837005 -0.90498707	-1.30713010 -2.18700817 -1.99160415 -3.12333824 -2.32949118
С Н Н Н С				-3.44889526 -4.50534634 -2.94801123 -3.38998026 -4.20329932	2.23081517 2.15293216 2.81565921 2.78406121 0.37131103	-0.89602907 -0.62880705 -0.12322501 -1.83618514 2.23937217
Н Н Н С				-3.46964727 -4.09671431 -5.20533340 -4.23137433 -5.23659840	-0.00804200 1.45578711 0.15142601 -1.79555314 -2.01512415	2.94680223 2.17807317 2.61784220 0.90570707 1.27617410
H H H O Li				-4.13653532 -3.50549627 -1.43851911 0.57079204	-2.23231217 -2.27061417 -0.88179907 -0.00238000	-0.08991101 1.56148012 1.80041414 -0.07551501
O O O C H				2.05841616 1.02713008 1.23203810 2.59947520 3.27618425	-0.15369501 -1.54898712 1.73219213 -1.41749411 -1.79698713	1.32845510 -1.29975110 -0.92637007 1.79036014 1.02590508
H C H H C				1.77527113 2.13192516 2.92137122 1.17886409 2.18985717	-2.12269916 0.83342506 1.54850412 1.35816210 -1.71563513	1.91617414 2.38800518 2.14161016 2.43007118 -2.15156617
Н Н С Н				2.19067017 3.07970724 0.22421902 -0.59171705	-0.92360707 -1.61184612 -2.75495321 -2.62469320	-2.90045922 -1.52801312 -1.32486810 -2.04143416
H C H H C				-0.19733201 2.61649420 2.85729822 3.24211725 0.50970704	-2.89106222 1.98155515 1.38474710 1.65300413 2.98606323	-0.33209703 -1.28950510 -2.16875517 -0.45867703 -0.86065806
H H C C C				-0.05275800 -0.18961501 1.17959709 2.07859016 1.58045912	3.12179824 2.92275922 -3.85806229 -3.11598024 4.05993931	-1.78881714 -0.03008600 -1.76534914 -2.76709221 -0.69827306
H H C H				1.24209109 1.87602514 2.73063921 2.57220720	5.03653038 4.14654632 3.48861226 3.71326228	-1.04147008 0.34883603 -1.54173712 -2.59775020

```
3.70703129
                                3.87665730
                                              -1.25579310
Η
С
                                               3.12006624
                   3.29093025
                                -1.11596808
Η
                   4.32374333
                                -0.80444706
                                               2.95287922
                   3.29840025
                               -1.97995015
                                               3.78282129
Η
С
                   2.45733319
                                0.05541800
                                               3.66155128
Η
                   1.54134412
                               -0.31127402
                                               4.12729632
Η
                   2.99292423
                                0.66323905
                                               4.38934333
Η
                   1.76224013
                                -4.21787732
                                              -0.91546307
Η
                   0.65744205
                                -4.70552936
                                              -2.20717117
Η
                   3.05370323
                                -3.58263028
                                              -2.89702222
Η
                   1.59420212
                                -3.06638624
                                              -3.74351328
Sum of electronic and zero-point Energies=
                                                       -1109.892804
Sum of electronic and thermal Energies=
                                                       -1109.860034
Sum of electronic and thermal Enthalpies=
                                                       -1109.859090
Sum of electronic and thermal Free Energies=
                                                       -1109.963880
```

Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): -81.2366 ppm

Carbon shift (TMS referenced, 185.863 ppm) = 267.1 ppm

Anion Structure 46:


The Cartesian coordinates for the optimized structure are as follows:

The curtesian coordinates for the optimized structure are as follows:					
Charge:	0 Spin: 1	Coordinates (Angstroms)			
		X	Y	Z	
С		-1.79190000	0.31170000	0.04020000	
N		-3.05130000	-0.18580000	-0.23340000	
С		-3.27650000	-1.45060000	-0.96900000	
Н		-2.26930000	-1.79980000	-1.19150000	
С		-4.23670000	0.56190000	0.23540000	
Н		-5.10290000	-0.01550000	-0.09140000	
С		-4.31020000	0.65210000	1.76730000	
Н		-4.27340000	-0.34120000	2.21740000	
Н		-3.47310000	1.23170000	2.15480000	
Н		-5.24150000	1.13370000	2.07690000	
С		-4.35670000	1.95090000	-0.40990000	

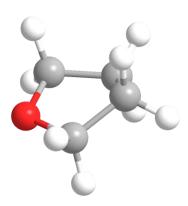
```
2.58780000
                                                 -0.10290000
Η
                   -3.52800000
Η
                   -4.34380000
                                   1.87610000
                                                 -1.49840000
Н
                   -5.29290000
                                   2.42930000
                                                 -0.11090000
С
                   -4.00960000
                                  -1.23500000
                                                 -2.30160000
Η
                   -4.08300000
                                  -2.17760000
                                                 -2.85020000
Η
                   -5.02650000
                                  -0.86230000
                                                 -2.15650000
Η
                   -3.47390000
                                  -0.51970000
                                                 -2.92740000
                                                 -0.10940000
С
                   -3.96970000
                                  -2.51860000
Η
                                  -3.46150000
                                                 -0.65840000
                   -4.03550000
Η
                   -3.41050000
                                  -2.69970000
                                                  0.80970000
Н
                   -4.98710000
                                  -2.22940000
                                                  0.16490000
0
                   -0.81500000
                                  -0.40440000
                                                 -0.39430000
С
                    3.49640000
                                  -1.74730000
                                                 -0.32430000
С
                    1.63830000
                                  -2.56570000
                                                 -1.55660000
Н
                                  -3.04650000
                                                 -1.02780000
                    0.81450000
Li
                    0.96770000
                                   0.02820000
                                                 -0.06710000
0
                    1.53710000
                                   0.17770000
                                                  1.87000000
0
                    1.57860000
                                   1.71740000
                                                 -0.96150000
С
                                  -0.92670000
                                                  2.77130000
                    1.26440000
Н
                    0.53260000
                                  -1.57860000
                                                  2.29700000
С
                    1.51170000
                                   1.43180000
                                                  2.60050000
Н
                    0.60360000
                                   1.97340000
                                                  2.32660000
С
                    0.69680000
                                   2.43350000
                                                 -1.86460000
Η
                    0.58340000
                                   1.84800000
                                                 -2.78140000
                                   2.51800000
                                                 -1.37810000
Η
                   -0.27240000
С
                    2.90550000
                                   2.30020000
                                                 -0.99570000
Н
                    3.10720000
                                   2.74500000
                                                 -0.01880000
Н
                    2.19220000
                                  -1.48400000
                                                  2.92450000
Н
                    2.37940000
                                   2.01680000
                                                  2.29880000
Н
                    3.62860000
                                   1.50530000
                                                 -1.17630000
Η
                    4.17450000
                                  -1.17450000
                                                 -0.96400000
Н
                    3.61250000
                                  -1.41140000
                                                  0.70420000
Н
                    1.25860000
                                  -2.14220000
                                                 -2.48570000
0
                    2.13210000
                                  -1.48150000
                                                 -0.72450000
С
                    2.82300000
                                  -3.51460000
                                                 -1.76250000
С
                    3.68750000
                                  -3.24800000
                                                 -0.52030000
Н
                    3.37240000
                                  -3.25210000
                                                 -2.66810000
                                                 -1.84840000
Η
                    2.50380000
                                  -4.55210000
Η
                    4.73320000
                                  -3.51820000
                                                 -0.65960000
Η
                    3.30170000
                                  -3.79540000
                                                  0.34170000
C
                                   3.76230000
                    1.39440000
                                                 -2.13530000
С
                                                 -2.10340000
                    2.87640000
                                   3.35650000
С
                    0.76960000
                                  -0.29240000
                                                  4.07010000
С
                    1.51630000
                                   1.05030000
                                                  4.07970000
Η
                    1.17470000
                                   4.47740000
                                                 -1.34020000
Η
                    1.09160000
                                   4.20120000
                                                 -3.08480000
Н
                    3.54690000
                                   4.18830000
                                                 -1.89300000
Н
                    3.16870000
                                   2.91660000
                                                 -3.05850000
Η
                    0.98800000
                                  -0.91160000
                                                  4.93890000
Н
                   -0.30820000
                                  -0.12820000
                                                  4.02620000
Н
                    2.53880000
                                   0.91600000
                                                  4.43760000
Η
                    1.03390000
                                   1.80510000
                                                  4.69880000
Sum of electronic and zero-point Energies=
                                                       -1109.899145
Sum of electronic and thermal Energies=
                                                       -1109.866496
Sum of electronic and thermal Enthalpies=
                                                       -1109.865552
Sum of electronic and thermal Free Energies=
                                                       -1109.970499
```

Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): -86.0708 ppm Carbon shift (TMS referenced, 185.863 ppm)= 271.9 ppm

Anion Structure 45:

The Cartesian coordinates for the optimized structure are as follows:

Charge: 0 S	: 0 Spin: 1 Coordinates (Angstroms)				
charge. 0 3	уртп. т со	Y	Z		
C	-1.19300500	-0.01263500			
C N					
	-2.55910900	-0.03739300	-0.04181100		
C	-3.21857500	0.09486700	1.27562500		
Н	-4.28999400	0.04905400	1.07684600		
C	-3.41322400	-0.19075800	-1.24218000		
H	-2.69865100	-0.26850000	-2.05979300		
C	-4.23952200	-1.48469900	-1.20862700		
Н	-4.97614500	-1.48215600	-0.40170000		
H	-4.78437800	-1.60698100	-2.14769000		
Н	-3.59340300	-2.35351000	-1.07543200		
С	-4.29392500	1.04107900	-1.49562500		
Н	-5.03067000	1.19022900	-0.70269600		
Н	-3.68632700	1.94420500	-1.56830700		
Н	-4.84249300	0.92439300	-2.43325400		
С	-2.94204300	1.45265100	1.93793800		
Н	-3.52424700	1.55129100	2.85735800		
Н	-1.88558200	1.55207300	2.18565100		
Н	-3.21435000	2.27228900	1.27146200		
C	-2.88492200	-1.06882600	2.22040300		
Н	-3.12755900	-2.02671800	1.75796100		
Н	-1.82401200	-1.06946800	2.46879300		
H	-3.45784100	-0.98168600	3.14679300		
0	-0.66194000	-0.12159300	-1.27842000		
Li	0.86126000	-0.00234200	-0.16112600		
0	2.01437100	1.60088800	-0.00470200		
0	2.00640700	-1.61042300	-0.04934100		
С	2.93522600	2.01895500	-1.04713100		
Н	3.71557500	1.26410200	-1.13359000		
С	1.73606300	2.71045700	0.88990200		
Н	2.25886900	2.53261000	1.83296500		
С	3.14995200	-1.81088400	0.82025400		
Н	4.00867600	-1.29235200	0.38721200		
Н	2.92213500	-1.36992400	1.78974200		

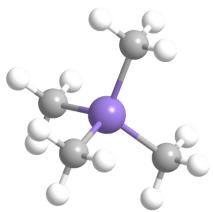

```
С
                                           -0.73858000
                  1.67834200
                             -2.84560400
                  0.76229100
                              -3.25120600
Η
                                            -0.30324200
                              -2.60996800
Η
                  1.49736600
                                            -1.78561100
                                             0.87120300
С
                  3.37125800
                              -3.32210300
Η
                  4.41358600 -3.57788700
                                             1.05470100
Η
                  2.76428800 -3.77028200
                                             1.65970800
С
                  2.87128800
                              -3.77105800
                                            -0.51090400
Η
                  3.63830400
                               -3.59937500
                                            -1.26822300
Η
                  2.58744000
                               -4.82172900
                                            -0.54350600
С
                  3.45372100
                               3.39028400
                                            -0.61594500
С
                  2.26540700
                                3.95356100
                                             0.17857300
Η
                  2.38620100
                               2.07273600
                                           -1.99000000
Η
                  0.66386700
                               2.73045100
                                            1.07617800
Η
                  2.55063400
                               4.73691200
                                             0.87898500
Η
                  1.50975400
                              4.35606200
                                            -0.49823500
Η
                                             0.02990400
                  4.32695300
                                3.28284100
Η
                  3.73274600
                                4.00857800
                                            -1.46764000
Sum of electronic and zero-point Energies=
                                                   -877.489283
Sum of electronic and thermal Energies=
                                                   -877.463272
Sum of electronic and thermal Enthalpies=
                                                   -877.462328
Sum of electronic and thermal Free Energies=
                                                   -877.551986
```

Total of Energy of system (eta-2 Anion with free THF): THF (-232.437992) plus eta-2 Li anion= -1109.989978

Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): -75.4454 ppm

Carbon shift (TMS referenced, 185.863 ppm) = 261.3 ppm

THF

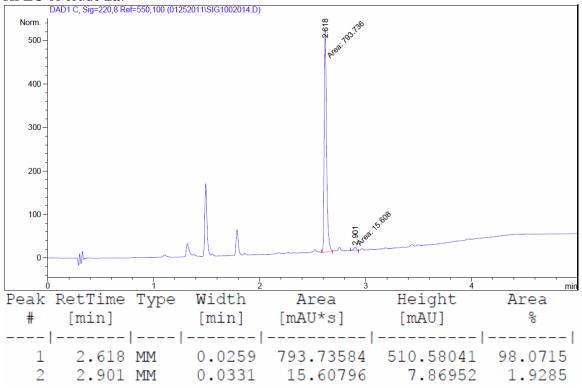


The Cartesian coordinates for the optimized structure are as follows:

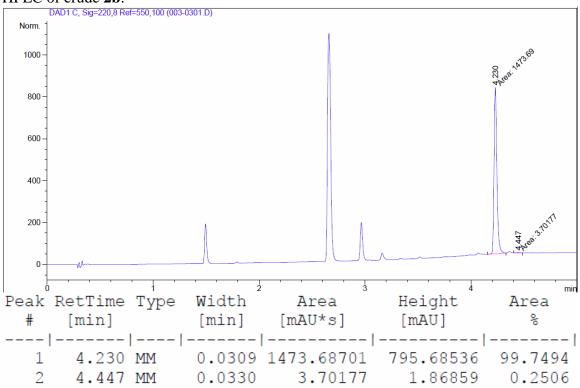
Charge:	0 Spin:	1	Coordinates (Angstroms)				
			X	Y	Z		
0			0.00000241	-1.25566627	0.00000597		
С			1.17445772	-0.42618584	-0.13067911		
Н			1.94787830	-0.81880701	0.52991905		
Н			1.53428220	-0.48395688	-1.16269831		
С			-1.17445902	-0.42618841	0.13067169		
Н			-1.94786643	-0.81880991	-0.52994135		
Н			-1.53429940	-0.48396494	1.16268435		

С			0.7	73424761	(0.99538011	0.22533835
С			-0.7	73424823	(0.99538101	-0.22533514
Н			0.8	30156737	-	1.15715481	1.30285831
Н			1.3	33785450	-	1.75311631	-0.27247511
Н			-1.3	33785632	-	1.75311238	0.27248412
Н			-0.8	30156798	-	1.15716419	-1.30285363
Sum	of	electronic	and	zero-poi	int I	Energies=	-232.409569
Sum	of	electronic	and	thermal	Ene	rgies=	-232.404598
Sum	of	electronic	and	thermal	Entl	nalpies=	-232.403654
Sum	of	electronic	and	thermal	Free	e Energies=	-232.437992

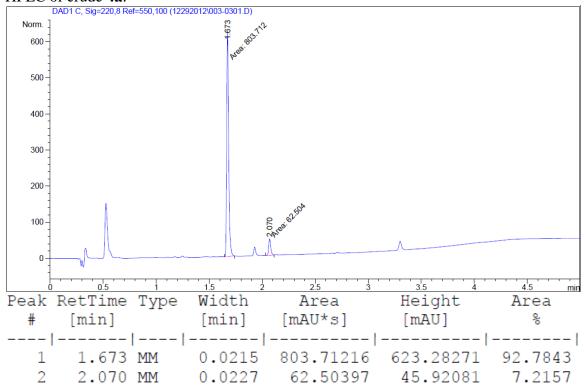
TMS

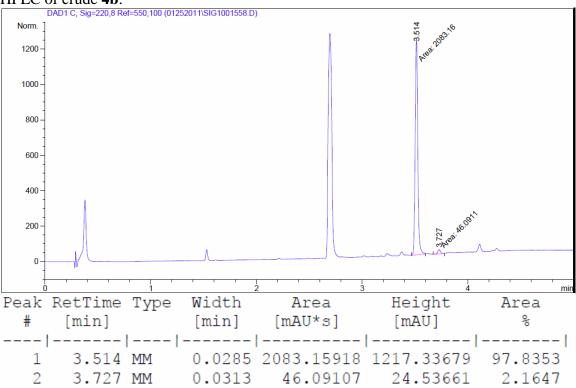

The Cartesian coordinates for the optimized structure are as follows:

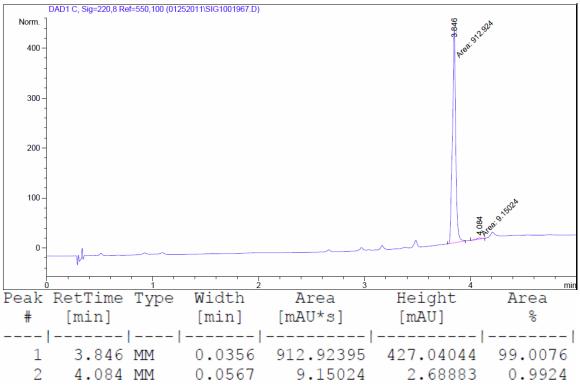
Charge: 0 Sp:	in: 1 Coo	Coordinates (Angstroms)			
	X	Y	Z		
Si	0.0000000	0.0000000	0.0000000		
C	1.09190000	1.09190000	1.09190000		
Н	1.73490000	0.48650000	1.73490000		
Н	1.73490000	1.73490000	0.48650000		
Н	0.48650000	1.73490000	1.73490000		
С	-1.09190000	-1.09190000	1.09190000		
Н	-1.73490000	-0.48650000	1.73490000		
Н	-1.73490000	-1.73490000	0.48650000		
Н	-0.48650000	-1.73490000	1.73490000		
С	-1.09190000	1.09190000	-1.09190000		
Н	-0.48650000	1.73490000	-1.73490000		
Н	-1.73490000	0.48650000	-1.73490000		
Н	-1.73490000	1.73490000	-0.48650000		
С	1.09190000	-1.09190000	-1.09190000		
Н	0.48650000	-1.73490000	-1.73490000		
Н	1.73490000	-0.48650000	-1.73490000		
Н	1.73490000	-1.73490000	-0.48650000		
Sum of elect	tronic and zero-poi	nt Energies=	-449.131272		
Sum of elect	tronic and thermal	Energies=	-449.121924		
Sum of elect	tronic and thermal	Enthalpies=	-449.120980		
Sum of elect	tronic and thermal	Free Energies=	-449.161441		

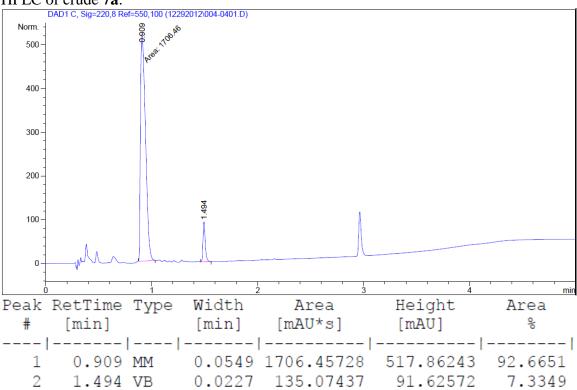

Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): 185.863 ppm

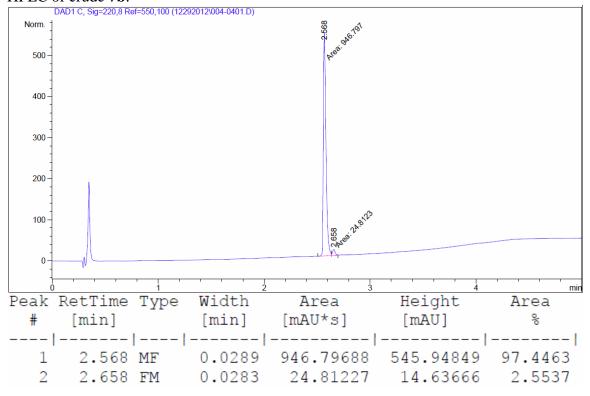
HPLC chromatograms of crude α-amino amides.

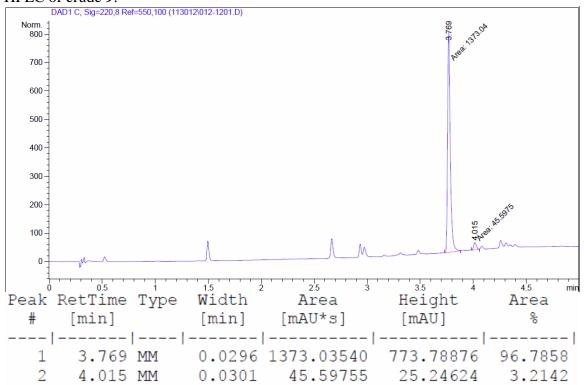

HPLC of crude 2a:

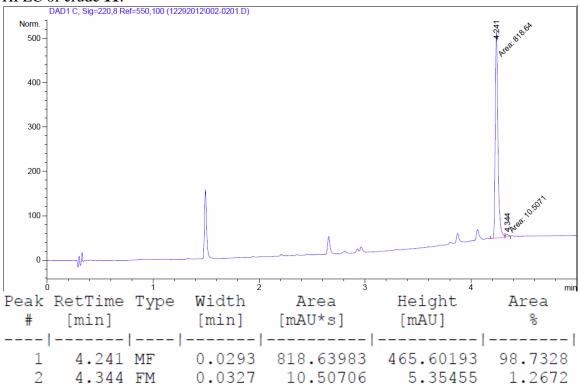

HPLC of crude **2b**:

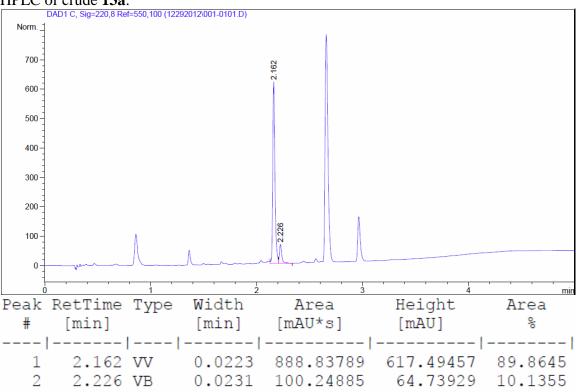

HPLC of crude 4a:

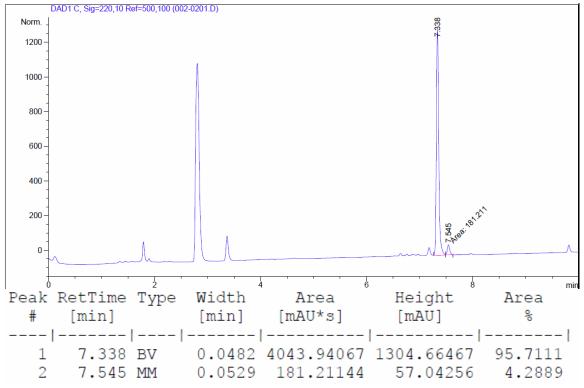

HPLC of crude 4b:

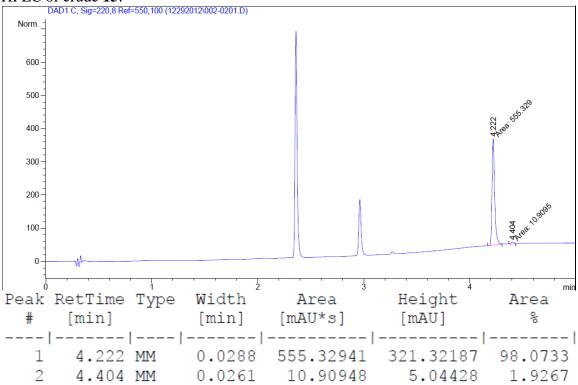

HPLC of crude **5b**:

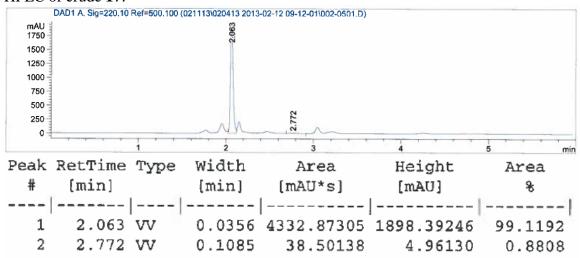

HPLC of crude 7a:

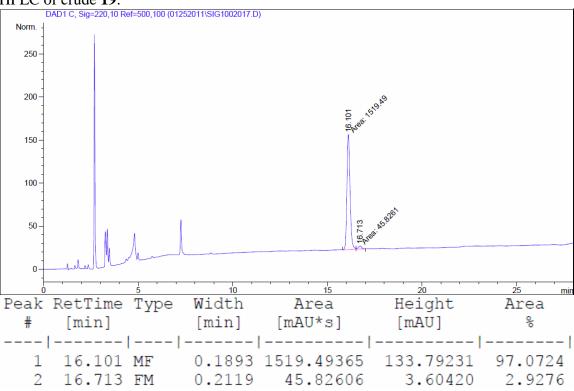

HPLC of crude **7b**:

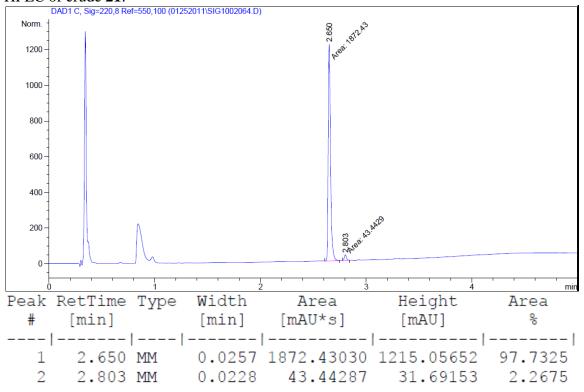

HPLC of crude 9:

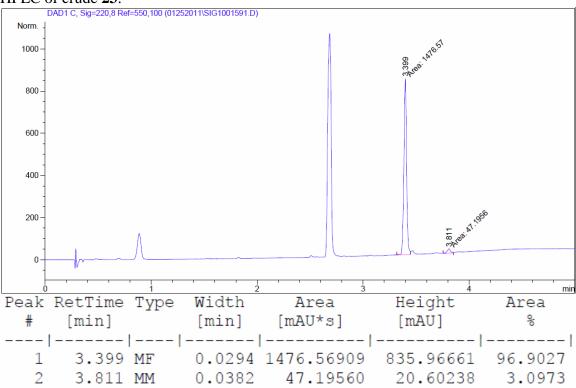

HPLC of crude 11:

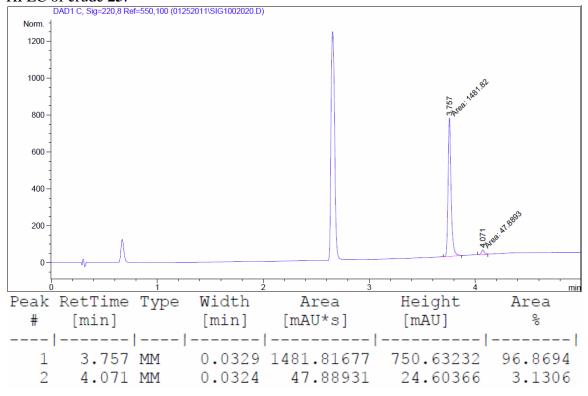

HPLC of crude 13a:

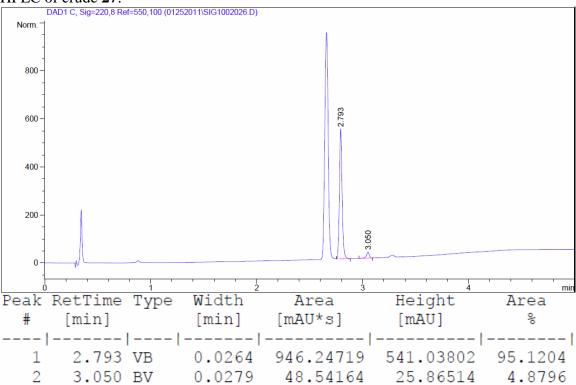

HPLC of crude **13b**:

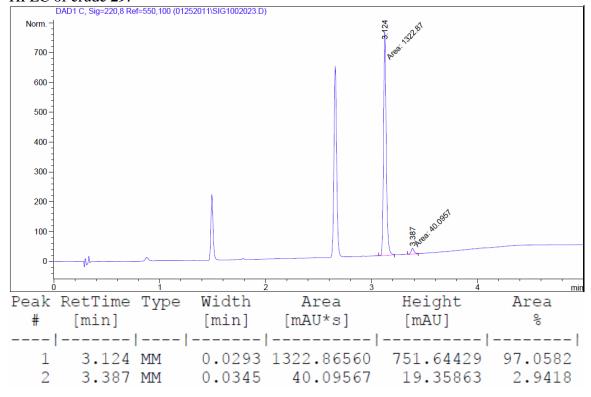

HPLC of crude **15**:

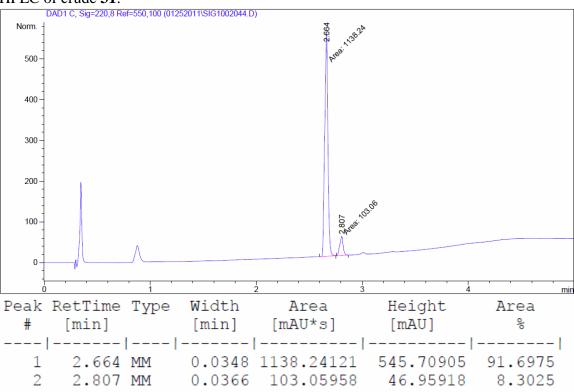

HPLC of crude 17:

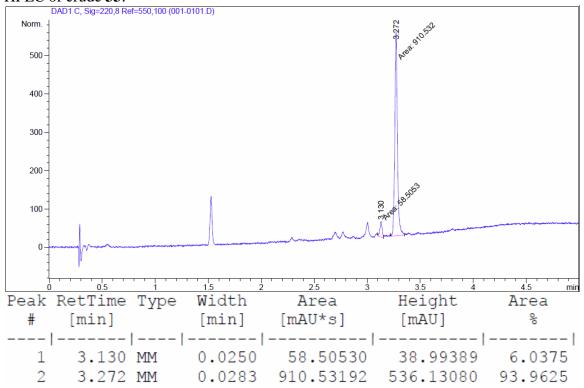

HPLC of crude **19**:

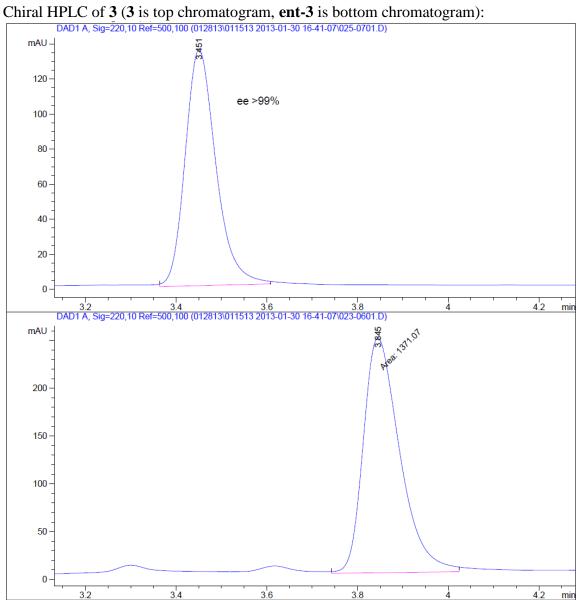

HPLC of crude **21**:

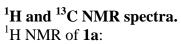

HPLC of crude 23:

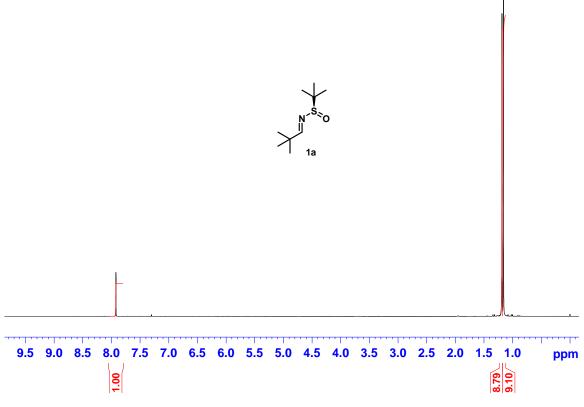

HPLC of crude 25:

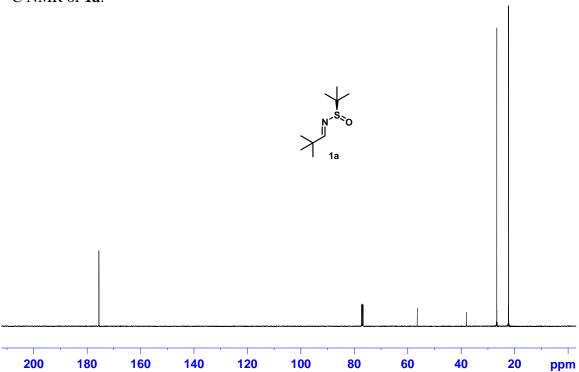

HPLC of crude 27:

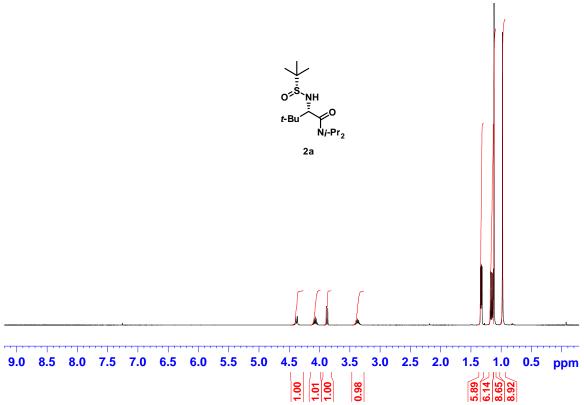

HPLC of crude 29:

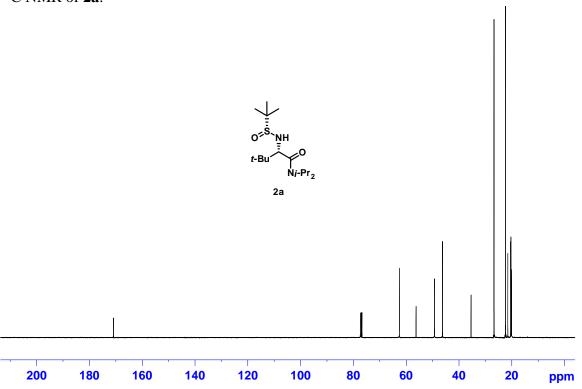


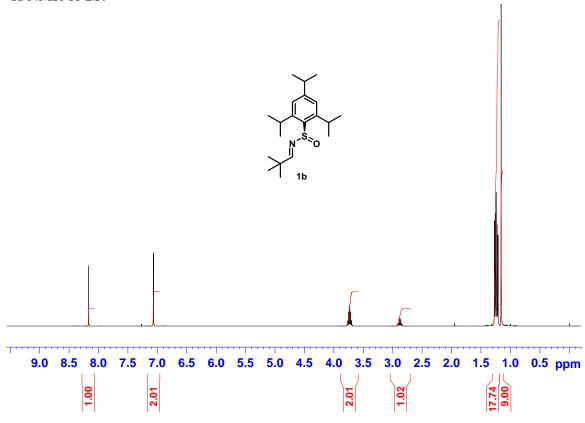

HPLC of crude **31**:

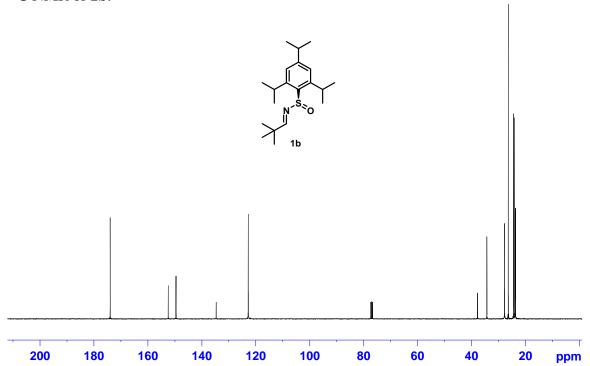

HPLC of crude 33:

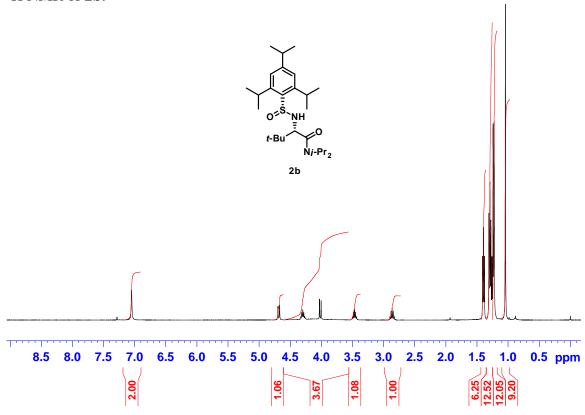


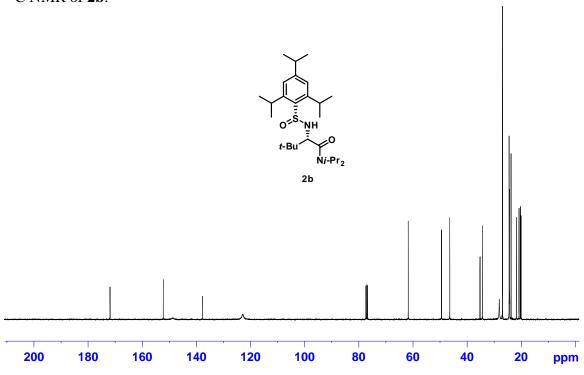


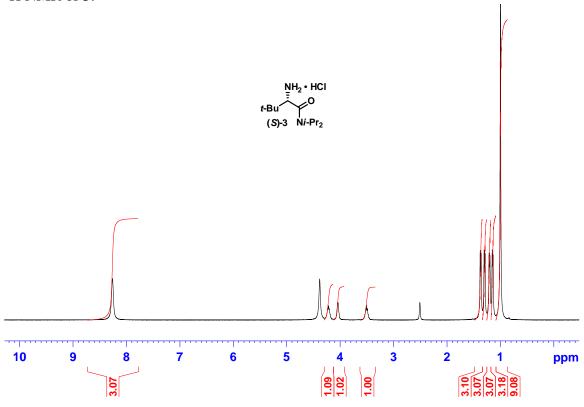


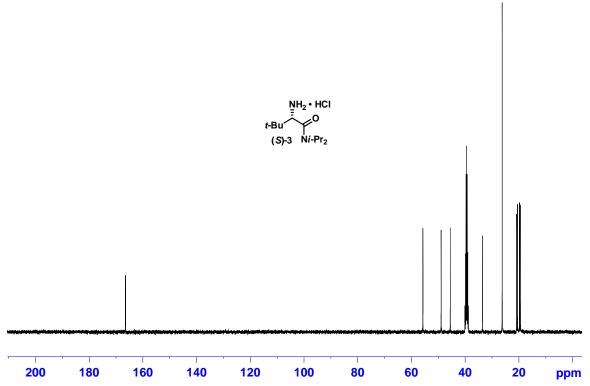


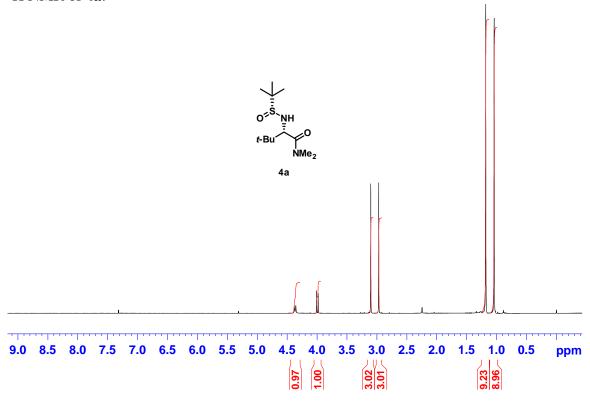


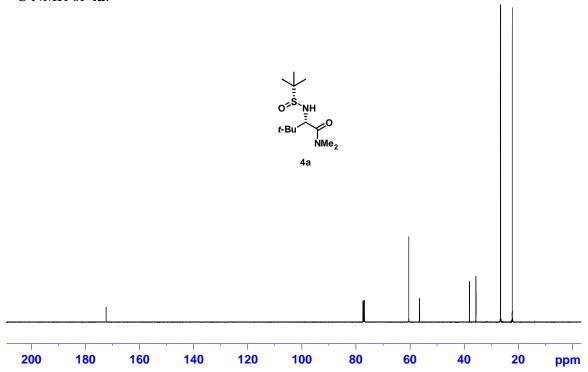


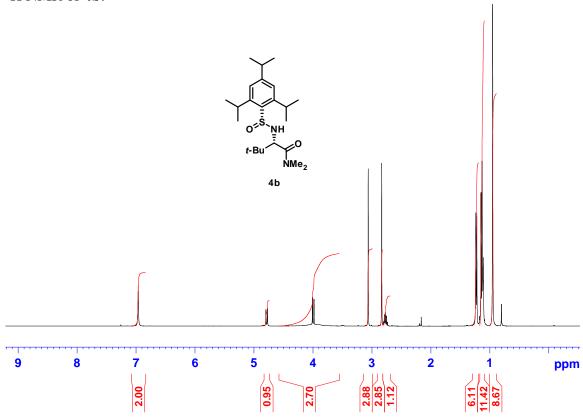

¹³C NMR of **1b**:

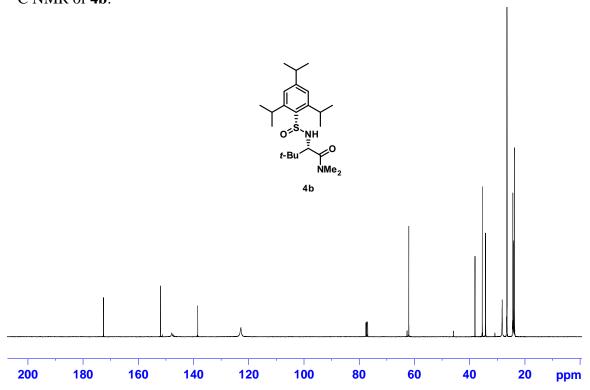


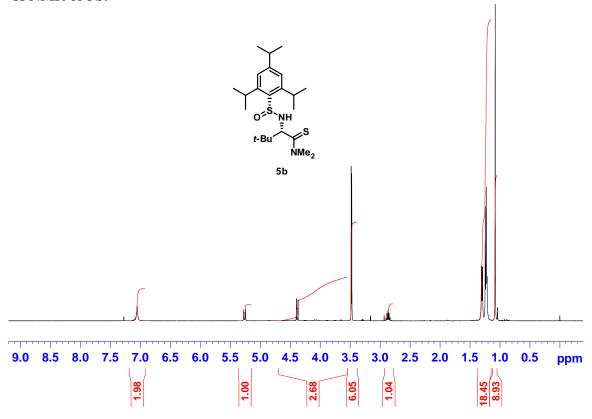

¹³C NMR of **2b**:

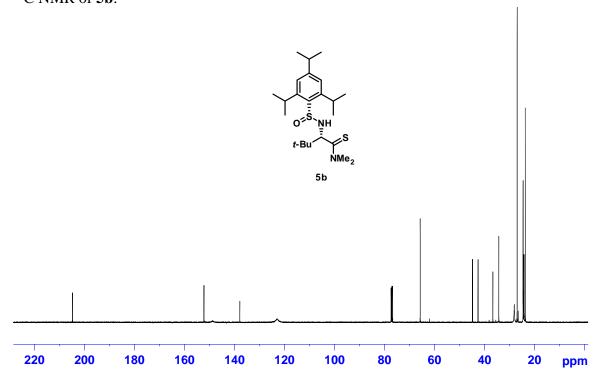


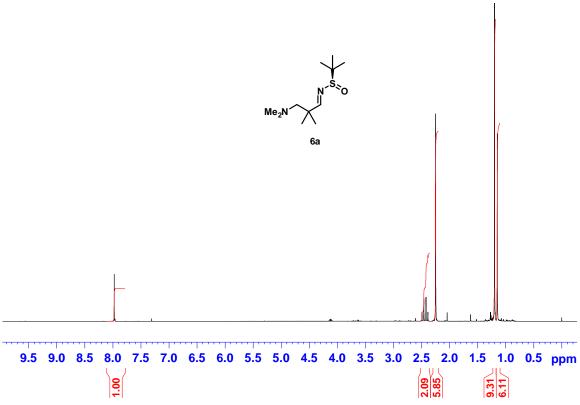


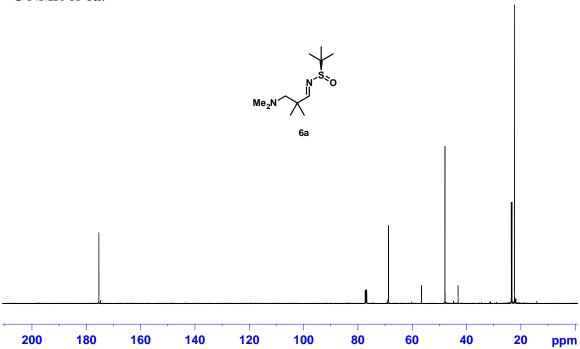


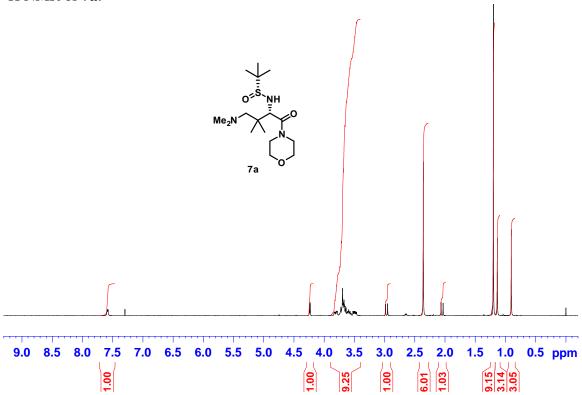

¹³C NMR of **4a**:

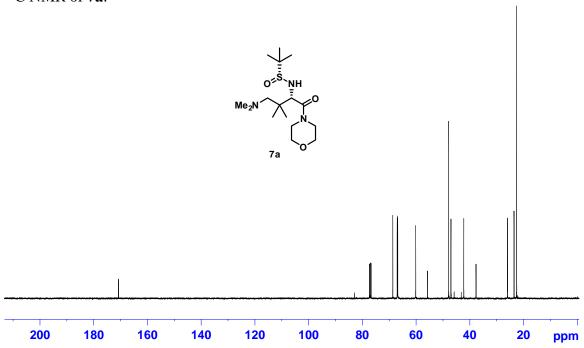


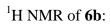

¹³C NMR of **4b**:

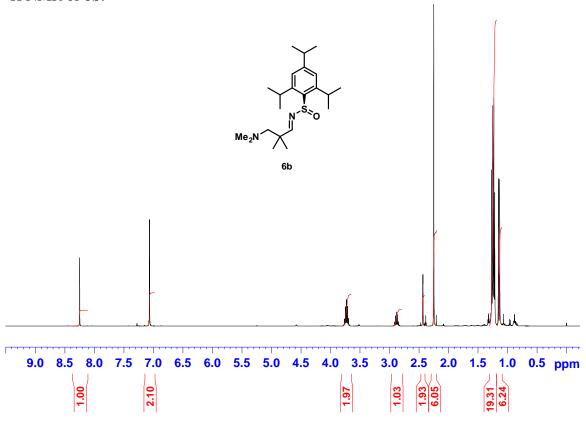


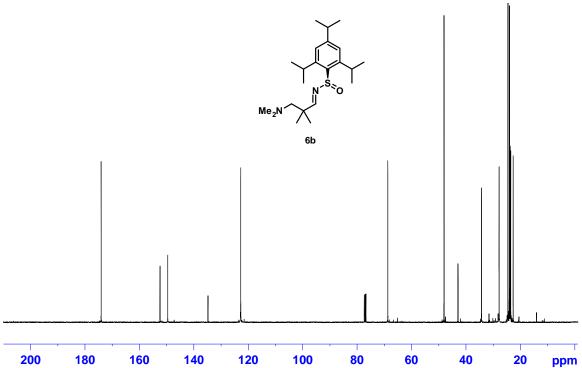

¹³C NMR of **5b**:

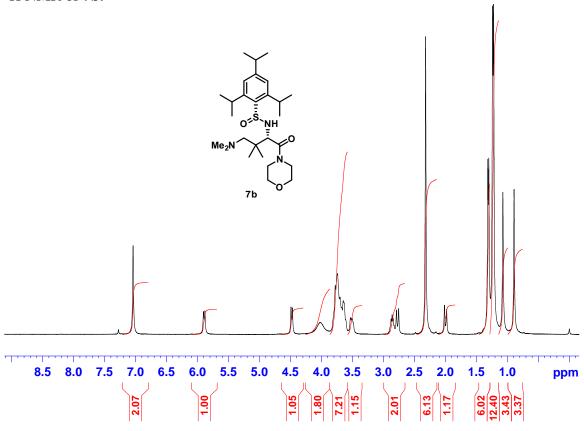


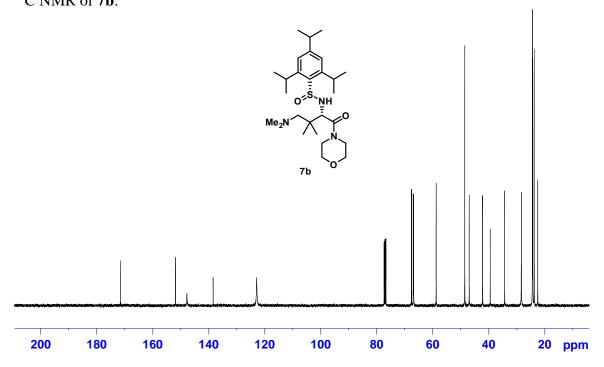

¹³C NMR of **6a**:

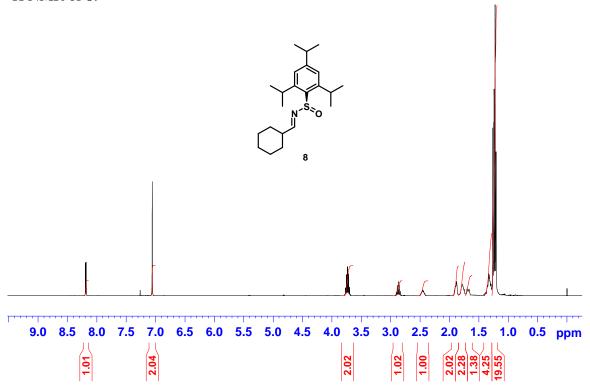


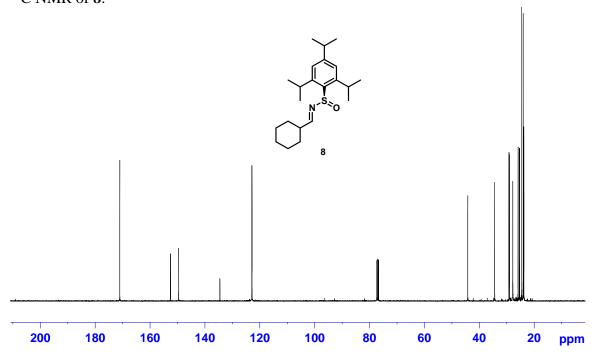


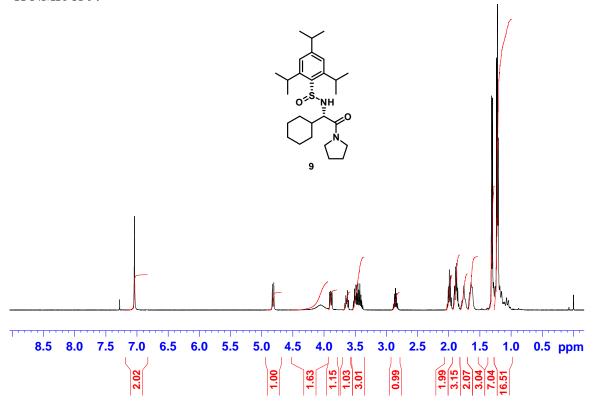

¹³C NMR of **7a**:

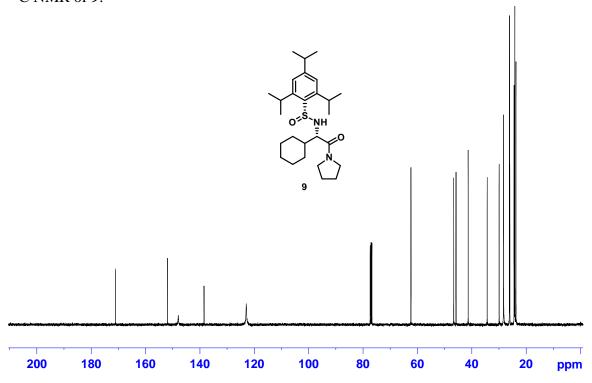


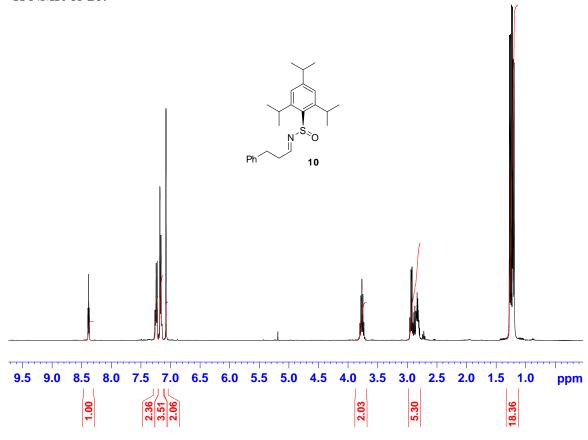

¹³C NMR of **6b**:

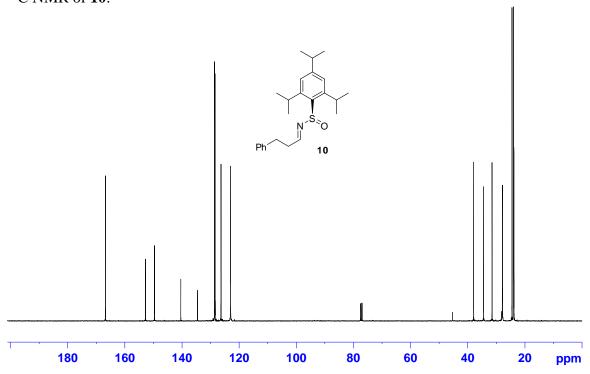


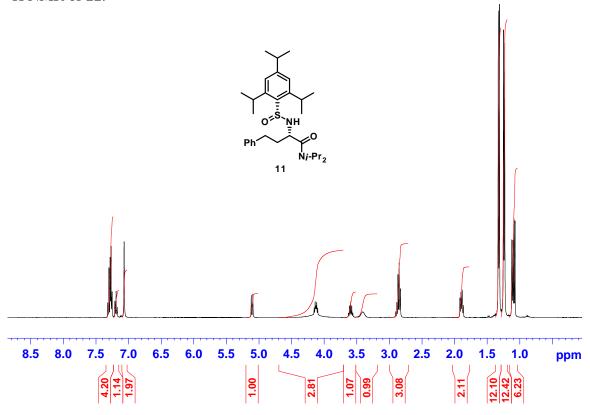

¹³C NMR of **7b**:

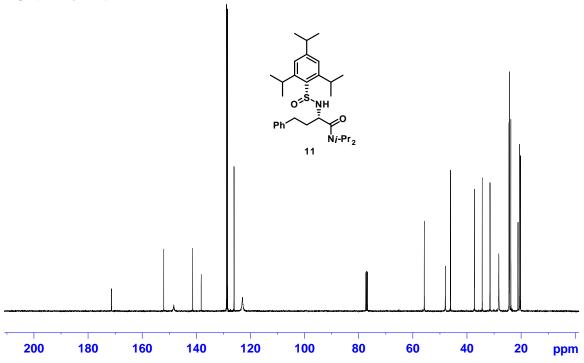


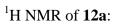

¹³C NMR of **8**:

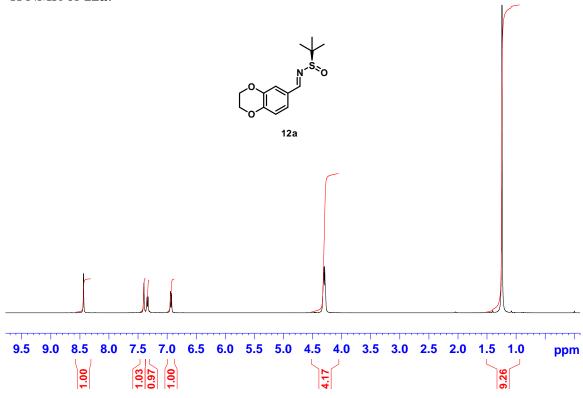


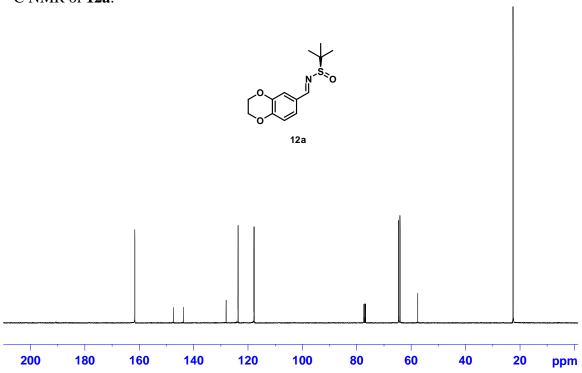

¹³C NMR of **9**:

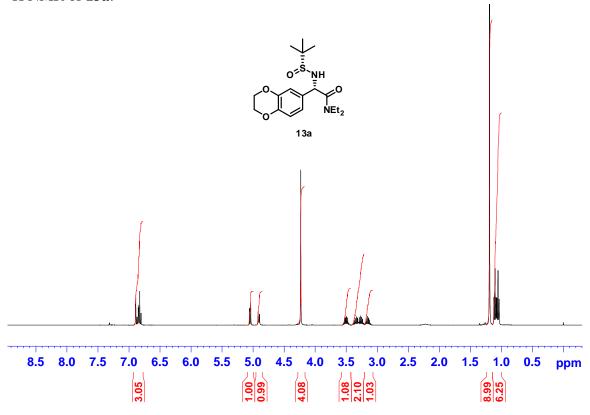


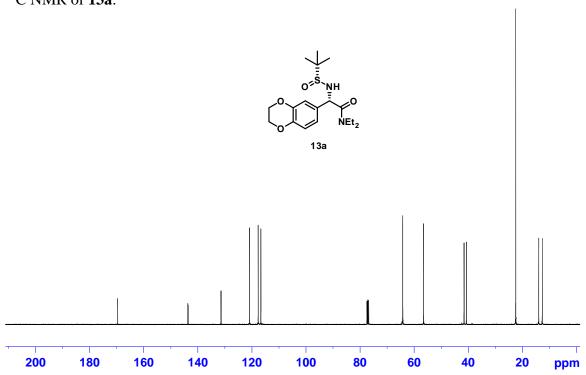

¹³C NMR of **10**:

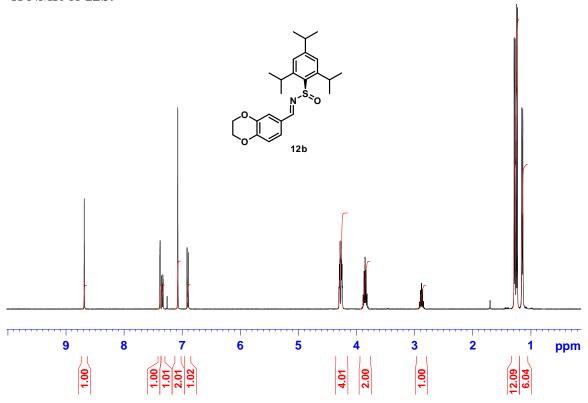


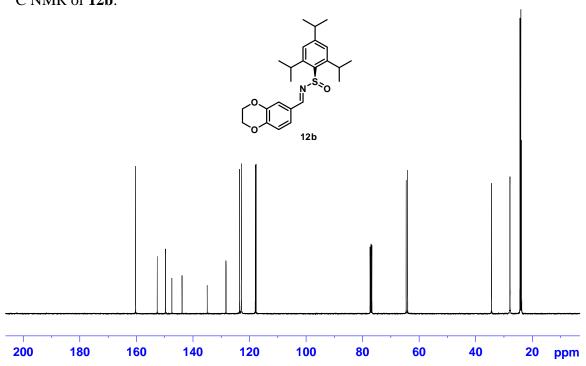


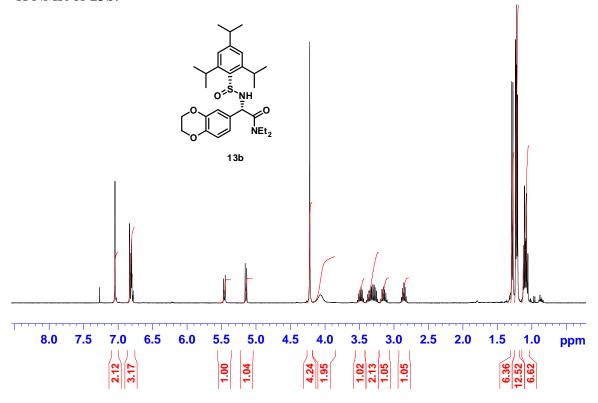


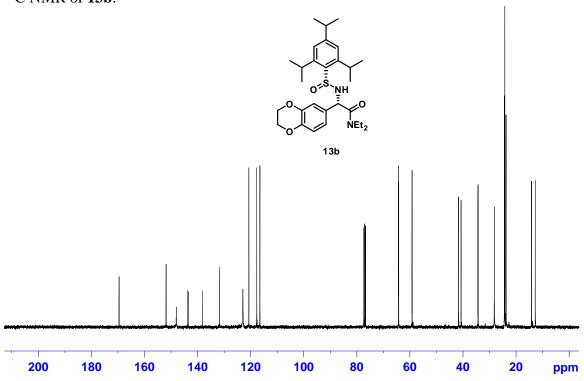


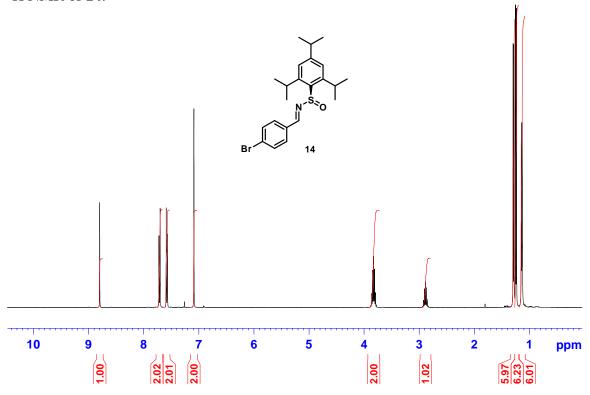

¹³C NMR of **12a**:

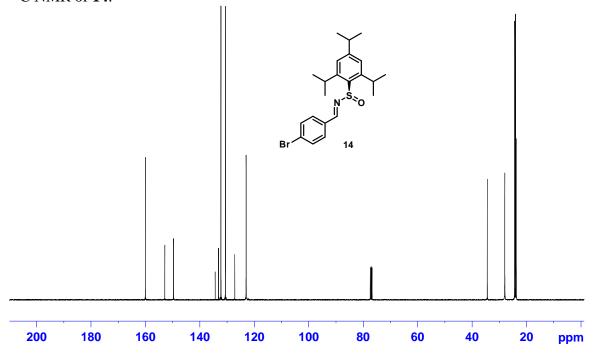


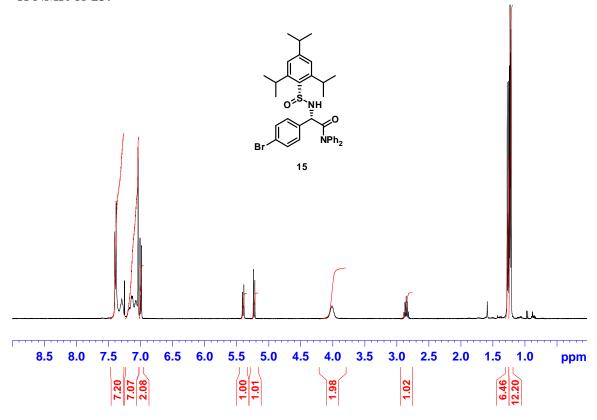

¹³C NMR of **13a**:

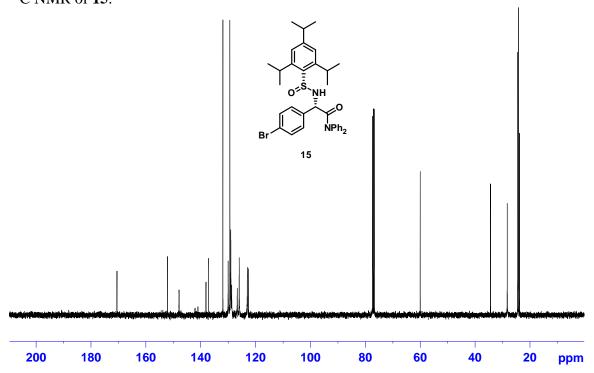

¹H NMR of **12b**:

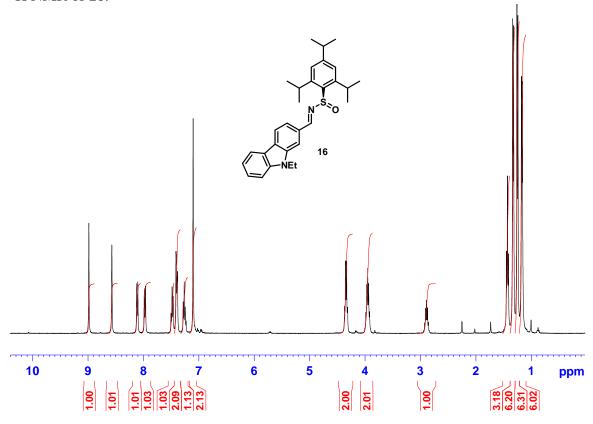

¹³C NMR of **12b**:

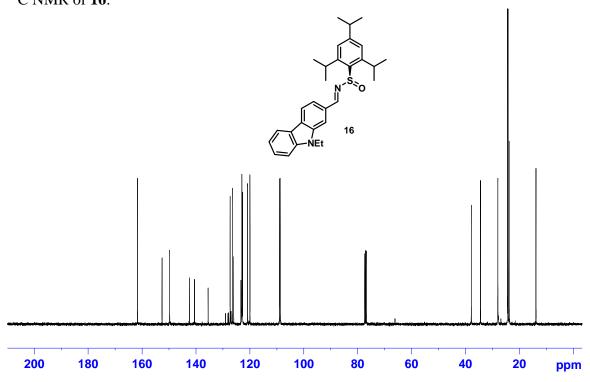

¹H NMR of **13b**:


¹³C NMR of **13b**:

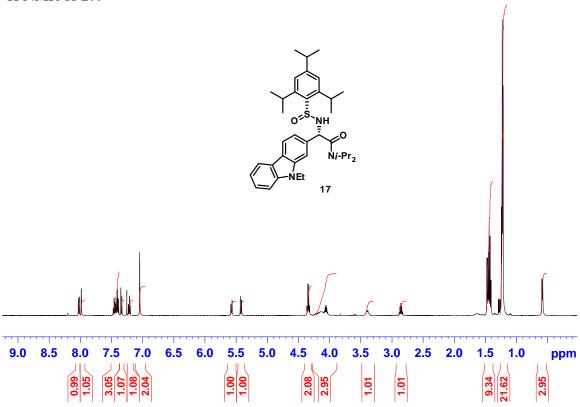


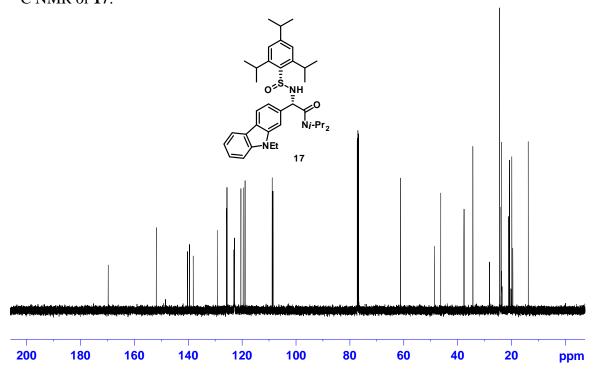


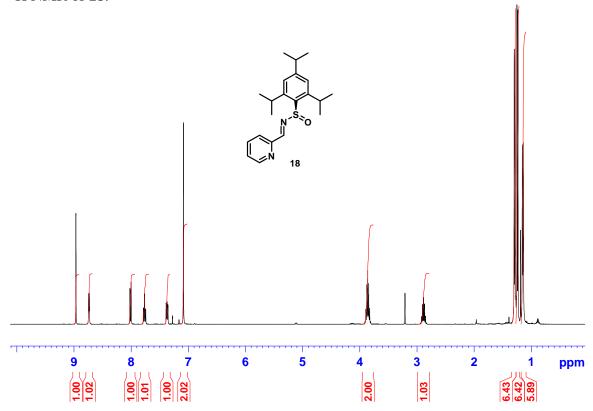

¹H NMR of **15**:

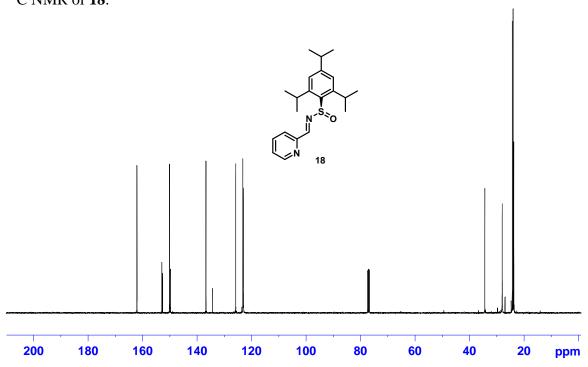

¹³C NMR of **15**:

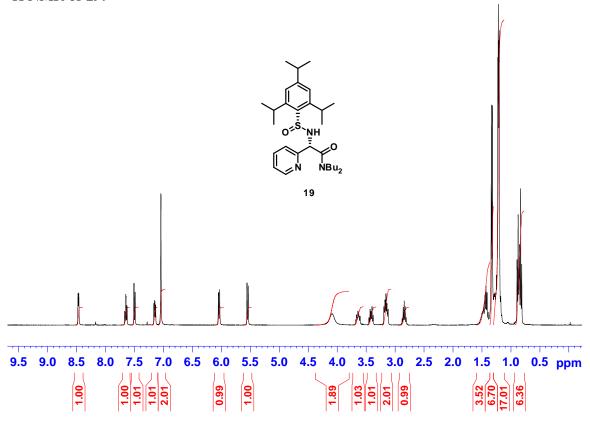


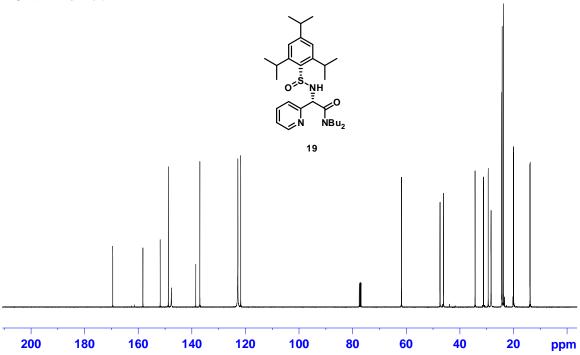

¹H NMR of **16**:

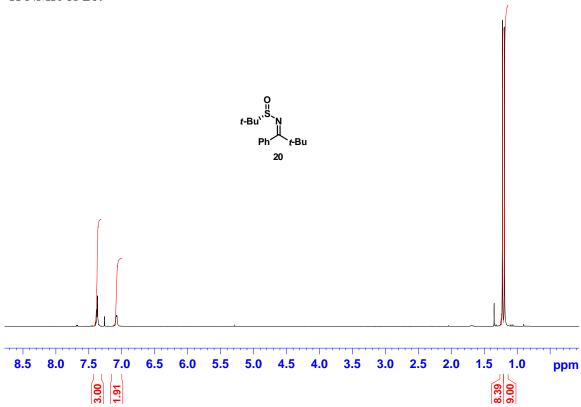

¹³C NMR of **16**:

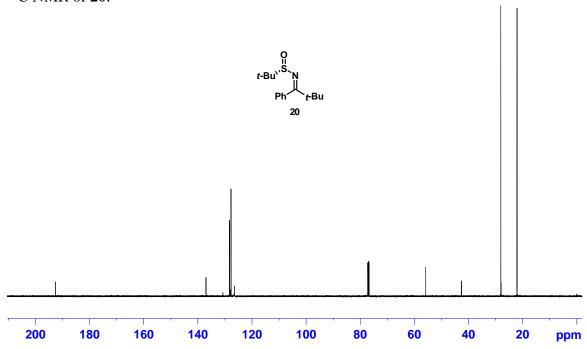


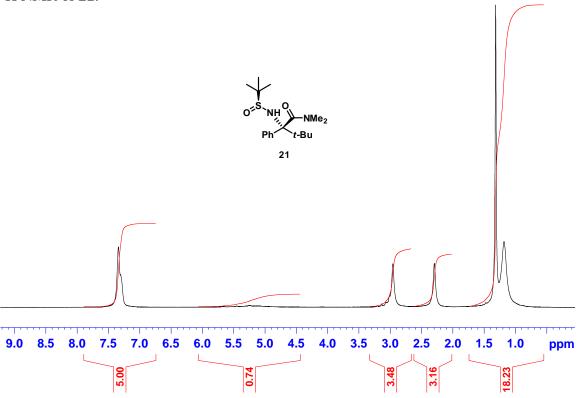

¹³C NMR of **17**:

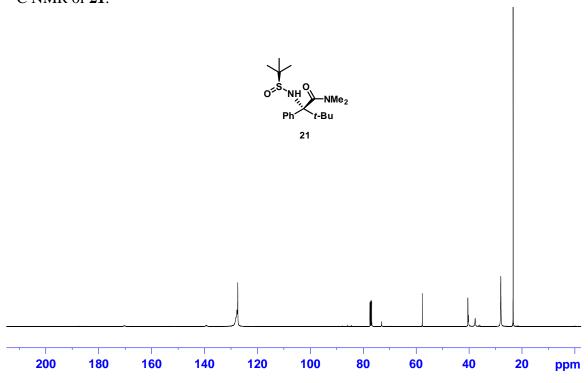

¹H NMR of **18**:

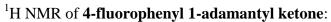

¹³C NMR of **18**:

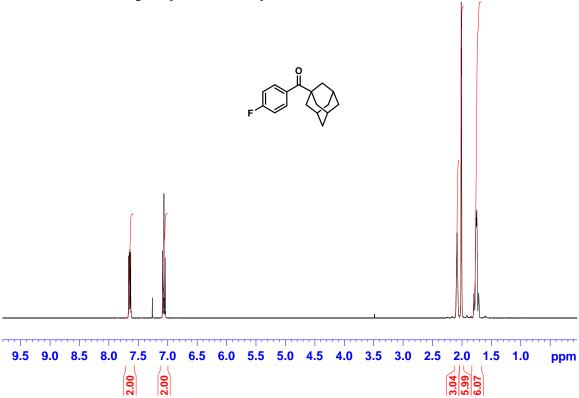


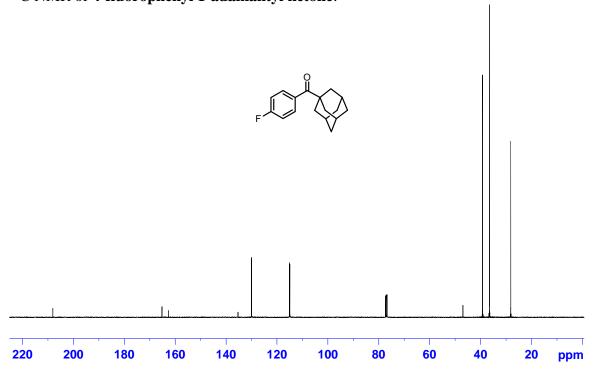


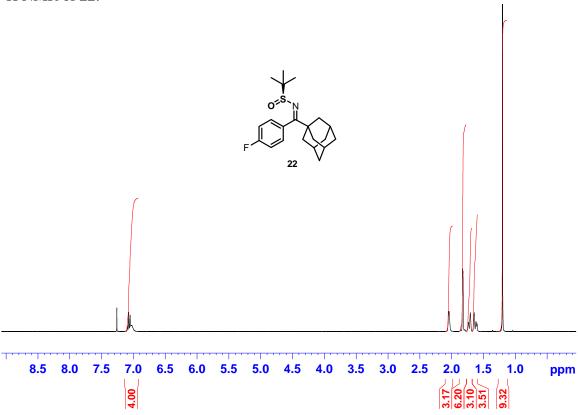


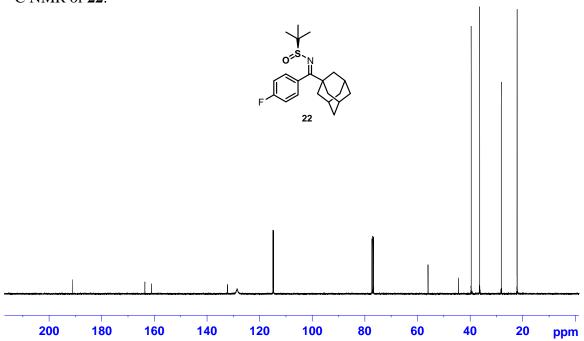

¹³C NMR of **20**:

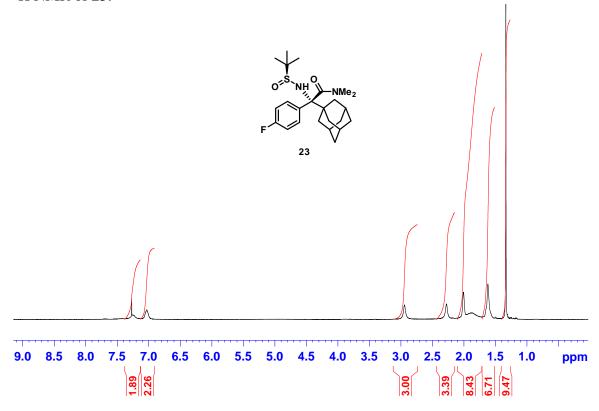


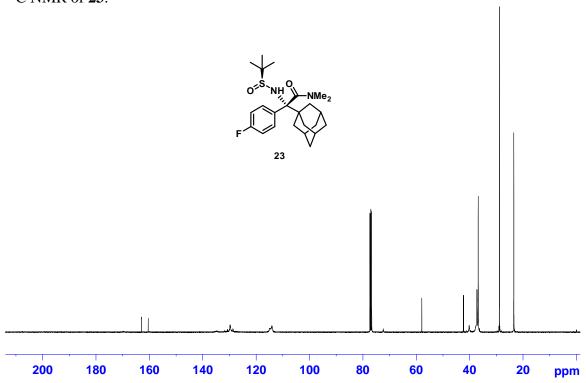


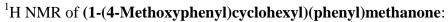

¹³C NMR of **21**:

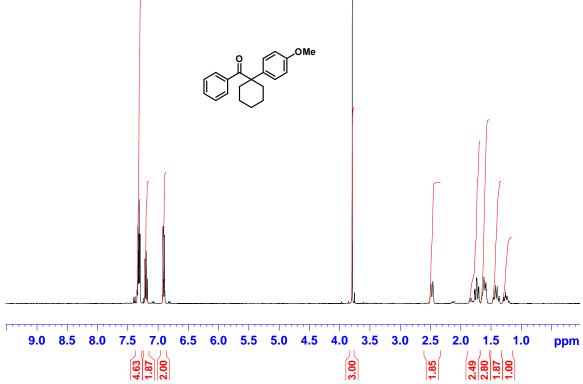


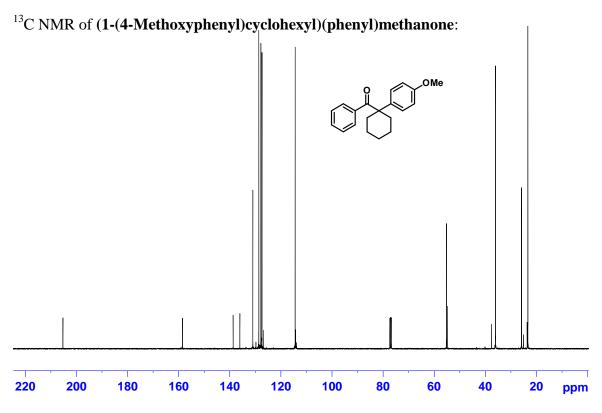

¹³C NMR of **4-fluorophenyl 1-adamantyl ketone**:



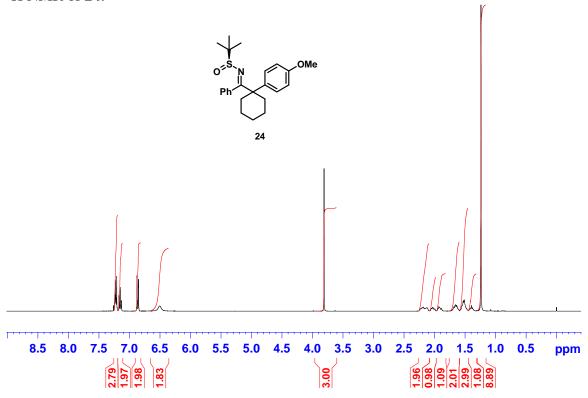

¹³C NMR of **22**:

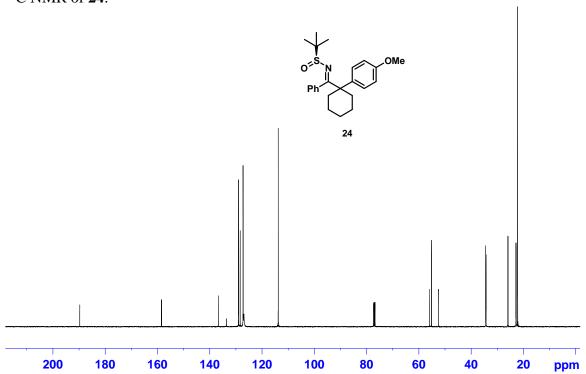


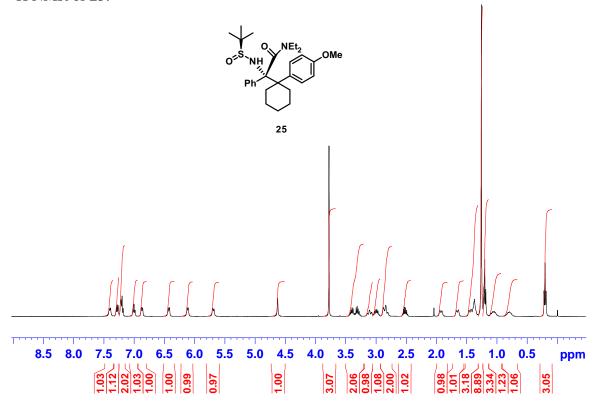


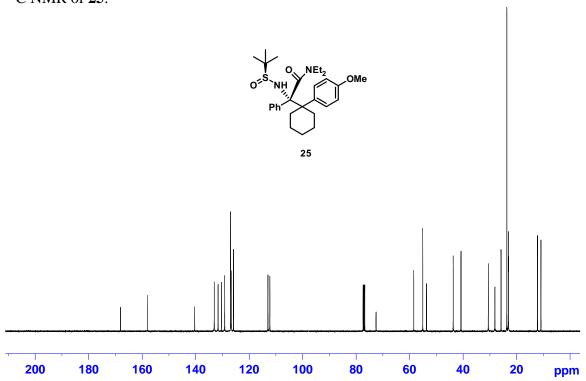


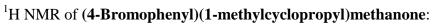
¹³C NMR of **23**:

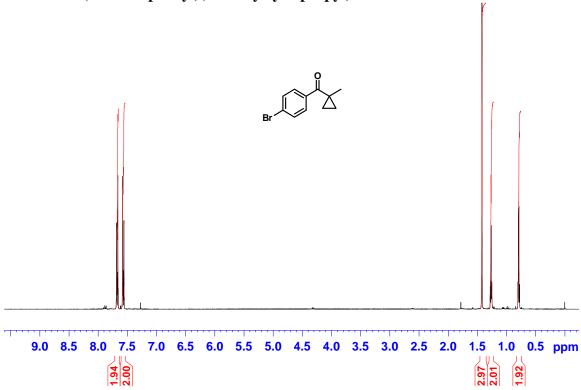


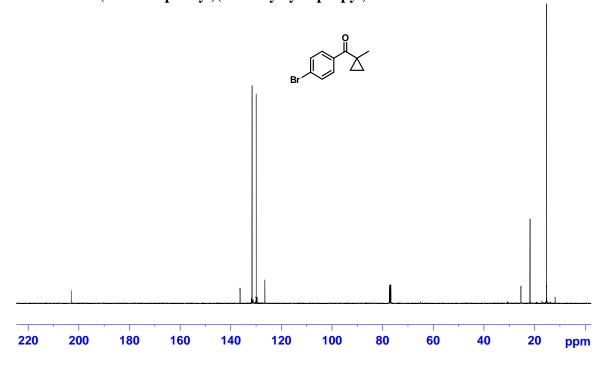


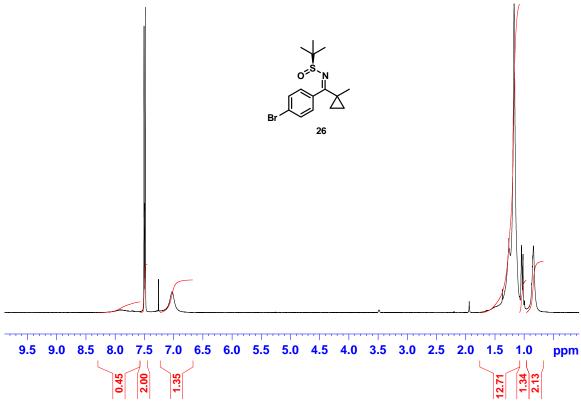


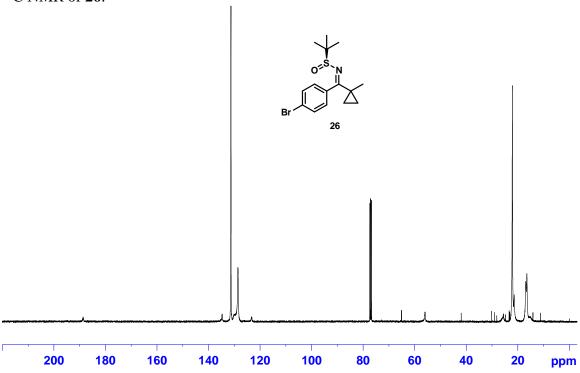

¹³C NMR of **24**:

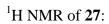



¹H NMR of **25**:

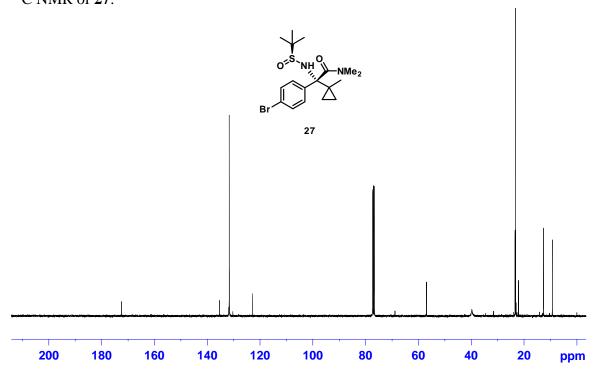

¹³C NMR of **25**:

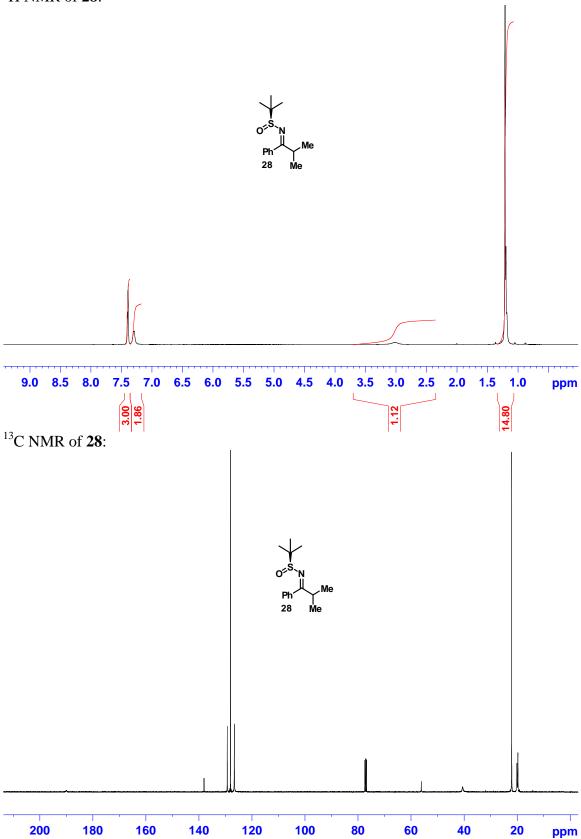


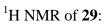

 $^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{of}\ (\mathbf{4\text{-}Bromophenyl}) (\mathbf{1\text{-}methylcyclopropyl})$ methanone:

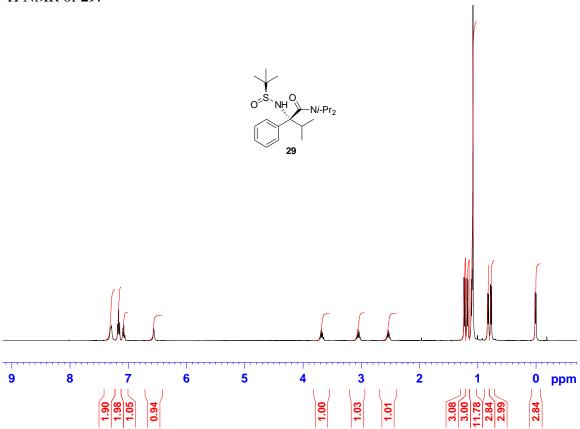


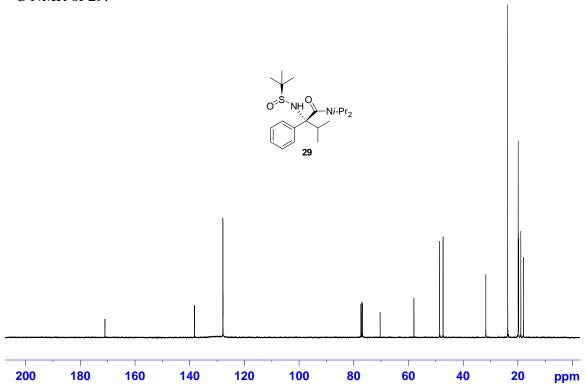


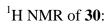

¹³C NMR of **26**:

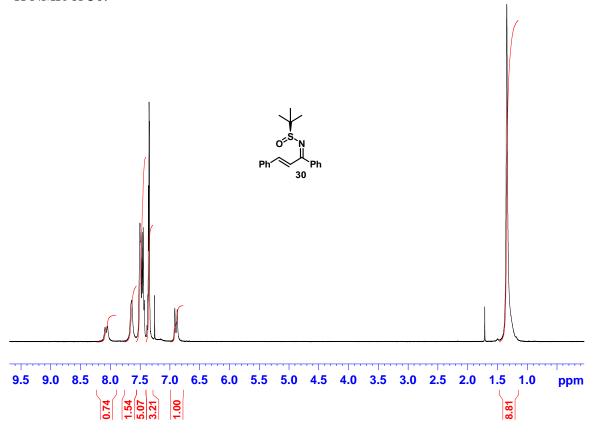


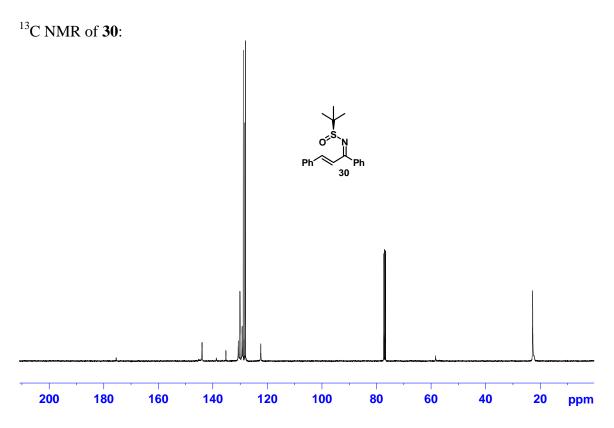


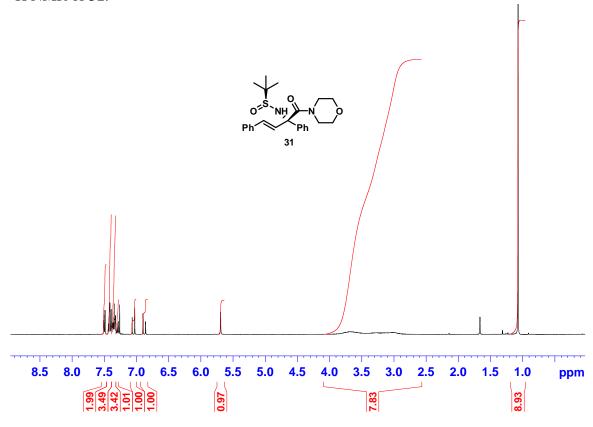

¹³C NMR of **27**:

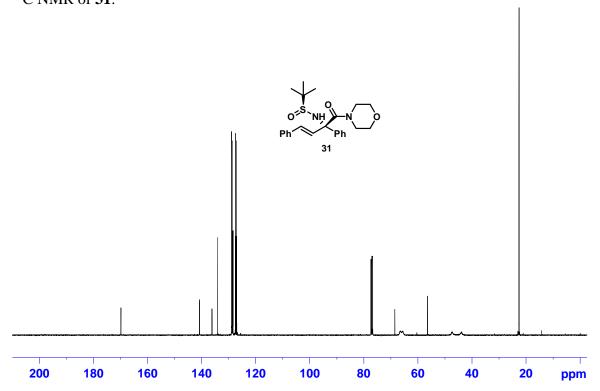


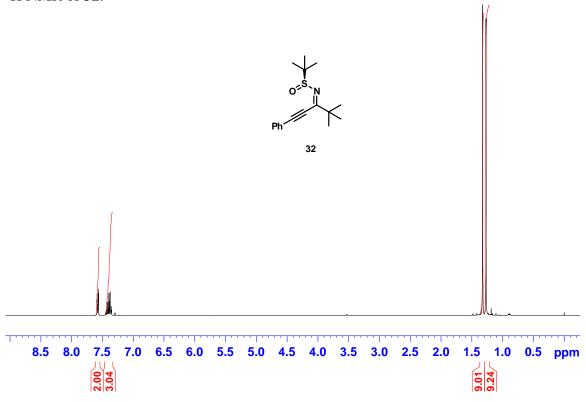


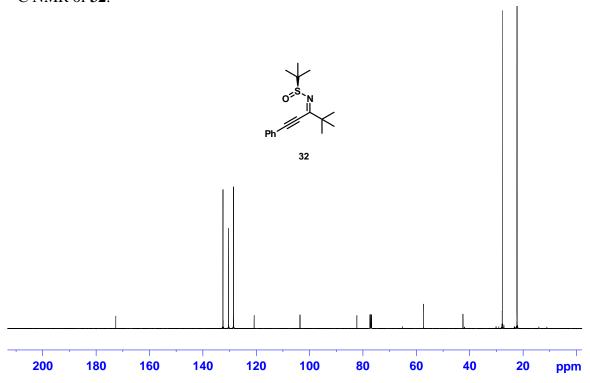


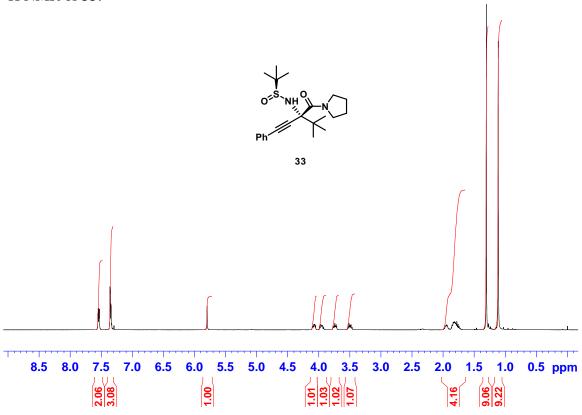


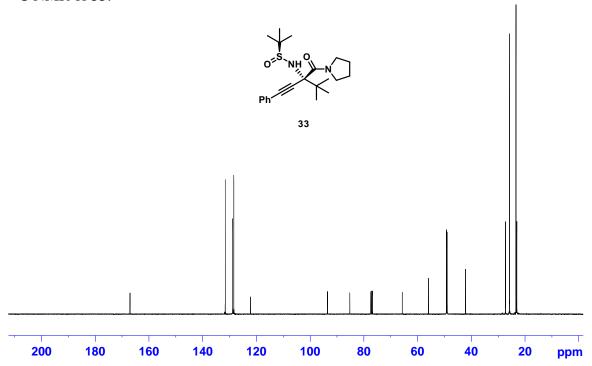


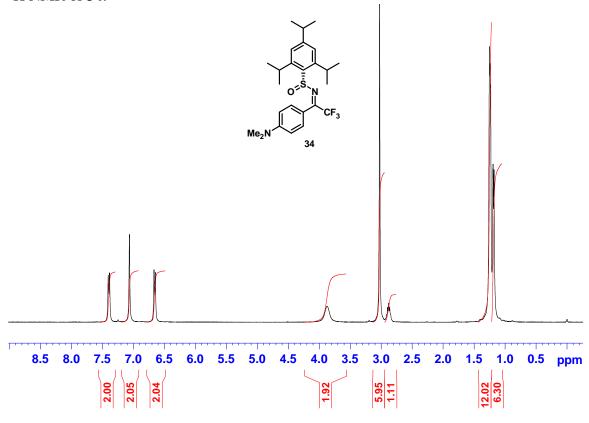


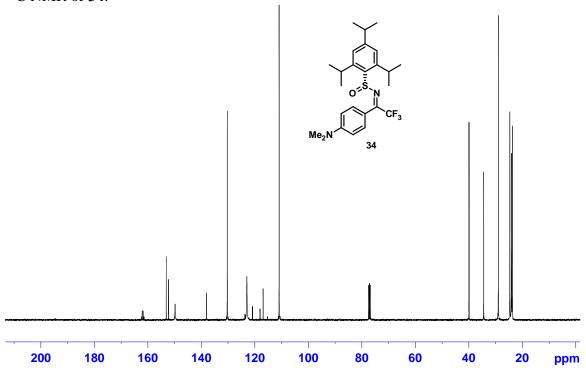


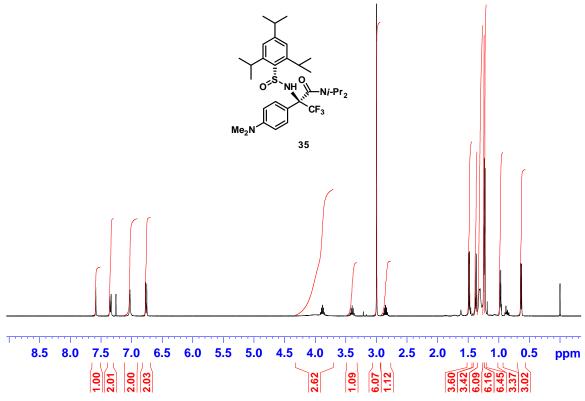

¹³C NMR of **31**:

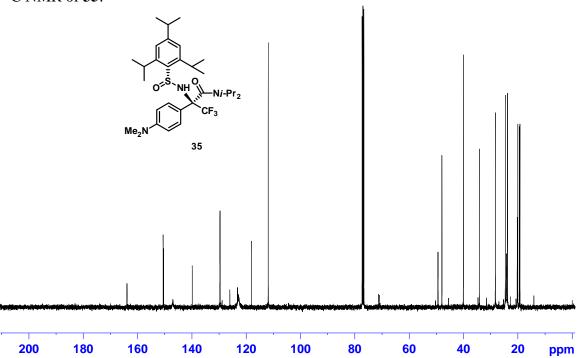


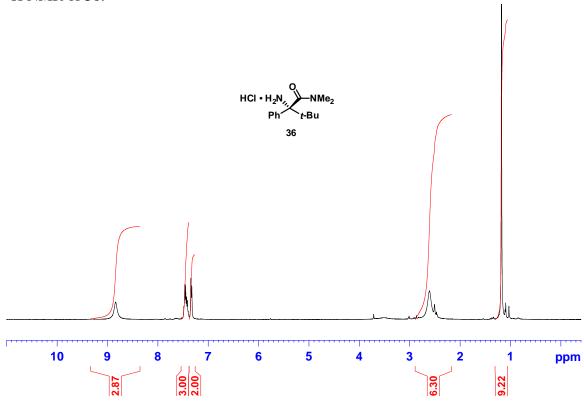

¹³C NMR of **32**:

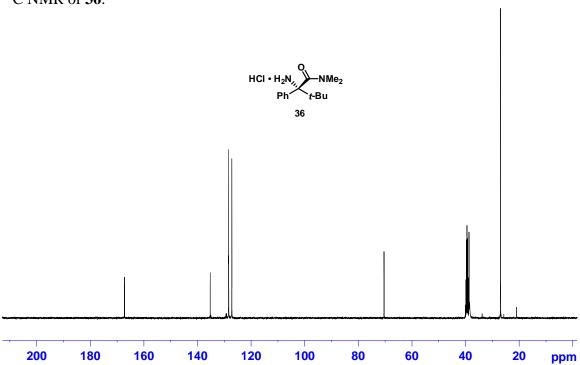


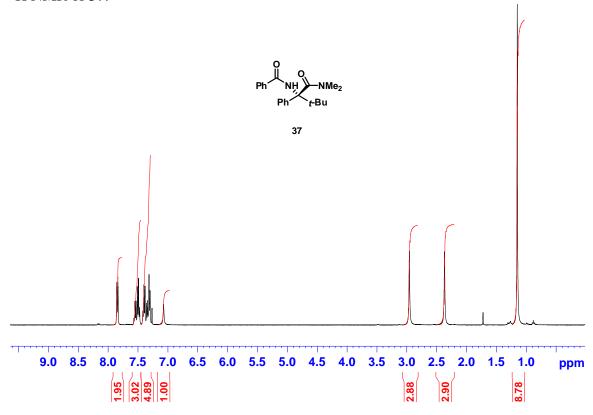

¹³C NMR of **33**:

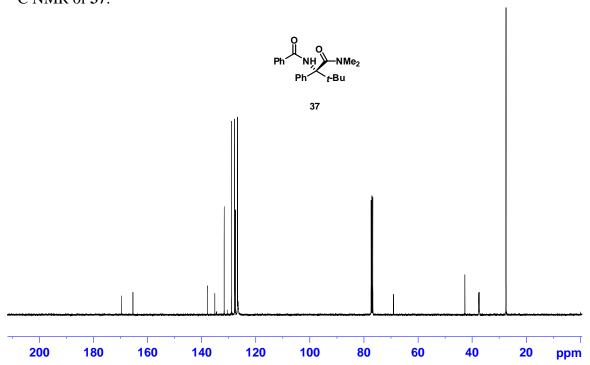


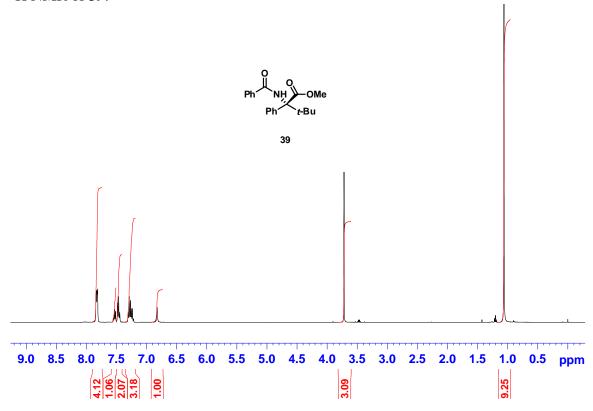

¹³C NMR of **34**:

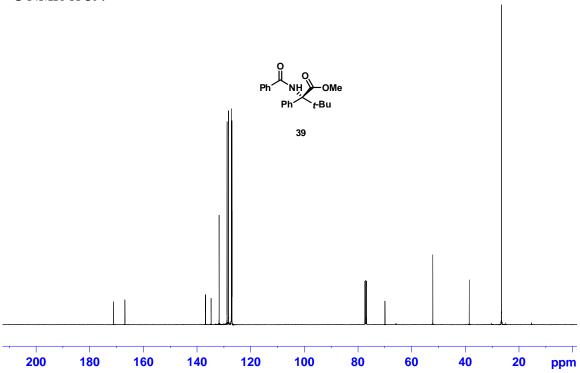


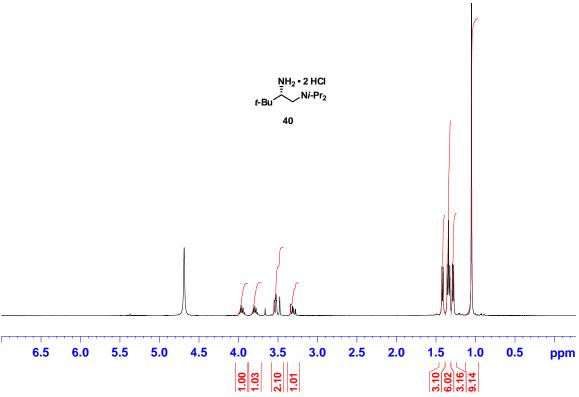


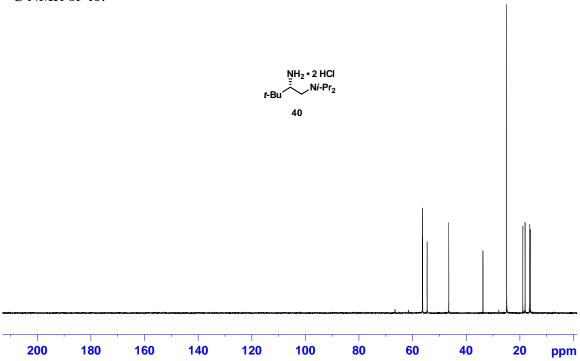


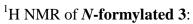




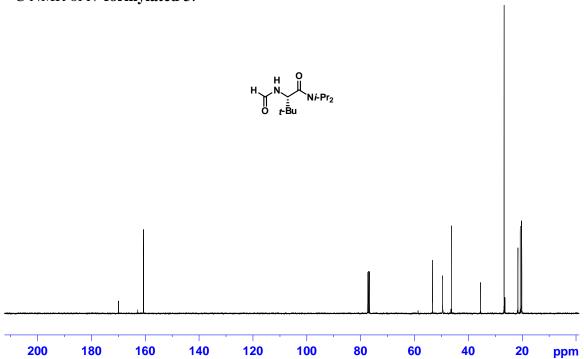


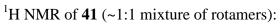


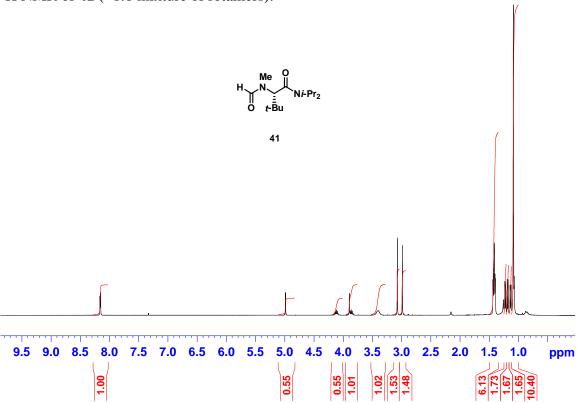


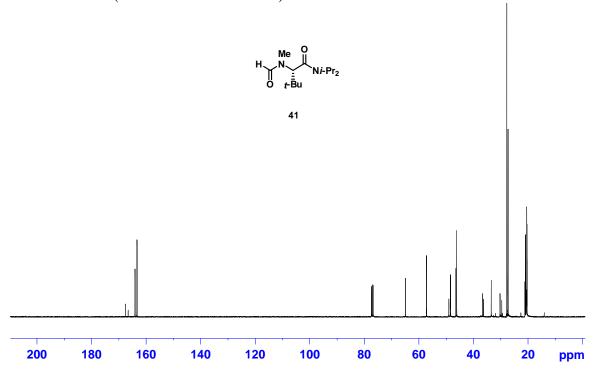


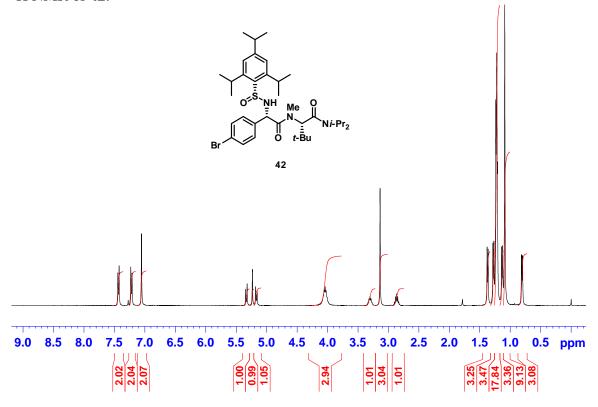


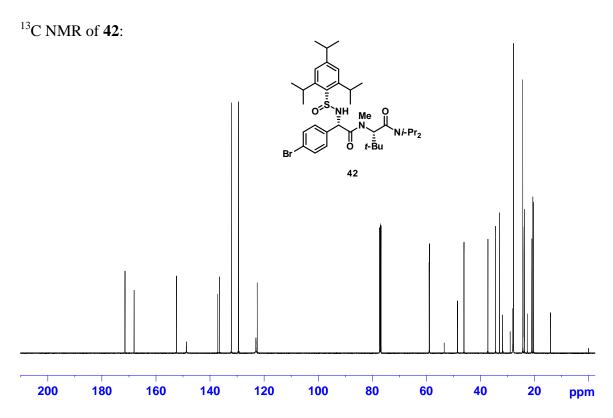


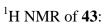





¹³C NMR of *N*-formylated 3:






¹³C NMR of **41** (~1:1 mixture of rotamers):

