Carbamoyl Anion Addition to N-Sulfinylimines: Highly Diastereoselective Synthesis of α-Amino Amides

Jonathan T. Reeves,* Zhulin Tan, Melissa A. Herbage, Zhengxu S. Han, Maurice A. Marsini, Zhibin Li, Guisheng Li, Yibo Xu, Keith R. Fandrick, Nina C. Gonnella, Scot Campbell, Shengli Ma, Nelu Grinberg, Heewon Lee, Bruce Z. Lu, and Chris H. Senanayake
Chemical Development and Analytical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road/P.O. Box 368, Ridgefield, Connecticut 06877-0368, USA
jonathan.reeves@boehringer-ingelheim.com

Supporting Information

General--1
Procedures and data for N-sulfinylimines--------- 3
Procedures and data for α-aminoamides---------- 15
Procedures and data for ester synthesis----------- 27
Procedure and data for diamine synthesis ------- 29
Procedures and data for dipeptide synthesis----- 29
Synthesis of ${ }^{13} \mathrm{C}$-labeled DIPF and low
temperature ${ }^{13} \mathrm{C}$ NMR experiment---------------- 31
Computational modeling studies------------------- 32
HPLC spectra of crude α-aminoamides---------- 39
Chiral HPLC spectrum of 3------------------------- 50
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds------- 51

General. All starting materials and reagents were purchased from commercial sources and used as received unless otherwise noted. (R) - and (S)-tert-butanesulfinamide ($>99 \%$ ee) and (R)-2,4,6-triisopropylphenylsulfinamide ($>99 \%$ ee) were purchased from AstaTech, Inc. Melting points are uncorrected. Optical rotations were measured on a Perkin-Elmer polarimeter. NMR spectra were recorded on Bruker 400 or 500 MHz instruments. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were referenced to the internal deuterated solvent relative to TMS at 0 ppm . High resolution mass spectroscopy (HRMS) was performed on a TOF instrument with ESI in positive ionization mode. Flash chromatography was performed on a Combi-Flash automated system with silica columns. HPLC analysis for reaction monitoring and diastereoselectivity determination was performed on an Agilent

1100 LC system with one of the following three methods (the method used is listed in the experimental part for each addition product): Method A: TSK-gel SuperODS column (ID 4.6 mm , length 5.0 cm), detection at 220 nm , run time 5 min , mobile phase $A=$ water with 0.2% TFA, mobile phase $\mathrm{B}=\mathrm{MeCN}$ with $0.2 \% \mathrm{TFA}$, ramp from 10% B to 90% B in 3.5 min , hold at 90% B until 5 min , column temperature $25^{\circ} \mathrm{C}$; Method B: SB Phenyl column (ID 4.6 mm , length 10.0 cm), detection at 220 nm , run time 30 min , mobile phase $\mathrm{A}=$ water with $0.2 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, mobile phase $\mathrm{B}=\mathrm{MeOH}$, ramp from 65 to $75 \% \mathrm{~B}$ in 14 min , ramp from 75% B to 85% B from 14 to 25 min , ramp from 85% B to 90% B from 25 to 30 min, column temperature $25^{\circ} \mathrm{C}$; Method C: Chiralpak AD-3 column (ID 4.6 mm , length 15.0 cm), detection at 220 nm , run time 6.0 min , isocratic $65 / 35$ heptane/isopropanol, column temperature $35{ }^{\circ} \mathrm{C}$. Chiral HPLC analysis of $\mathbf{3}$ was performed using the following method: Chiralpak AD-3 column (ID 4.6 mm , length 15.0 cm), detection at 230 nm , run time 8.5 min , isocratic 94/6 heptane/isopropanol, column temperature $25^{\circ} \mathrm{C}$.

4,4-Dimethyl-1-phenylpent-1-yn-3-one, the ketone used to prepare TBS ketimine 32, was prepared by the procedure of Kim and co-workers $\left(\mathrm{ZnBr}_{2}\right.$ mediated coupling of trimethylacetyl chloride with phenylacetylene). ${ }^{1}$

Sulfinyl aldimines were prepared by the $\mathrm{Ti}(\mathrm{OEt})_{4}$ procedure of Ellman and coworkers, with some modifications in the workup. ${ }^{2}$ Instead of adding the reaction mixtures to brine, the reaction mixtures were diluted with EtOAc and treated with a small amount of water to effect controlled formation of TiO_{2}. This procedure allowed the subsequent filtration of TiO_{2} to proceed more quickly. Sulfinyl ketimines were prepared by a modified procedure, using neat $\mathrm{Ti}(\mathrm{OEt})_{4}$ (no co-solvent). This resulted in much faster reactions than when a co-solvent was used.

Stereochemistry Assignments. The stereochemistry of aldimine addition product $\mathbf{2 b}$ was assigned from X-ray crystal structure determination. The stereochemistry of aldimine addition product 2a was determined by comparision of the chiral HPLC of $\mathbf{3}$ obtained by deprotection of its tert-butanesulfinyl group with $\mathbf{3}$ obtained by deprotection of the 2,4,6-triisopropylphenylsulfinyl group of $\mathbf{2 b}$. Both 2a and 2b gave the same (S)enantiomer of $\mathbf{3}$ after sulfinyl deprotection. All the other aldimine addition products in Table 1 were inferred to have the same relative stereochemistry based on the assignments of $\mathbf{2 a}$ and $\mathbf{2 b}$. The stereochemistry of ketimine addition product $\mathbf{2 1}$ was assigned from Xray crystal structure determination. All the other ketimine addition products in Table 2 were inferred to have the same relative stereochemistry based on the assignment of $\mathbf{2 1}$. The stereochemistry of dipeptide $\mathbf{4 2}$ was assigned by X-ray crystal structure determination.

Diastereoselectivity Determination. The reaction diastereoselectivity was determined from the crude reaction mixture by HPLC analysis. Authentic mixtures of diastereomers were prepared from the purified product by the procedure of Ellman and co-workers. ${ }^{3}$ In the case of ketimine derived substrates 21, 23, 25, 27, 29, 31, and 33, this procedure was not effective for generating the diastereomeric mixture (sulfinyl deprotection occurred, but re-sulfinylation did not occur on addition of $\mathrm{Et}_{3} \mathrm{~N}$, likely due to the sterically hindered nature of these amines). For these substrates, after sulfinyl

[^0]deprotection was complete, excess commercially available racemic tert-butanesulfinyl chloride (10-20 equiv) was added followed by $\mathrm{Et}_{3} \mathrm{~N}$ (20-40 equiv). For TIPPS ketimine addition product 35 , authentic diastereomer preparation was not possible, and the reaction diastereoselectivity was estimated as $>97: 3$ by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture (the minor diastereomer was not detected). Likewise, in the formation of dipeptide 42, the diastereoselectivity of the addition reaction was estimated as $>97: 3$ by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture (the minor diastereomer was not detected).

Procedures and data for \boldsymbol{N}-sulfinylimines.

(R)- \boldsymbol{N}-(2,2-Dimethylpropylidene)-2-methylpropane-2-sulfinamide (1a). To a flask containing (R)-tert-butanesulfinamide ($5.00 \mathrm{~g}, 41.3 \mathrm{mmol}, 1.0$ equiv) and THF (17 mL) was added trimethylacetaldehyde ($5.38 \mathrm{~mL}, 49.5 \mathrm{mmol}, 1.2$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}$ ($17.3 \mathrm{~mL}, 82.5 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred at rt for 5 h , and then diluted with MTBE (150 mL). Water $(5.0 \mathrm{~mL})$ was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with MTBE (50 mL), and the filtrate was washed with water ($3 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to an oil. The oil was further dried under vacuum to give the product ($5.70 \mathrm{~g}, 73 \%$ yield) as an oil which crystallized on standing to a white solid. mp $37-39{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-267.0\left(c 3.23, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (s, 1 H), 1.19 (s, 9 H), 1.16 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.6,56.5,37.9,26.7,22.3$; HRMS: calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]$: 190.1260. Found: 190.1261.

(R)- N-(2,2-Dimethylpropylidene)-2,4,6-triisopropylbenzenesulfinamide (1b). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide ($10.00 \mathrm{~g}, 37.4 \mathrm{mmol}, 1.0$ equiv) and THF (31 mL) was added trimethylacetaldehyde ($10.0 \mathrm{~mL}, 92.1 \mathrm{mmol}, 2.5$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(31.0 \mathrm{~mL}, 149.6 \mathrm{mmol}, 4.0$ equiv $)$. The reaction mixture was stirred at rt for 16 h , and then diluted with EtOAc (300 mL). Water $(10.0 \mathrm{~mL})$ was added
dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to an oil. The oil was chased with MeOH , and subsequent crystallization from MeOH at $0^{\circ} \mathrm{C}$ gave the pure product $(10.65 \mathrm{~g}, 85 \%$ yield) as an off-white solid. mp $89-90{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-208.0\left(c 3.64, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~s}, 1 \mathrm{H})$, $7.07(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 18 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0,152.5,149.6,134.7,122.9,37.9,34.4,27.8,26.4$, 24.5, 24.1, 23.8, 23.7; HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]$: 336.2356. Found: 336.2354 .

(R)-N-(3-(Dimethylamino)-2,2-dimethylpropylidene)-2-methylpropane-2-sulfin-
amide (6a). To a flask containing (R)-tert-butanesulfinamide ($4.69 \mathrm{~g}, 38.7 \mathrm{mmol}, 1.0$ equiv) and THF (16 mL) was added 3-(dimethylamino)-2,2-dimethylpropanal (5.00 g , $38.7 \mathrm{mmol}, 1.0$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(16.2 \mathrm{~mL}, 77.4 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred at rt for 16 h , and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water ($3 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} (10 to $70 \% \mathrm{EtOAc} /$ hexanes) to give the pure product (4.34 g , 48% yield) as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}-213.6\left(c 6.27, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.98(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}$, 9 H), 1.15 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,68.8,56.6,48.0,43.1,23.6$, 23.3, 22.3; HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]:$ 233.1682. Found: 233.1677.

(R)- N -(3-(Dimethylamino)-2,2-dimethylpropylidene)-2,4,6-triisopropylbenzene-
sulfinamide ($\mathbf{6 b}$). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (5.00 $\mathrm{g}, 18.7 \mathrm{mmol}, 1.0$ equiv) and THF (15 mL) was added 3-(dimethylamino)-2,2dimethylpropanal ($3.62 \mathrm{~g}, 28.0 \mathrm{mmol}, 1.5$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(15.5 \mathrm{~mL}, 74.8$
mmol, 4.0 equiv). The reaction mixture was stirred at rt for 16 h , and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x $100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} (20 to $40 \% \mathrm{MTBE} /$ hexanes) to give the pure product ($4.75 \mathrm{~g}, 67 \%$ yield) as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}-71.5$ (c 4.49, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.44$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 18 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,152.5,149.6,134.8,122.8,68.8,48.2,43.0,34.4,27.9$, 24.6, 24.0, 23.8, 23.7, 23.6, 22.7; HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]: 379.2778$. Found: 379.2779.

(\boldsymbol{R})- \boldsymbol{N}-(Cyclohexylmethylene)-2,4,6-triisopropylbenzenesulfinamide (8). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide ($5.00 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv) and THF (15 mL) was added cyclohexanecarbaldehyde ($4.53 \mathrm{~mL}, 37.4 \mathrm{mmol}, 2.0$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(15.5 \mathrm{~mL}, 74.8 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at rt for 16 h , and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} ($5 \% \mathrm{MTBE} /$ hexanes) to give the pure product ($5.02 \mathrm{~g}, 74 \%$ yield) as a white solid. mp $80-83{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-156.4\left(c 4.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.06 ($\mathrm{s}, 2 \mathrm{H}$), 3.79-3.69 (m, 2 H), 2.92-2.82 (m, 1 H), 2.51-2.39 (m, 1 H), 1.94$1.65(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.1, 152.6, 149.7, 134.6, 122.9, 44.2, 34.4, 29.2, 29.0, 27.8, 25.8, 25.35, 25.33, 24.5, 24.0, 23.8, 23.7; HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]: 362.2512$. Found: 362.2512.

(\boldsymbol{R})-2,4,6-Triisopropyl- \boldsymbol{N}-(3-phenylpropylidene)benzenesulfinamide (10). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide ($5.48 \mathrm{~g}, 20.5 \mathrm{mmol}, 1.0$ equiv) and THF (17 mL) was added hydrocinnamaldehyde ($3.00 \mathrm{~mL}, 20.5 \mathrm{mmol}, 90.0 \mathrm{wt} . \%, 1.0$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(17.0 \mathrm{~mL}, 82.0 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at rt for 1 h , and then diluted with EtOAc (200 mL). Water $(5.0 \mathrm{~mL})$ was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} (5 to $20 \% \mathrm{MTBE} /$ hexanes) to give the pure product $(5.44 \mathrm{~g}, 69 \%$ yield) as a thick yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}-140.6\left(c 5.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1$ H), 7.28-7.24 (m, 2 H), 7.20-7.16 (m, 3 H), 7.07 ($\mathrm{s}, 2 \mathrm{H}$), 3.81-3.71 (m, 2 H), 2.97-2.80 $(\mathrm{m}, 5 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9$, 152.9, 149.7, 140.5, $134.5,128.6,128.4,126.4,123.0,38.0,34.5,31.5,27.9,24.5,23.9,23.82,23.79$; HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]: 384.2356$. Found: 384.2346.

(R)- N -((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methylene)-2-methylpropane-2-
sulfinamide (12a). To a flask containing (R)-tert-butanesulfinamide ($3.18 \mathrm{~g}, 26.25$ $\mathrm{mmol}, 1.05$ equiv) and 2,3-dihydrobenzo[b][1,4]dioxine-6-carbaldehyde ($4.19 \mathrm{~g}, 25.0$ mmol, 1.0 equiv) was added THF (80 mL) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(15.6 \mathrm{~mL}, 75.0 \mathrm{mmol}$, 3.0 equiv). The reaction mixture was stirred at rt for 16 h , and then poured into ice-cold brine. The resultant slurry was filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} (10 to $60 \% \mathrm{EtOAc} /$ hexanes) to give the pure product ($3.85 \mathrm{~g}, 58 \%$ yield) as an off-white solid. mp 73-74.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-22.2$ (c 3.15, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (s, 1 H), $7.40(\mathrm{br}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.27(\mathrm{~m}, 4 \mathrm{H})$, 1.24 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,147.5,143.8,128.1,123.7,117.8$, 117.7, 64.7, 64.1, 57.6, 22.6; HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]:$ 268.1002. Found: 268.0998 .

(\boldsymbol{R})- N -((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methylene)-2,4,6-triisopropylbenzene-
sulfinamide (12b). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide (3.26 $\mathrm{g}, 12.2 \mathrm{mmol}, 1.0$ equiv) and THF (10 mL) was added 2,3-dihydrobenzo[b][1,4]dioxine6 -carbaldehyde $\left(2.00 \mathrm{~g}, 12.2 \mathrm{mmol}, 1.0\right.$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(10.1 \mathrm{~mL}, 48.7$ mmol, 4.0 equiv). The reaction mixture was stirred at rt for 2 h , and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x $100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by crystallization from MeCN with a few drops of water to give the pure product (4.59 g , 91% yield) as a white solid. mp 135-136 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+7.8$ (c 2.65, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}$, $2 \mathrm{H}), 6.91$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 4 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1$ H), $1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,152.7,149.7,147.5,143.9,135.0,128.4,123.5,122.9$, 118.0, 117.7, 64.6, 64.1, 34.4, 27.9, 24.4, 24.1, 23.79, 23.76; HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 413.2020$. Found: 413.2024.

(\boldsymbol{R})- \boldsymbol{N}-(4-Bromobenzylidene)-2,4,6-triisopropylbenzenesulfinamide (14). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide ($5.00 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv) and THF (15 mL) was added 4-bromobenzaldehyde ($3.46 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}$ ($15.5 \mathrm{~mL}, 74.8 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at rt for 2 h, and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was
washed with water ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by crystallization from MeOH with a few drops of water to give the pure product ($5.86 \mathrm{~g}, 72 \%$ yield) as a white solid. $\mathrm{mp} 140-142{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-2.1$ (c 5.99 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 2$ H), $7.09(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.24$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1$, $152.9,149.8,134.4,133.2,132.3$, 130.7, 127.2, 123.0, 34.4, 28.0, 24.4, 24.0, 23.79, 23.76; HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \operatorname{BrNOS}[\mathrm{M}+\mathrm{H}]: 434.1148$. Found: 434.1151.

(R)-N-((9-Ethyl-9H-carbazol-2-yl)methylene)-2,4,6-triisopropylbenzenesulfinamide
(16). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide ($3.59 \mathrm{~g}, 13.4 \mathrm{mmol}$, 1.0 equiv) and THF (11 mL) was added 9 -ethyl-9H-carbazole-2-carbaldehyde (3.00 g , $13.4 \mathrm{mmol}, 1.0$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(11.1 \mathrm{~mL}, 53.7 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at rt for 18 h , and then diluted with EtOAc (200 mL). Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by crystallization from heptane to give the pure product ($4.95 \mathrm{~g}, 78 \%$ yield) as a white solid. $\mathrm{mp} 158-160{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}+45.2\left(c 2.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H})$, $8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2$ H), 7.28-7.23 (m, 1 H$), 7.10(\mathrm{~s}, 2 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.85$ (m, 1 H), $1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7$, 152.6, 149.8, 142.5, $140.6,135.5,127.3,126.5,126.0,123.3,123.0,122.8,120.9,120.0,109.0,108.7,37.9$, $34.5,28.0,24.4,24.3,23.84,23.81,13.9$; HRMS: calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]$: 473.2621. Found: 473.2609.

(\boldsymbol{R})-2,4,6-Triisopropyl- \boldsymbol{N}-(pyridin-2-ylmethylene)benzenesulfinamide (18). To a flask containing (R)-2,4,6-triisopropylbenzenesulfinamide ($5.62 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.0$ equiv) and THF (17 mL) was added pyridine-2-carbaldehyde ($2.00 \mathrm{~mL}, 21.0 \mathrm{mmol}, 1.0$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}(17.4 \mathrm{~mL}, 84.1 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at rt for 18 h , and then diluted with $\operatorname{EtOAc}(200 \mathrm{~mL})$. Water (5.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc (50 mL), and the filtrate was washed with water (2 x 100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by by flash column chromatography on SiO_{2} (30 to $50 \% \mathrm{MTBE} /$ hexanes) to give the pure product ($3.92 \mathrm{~g}, 52 \%$ yield) as an offwhite solid. mp 133-136 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-59.4\left(c 3.27, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.97 (s, 1 H), 8.75-8.73 (m, 1 H$), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36$ (m, 1 H$), 7.09(\mathrm{~s}, 2 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$, $1.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1$, 153.0, 152.7, 150.2, 149.9, 136.8, 134.3, 125.8, 123.2, 123.0, 34.4, 28.0, 24.3, 24.0, 23.8, 23.7; HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]: 357.1995$. Found: 357.1997.

20
(S)- N -(2,2-Dimethyl-1-phenylpropylidene)-2-methylpropane-2-sulfinamide (20). To a flask containing (S)-tert-butanesulfinamide $(7.47 \mathrm{~g}, 61.6 \mathrm{mmol}, 2.00$ equiv) and 2,2-dimethyl-1-phenylpropan-1-one ($5.00 \mathrm{~g}, 30.8 \mathrm{mmol}, 1.0$ equiv) was added $\mathrm{Ti}(\mathrm{OEt})_{4}(51.7$ $\mathrm{mL}, 246.6 \mathrm{mmol}, 8.0$ equiv). The reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 21 h , and then poured into EtOAc (400 mL). Water (25 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water ($3 \times 200 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} (10 to $50 \% \mathrm{EtOAc} /$ hexanes) to give the pure product (5.62 g , 69% yield) as an off-white solid. $\mathrm{mp} 80-81.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+129.6\left(c 5.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.06$ (m, 2 H), 1.23 (s, 9 H), 1.19 (s, 9 H);
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5,136.9,128.3,127.7,126.5,55.7,42.5,28.0,22.0$; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]:$ 266.1573. Found: 266.1577.

4-Fluorophenyl 1-adamantyl ketone. To a flask containing $\mathrm{CuCl}(498 \mathrm{mg}, 5.03 \mathrm{mmol}$, 0.10 equiv), 1-adamantanecarbonyl chloride ($10.0 \mathrm{~g}, 50.3 \mathrm{mmol}, 1.0$ equiv) and THF $(100 \mathrm{~mL})$ cooled to $-45^{\circ} \mathrm{C}$ was added dropwise 4-fluorophenylmagnesium bromide (50.3 $\mathrm{mL}, 50.3 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF, 1.0 equiv). After the addition was complete, the reaction mixture was stirred for 30 min with warming to $-10^{\circ} \mathrm{C}$. The reaction mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with MTBE. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude product was crystallized from MeOH to give the pure product $\left(8.12 \mathrm{~g}, 63 \%\right.$ yield) as a white solid. $\mathrm{mp} 77-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 3$ H), 2.02-2.00 (m, 6 H), 1.81-1.70 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1$, 163.9 $(\mathrm{d}, J=250 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 46.9$, 39.2, 36.5, 28.2; HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FO}[\mathrm{M}+\mathrm{H}]: 259.1493$. Found: 259.1487.

(S)- N -(1-Adamantyl(4-fluorophenyl)methylene)-2-methylpropane-2-sulfinamide
(22). To a flask containing (S)-tert-butanesulfinamide ($4.93 \mathrm{~g}, 40.6 \mathrm{mmol}, 1.5$ equiv) and 4-fluorophenyl 1-adamantyl ketone ($7.00 \mathrm{~g}, 27.1 \mathrm{mmol}, 1.0$ equiv) was added $\mathrm{Ti}(\mathrm{OEt})_{4}$ $\left(45.4 \mathrm{~mL}, 216.8 \mathrm{mmol}, 8.0\right.$ equiv). The reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 24 h , and then poured into EtOAc (400 mL). Water (25 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 200 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by crystallization from isopropanol (100 mL) and water (50 mL) to give the pure product $\left(8.22 \mathrm{~g}, 84 \%\right.$ yield) as an off-white solid. mp $128-129{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+100.2\left(c 0.42, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10-6.99(\mathrm{~m}, 4 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 6$ H), 1.75-1.69 (m, 3 H), 1.66-1.59 (m, 3 H), $1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $191.0,162.4(\mathrm{~d}, J=247 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 128.6,114.8(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 56.0$, 44.5, 39.6, 36.4, 28.2, 22.2; HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{29}$ FNOS $[\mathrm{M}+\mathrm{H}]: 362.1948$. Found: 362.1955 .

(1-(4-Methoxyphenyl)cyclohexyl)(phenyl)methanone. A flask was charged with 1-(4methoxyphenyl)cyclohexanecarbonitrile ($10.0 \mathrm{~g}, 46.4 \mathrm{mmol}, 1.0$ equiv) and THF (30 mL), and the solution was treated at rt with $\mathrm{PhMgBr}(27.9 \mathrm{~mL}, 55.7 \mathrm{mmol}, 2.0 \mathrm{M}, 1.2$ equiv). The reaction mixture was heated at $75^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was cooled to rt and $6 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ was added, and the mixture was heated at $75^{\circ} \mathrm{C}$ for 18 h. After cooling to rt, the mixture was extracted with hexanes, the organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on $\mathrm{SiO}_{2}(1 \% \mathrm{EtOAc} /$ hexanes $)$ to give the pure product $(7.11 \mathrm{~g}, 52 \%$ yield) as a thick colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.21-$ 7.17 (m, 2 H), 6.93-6.89 (m, 2 H), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 2.49-2.46 (m, 2 H), 1.84-1.70 (m, 2 H), $1.66-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,158.5,138.7,136.1,131.0,128.6,127.8,127.4,114.4,55.2,37.6,36.1,25.9$, 23.4; HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2}[M+\mathrm{H}]$: 295.1693. Found: 295.1690.

(S)-N-((1-(4-Methoxyphenyl)cyclohexyl)(phenyl)methylene)-2-methylpropane-2sulfinamide (24). To a flask containing (S)-tert-butanesulfinamide ($7.41 \mathrm{~g}, 61.1 \mathrm{mmol}$, 3.0 equiv) and (1-(4-methoxyphenyl)cyclohexyl)(phenyl)methanone ($6.00 \mathrm{~g}, 20.4 \mathrm{mmol}$, 1.0 equiv) was added $\mathrm{Ti}(\mathrm{OEt})_{4}(25.6 \mathrm{~mL}, 122.2 \mathrm{mmol}, 6.0$ equiv). The reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 8 h , and then poured into EtOAc (300 mL). Water (15 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water ($3 \times 200 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by crystallization from heptane (50 mL) to give the pure product ($5.33 \mathrm{~g}, 66 \%$ yield) as an off-white solid. mp 114-116 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+61.8\left(c 4.42, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.42$ (br, 2 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.72-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 189.8,158.7,136.8,133.7,129.1,128.4,127.3,127.0,113.9,55.9,55.3,52.5$, 34.5, 34.4, 26.0, 22.9, 22.8, 22.3; HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 398.2148$. Found: 398.2139.

(4-Bromophenyl)(1-methylcyclopropyl)methanone. A flask was charged with (4bromophenyl)(cyclopropyl)methanone ($5.0 \mathrm{~g}, 22.2 \mathrm{mmol}, 1.0$ equiv) and THF (50 mL), and the solution was cooled to $-78^{\circ} \mathrm{C}$ and treated dropwise with LHMDS ($26.7 \mathrm{~mL}, 26.7$ $\mathrm{mmol}, 1.0 \mathrm{M}, 1.2$ equiv). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , and then MeI ($1.94 \mathrm{~mL}, 31.1 \mathrm{mmol}, 1.4$ equiv) was added. The reaction was allowed to warm to rt and stirred for 16 h . The reaction mixture was quenched with water, extracted with hexanes, the organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} (hexanes) to give the pure product $\left(1.46 \mathrm{~g}, 28 \%\right.$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.66(\mathrm{~m}, 2 \mathrm{H})$, 7.59-7.55 (m, 2 H), 1.42 (s, 3 H), 1.28-1.25 (m, 2 H), 0.80-0.78 (m, 2 H); ${ }^{13}$ C NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.2,136.3,131.5,129.9,126.5,25.4,21.8,15.3$; HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]:$ 239.0066. Found: 239.0069.

26
(S)-N-((4-Bromophenyl)(1-methylcyclopropyl)methylene)-2-methylpropane-2-
sulfinamide (26). To a flask containing (S)-tert-butanesulfinamide ($2.13 \mathrm{~g}, 17.6 \mathrm{mmol}$, 3.0 equiv) and (4-Bromophenyl)(1-methylcyclopropyl)methanone ($1.40 \mathrm{~g}, 5.86 \mathrm{mmol}$, 1.0 equiv) was added $\mathrm{Ti}(\mathrm{OEt})_{4}(7.29 \mathrm{~mL}, 35.1 \mathrm{mmol}, 6.0$ equiv). The reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 2 h , and then poured into EtOAc (100 mL). Water (5 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water ($3 \times 50 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{MTBE} /$ hexanes $)$ to give the pure product $\left(1.81 \mathrm{~g}, 90 \%\right.$ yield) as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}+112.0\left(c 3.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.25-7.60 (br, 0.5 H), 7.51-7.49 (m, 2 H), 7.24-6.80 (br, 1.5 H), 1.38-1.08 $(\mathrm{m}, 12 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.7$, 134.7, 131.4, 128.6, 123.3, 56.1, 25.7, 22.2, 21.4, 17.0, 16.5; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrNOS}[\mathrm{M}+\mathrm{H}]: 342.0522$. Found: 342.0523.

28
(S,Z)-2-Methyl- \boldsymbol{N}-(2-methyl-1-phenylpropylidene)propane-2-sulfinamide (28). To a flask containing (S)-tert-butanesulfinamide $(8.08 \mathrm{~g}, 66.7 \mathrm{mmol}, 2.0$ equiv) and isobutyrophenone ($5.00 \mathrm{~mL}, 33.3 \mathrm{mmol}, 1.0$ equiv) was added $\mathrm{Ti}(\mathrm{OEt})_{4}(28.0 \mathrm{~mL}, 133.3$ $\mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 24 h , and then poured into EtOAc (300 mL). Water (20 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc , and the filtrate was washed with water (3 x 200 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$), filtered, and concentrated. The crude product was purified by crystallization from heptane at $0^{\circ} \mathrm{C}$ to give the pure product ($3.80 \mathrm{~g}, 45 \%$ yield) as a light yellow solid. $\mathrm{mp} 32-33{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}+146.9\left(c 5.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-$ 7.25 (br, 2 H), 3.24-2.74 (br, 1 H), 1.24-1.18 (m, 15 H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 190.0, 138.1, 129.3, 128.2, 126.7, 56.2, 40.6, 22.1, 20.1, 19.7; HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]: 252.1422$. Found: 252.1420.

(S,E)-N-((E)-1,3-Diphenylallylidene)-2-methylpropane-2-sulfinamide (30). To a flask containing (S)-tert-butanesulfinamide ($4.66 \mathrm{~g}, 38.4 \mathrm{mmol}, 1.5$ equiv) and chalcone (8.00 $\mathrm{g}, 38.4 \mathrm{mmol}, 1.0$ equiv) was added THF (16 mL) and $\mathrm{Ti}(\mathrm{OEt})_{4}(16.1 \mathrm{~mL}, 76.8 \mathrm{mmol}$, 2.0 equiv). The reaction mixture was stirred at $75^{\circ} \mathrm{C}$ for 16 h , and then poured into EtOAc (300 mL). Water (15 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water (3 x 100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$), filtered, and concentrated. The crude product was purified by recrystallization from hexanes/MTBE to give the pure product ($8.02 \mathrm{~g}, 67 \%$ yield) as a bright yellow solid. mp $71-72.5{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+323.5\left(c 5.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, \mathrm{~J}=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{br}, 2 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,144.0,138.8,135.2$, 130.7, 130.1, 129.3, 128.9, 128.4, 128.1, 122.5, 58.6, 22.9; HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NOS}$ $[\mathrm{M}+\mathrm{H}]: 312.1417$. Found: 312.1424.

(S)-N-(4,4-Dimethyl-1-phenylpent-1-yn-3-ylidene)-2-methylpropane-2-sulfinamide
(32). To a flask containing (S)-tert-butanesulfinamide ($5.21 \mathrm{~g}, 43.0 \mathrm{mmol}, 2.0$ equiv) and 4,4-dimethyl-1-phenylpent-1-yn-3-one ${ }^{1}(5.00 \mathrm{~g}, 21.5 \mathrm{mmol}, 80 \mathrm{wt} . \%$, 1.0 equiv) was added THF (16 mL) and $\mathrm{Ti}(\mathrm{OEt})_{4}(26.7 \mathrm{~mL}, 128.9 \mathrm{mmol}, 6.0$ equiv). The reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 2 h , and then poured into EtOAc (300 mL). Water (15 mL) was added dropwise, and the resultant slurry was stirred for 15 min and then filtered through a pad of Celite. The Celite cake was washed with EtOAc, and the filtrate was washed with water ($3 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography on SiO_{2} (10-15\% EtOAc/hexanes) to give the pure product $(2.68 \mathrm{~g}, 43 \%$ yield $)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}+271.8$ (c 4.76, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}$), 7.45-7.35 (m, 3 H), 1.32 ($\mathrm{s}, 9$ H), $1.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,132.7$, 130.2, 128.6, 120.9, 103.8, 82.4, 57.3, 42.6, 27.8, 22.3; HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]: 290.1573$. Found: 290.1579.

(\boldsymbol{R})- N -(1-(4-(Dimethylamino)phenyl)-2,2,2-trifluoroethylidene)-2,4,6-triisopropylbenzenesulfinamide (34). To a flask containing (R)-2,4,6triisopropylbenzenesulfinamide ($5.00 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv) and THF (15 mL) was added 4-dimethylaminotrifluoroacetophenone ($4.06 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv) followed by $\mathrm{Ti}(\mathrm{OEt})_{4}$ ($15.5 \mathrm{~mL}, 74.8 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at rt for 24 h , and then diluted with EtOAc (300 mL). Water (10.0 mL) was added dropwise with vigorous stirring. The resultant slurry was stirred at rt for 15 min and filtered through a 1 cm pad of Celite. The Celite cake was washed with EtOAc , and the filtrate was washed with water ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by recrystallization from heptane to give the pure product ($5.12 \mathrm{~g}, 58 \%$ yield) as a yellow solid. mp 112-114 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+195.5$ (c 3.80, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-$ 3.71 (br, 2 H), 3.03 (s, 6 H), 2.92-2.85 (m, 1 H), 1.26-1.23 (m, 12 H), 1.19 (d, $J=6.5 \mathrm{~Hz}$,
$6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9(\mathrm{q}, J=33.7 \mathrm{~Hz}), 153.1,152.2,149.8,138.2$, $130.3,123.0,119.4$ (q, $J=282 \mathrm{~Hz}$), 117.0, 110.9, 39.9, 34.4, 29.0, 24.7, 24.1, 23.74, 23.71; HRMS: calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]$: 467.2338. Found: 467.2341.

Procedures and data for α-aminoamides.

General Procedure for Carbamoyl Anion Addition to \boldsymbol{N}-Sulfinylimines. A solution of N-sulfinylimine (1.00 equiv), formamide (3.1 equiv) and toluene (10 volumes based on N-sulfinylimine) was cooled to $-78^{\circ} \mathrm{C}$. LDA (3.0 equiv of commercially available 2.0 M solution) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , and then quenched by the addition of water. After warming to rt, the reaction mixture was diluted with EtOAc and the layers were separated. The organic phase was washed with water (2-3 times), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by either flash column chromatography or crystallization as indicated.

(S)-2-((R)-1,1-Dimethylethylsulfinamido)-N,N-diisopropyl-3,3-dimethylbutanamide
(2a). According to the general procedure, sulfinimine 1a ($5.00 \mathrm{~g}, 26.4 \mathrm{mmol}$), N, N diisopropylformamide ($11.89 \mathrm{~mL}, 81.9 \mathrm{mmol}$), and toluene $(50 \mathrm{~mL})$ were treated with LDA ($39.6 \mathrm{~mL}, 79.2 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 98.1:1.9. Purification by crystallization from hexanes gave 2a as a white solid ($6.49 \mathrm{~g}, 77 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=2.618 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=2.901$ min. mp 160-162 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.38(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12-4.02 $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.18-1.13(\mathrm{~m}$, $6 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,62.7,56.3,49.3$, 46.3, 35.5, 26.8, 22.4, 21.5, 20.5, 20.3, 20.1; HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 319.2414. Found: 319.2417.

(S)-2-Amino- N, N-diisopropyl-3,3-dimethylbutanamide hydrochloride (3) from 2a. A solution of $\mathbf{2 a}(5.00 \mathrm{~g}, 15.7 \mathrm{mmol})$ in $\mathrm{MeOH}(80 \mathrm{~mL})$ was treated with HCl in dioxane $(11.8 \mathrm{~mL}, 47.1 \mathrm{mmol})$. After stirring at rt for 1 h , the reaction mixture was concentrated on a rotovap, and the residue was repeatedly chased with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{3}$ as an offwhite solid (3.86 g , 98% yield). Chiral HPLC: (S)-enantiomer: 3.45 min , (R)-enantiomer: 3.85 min . (R)-enantiomer not detected, er $>99.5: 0.5 \mathrm{mp} 194-195{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+54.6(c$ $1.06, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d-6 \mathrm{DMSO}$) $\delta 8.26$ (br s, 3 H), 4.27-4.17 (m, 1 H), 4.08-4.01 (m, 1 H$), 3.55-3.46(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3$ H), $1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $d-6$ DMSO) $\delta 166.8,55.8,49.0,45.6,33.5,26.3,20.9,20.5,19.8,19.5$; HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}-\mathrm{HCl}+\mathrm{H}]:$ 215.2118. Found: 215.2115.

(S)-N,N-Diisopropyl-3,3-dimethyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)-
butanamide (2b). According to the general procedure, sulfinimine $\mathbf{1 b}(1.00 \mathrm{~g}, 2.98$ $\mathrm{mmol}), N, N$-diisopropylformamide ($1.34 \mathrm{~mL}, 9.24 \mathrm{mmol}$), and toluene (10 mL) were treated with LDA ($4.47 \mathrm{~mL}, 8.94 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 99.7:0.3. Purification by chromatography on SiO_{2} (10-40\% MTBE/hexanes) gave 2b as a white solid ($1.14 \mathrm{~g}, 82 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=$ 4.230 min ; minor diastereomer $\mathrm{t}_{\mathrm{r}}=4.447 \mathrm{~min} . \mathrm{mp} 141-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-3.55(\mathrm{br}, 2 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 1$ H), $4.02(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 6$ H), 1.31-1.26 (m, 12 H), 1.24-1.22 (m, 12 H), $1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,152.5,149.0,137.8,123.1,61.8,49.5,46.4,35.3,34.4,28.1,27.0,24.5,24.4$, 23.8, 21.8, 20.8, 20.3, 20.1; HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 465.3509$. Found: 465.3514.

(S)-2-Amino- N, N-diisopropyl-3,3-dimethylbutanamide hydrochloride (3) from 2b. A solution of $\mathbf{2 b}(13.85 \mathrm{~g}, 29.8 \mathrm{mmol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ was treated with HCl in dioxane ($22.4 \mathrm{~mL}, 89.4 \mathrm{mmol}$). After stirring at rt for 18 h , the reaction mixture was concentrated on a rotovap. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$, and the solid was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ and hexanes to give 3 as an off-white solid ($6.96 \mathrm{~g}, 93 \%$ yield). Chiral HPLC: er >99.5:0.5. Spectral data for $\mathbf{3}$ obtained from $\mathbf{2 b}$ were identical with $\mathbf{3}$ obtained from $\mathbf{2 a}$.

(S)-2-((R)-1,1-Dimethylethylsulfinamido)-N,N,3,3-tetramethylbutanamide
(4a). According to the general procedure, sulfinimine $1 \mathbf{1 a}(1.00 \mathrm{~g}, 5.28 \mathrm{mmol}), N, N-$ dimethylformamide ($1.27 \mathrm{~mL}, 16.4 \mathrm{mmol}$), and toluene (10 mL) were treated with LDA ($7.92 \mathrm{~mL}, 15.8 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 92.8:7.2. Purification by chromatography on $\mathrm{SiO}_{2}(10-70 \%$ MTBE/hexanes) gave $\mathbf{4 a}$ as a colorless oil ($998 \mathrm{mg}, 72 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=1.673 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=2.070 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.37(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,60.5,56.5,38.0,35.7,35.6,26.6,22.2$; HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]:$ 263.1788. Found: 263.1791.

(S)-N,N,3,3-Tetramethyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)butanamide
(4b). According to the general procedure, sulfinimine $\mathbf{1 b}(500 \mathrm{mg}, 1.49 \mathrm{mmol}), N, N$ dimethylformamide ($0.358 \mathrm{~mL}, 4.62 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($2.24 \mathrm{~mL}, 4.47 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 97.8:2.2. Purification by chromatography on $\mathrm{SiO}_{2}(10-50 \%$ MTBE/hexanes) gave $\mathbf{4 b}$ as a colorless oil ($507 \mathrm{mg}, 83 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=3.514 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=3.727 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.23$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.17-1.11(\mathrm{~m}, 12 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.8,161.5,152.1,148.0,138.5,123.0,62.1,38.2,35.5,35.48,34.3,28.3,26.5,24.4$, 24.1, 23.8; HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 409.2883$. Found: 409.2874 .

(S)-N,N,3,3-Tetramethyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)butanethioamide (5b). According to the general procedure, sulfinimine $\mathbf{1 b}(500 \mathrm{mg}, 1.49 \mathrm{mmol})$, N, N-dimethylthioformamide ($0.393 \mathrm{~mL}, 4.62 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($2.24 \mathrm{~mL}, 4.47 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 99.0:1.0. Purification by chromatography on SiO_{2} ($10-70 \% \mathrm{MTBE} /$ hexanes) gave 5b as a yellow solid ($533 \mathrm{mg}, 84 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=3.846 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=4.084 \mathrm{~min} . \mathrm{mp} 103-106{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06$ (s, 2 H), 5.26 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.91-3.21 (br, 2 H), 4.38 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (s, 3 H), $3.475(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.25-1.22(\mathrm{~m}, 12 \mathrm{H}), 1.08$ (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.1,152.5,149.0,138.0,123.1,65.8,44.9$, 42.6, 36.7, 34.3, 28.2, 27.0, 24.6, 24.3, 23.8; HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]$: 425.2655. Found: 425.2661.

(S)-4-(Dimethylamino)-2-((R)-1,1-dimethylethylsulfinamido)-N,N,3,3-tetramethylbutanamide (7a). According to the general procedure, sulfinimine $\mathbf{6 a}$ ($500 \mathrm{mg}, 2.15$
mmol), N-formylmorpoline ($0.671 \mathrm{~mL}, 6.67 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($3.23 \mathrm{~mL}, 6.46 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 92.7:7.3. Purification by chromatography on SiO_{2} (MTBE) gave 7a as a colorless oil (571 $\mathrm{mg}, 76 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=0.909 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=1.494 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.24 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.46(\mathrm{~m}, 8 \mathrm{H}), 2.97(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (s, 6 H), $2.05(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,68.7,67.1,66.8,60.2,55.8,47.9,47.1,42.3,37.7,26.0,23.5,22.6 ;$ HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 348.2315. Found: 348.2323.

(R)- N -((S)-4-(Dimethylamino)-3,3-dimethyl-1-morpholino-1-oxobutan-2-yl)-2,4,6-
triisopropylbenzenesulfinamide (7b). According to the general procedure, sulfinimine $\mathbf{6 b}(500 \mathrm{mg}, 1.32 \mathrm{mmol}), N$-formylmorpoline ($0.412 \mathrm{~mL}, 4.09 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($1.98 \mathrm{~mL}, 3.96 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 97.4:2.6. Purification by chromatography on SiO_{2} (MTBE) gave 7b as a colorless oil ($535 \mathrm{mg}, 82 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=2.568 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=2.658 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J$ $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-3.86(\mathrm{br}, 2 \mathrm{H}), 3.80-3.61(\mathrm{~m}, 7 \mathrm{H}), 3.55-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.31 (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$), 1.23 (d, $J=6.4 \mathrm{~Hz}, 12 \mathrm{H}$), 1.07 ($\mathrm{s}, 3 \mathrm{H}), 0.89$ (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7$, 151.9, 147.9, 138.5, 122.9, 67.6, 67.0, 66.8, $58.8,48.6,47.0,42.2,39.5,34.4,28.4,24.4,24.3,23.8,22.5$; HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 494.3411$. Found: 494.3404.

8

9
(R)-N-((S)-1-Cyclohexyl-2-oxo-2-(pyrrolidin-1-yl)ethyl)-2,4,6-triisopropylbenzenesulfinamide (9). According to the general procedure, sulfinimine 8 ($500 \mathrm{mg}, 1.38 \mathrm{mmol}$), N-formylpyrrolidine ($0.409 \mathrm{~mL}, 4.29 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($2.07 \mathrm{~mL}, 4.15 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 96.8:3.2. Purification by chromatography on SiO_{2} ($10-40 \%$ MTBE/hexanes) gave 9 as a colorless oil ($505 \mathrm{mg}, 79 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=3.769 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=4.015 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31-3.85(\mathrm{br}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.53-$ $3.38(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.71(\mathrm{~m}$, $2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.01(\mathrm{~m}, 23 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2$, 152.0, 148.0, 138.5, 123.0, 62.4, 46.7, 45.8, 41.4, 34.4, 30.0, 28.3, 26.2, 26.1, 26.0, 24.4, 24.2, 23.8; HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 461.3196$. Found: 461.3199.

(S)-N,N-Diisopropyl-4-phenyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)butanamide (11). A flask was charged with toluene (20 mL) and LDA ($3.91 \mathrm{~mL}, 7.82 \mathrm{mmol}$, 2.0 M) and the solution was cooled to $-78^{\circ} \mathrm{C} . N, N$-Diisopropylformamide ($1.17 \mathrm{~mL}, 8.08$ $\mathrm{mmol})$ was added dropwise. After 5 min , a solution of $\mathbf{1 0}(1.00 \mathrm{~g}, 2.61 \mathrm{mmol})$ in toluene (3 mL) was added dropwise. The reaction was quenched after 10 min by the addition of water, and the reaction mixture was allowed to warm to rt. Reaction diastereoselectivity (from HPLC): 98.7:1.3. The reaction mixture was diluted with EtOAc, and the layers separated. The organic phase was washed with water (2 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by chromatography on SiO_{2} (5-40\% MTBE/hexanes) gave $\mathbf{1 1}$ as a colorless oil ($948 \mathrm{mg}, 71 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=4.241 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=4.344 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H})$, 4.58-3.73 (br, 2 H), 4.16-4.10 (m, 1 H), 3.64-3.54 (m, 1 H), 3.50-3.34 (br, 1 H), 2.92-2.82 (m, 3 H), 1.92-1.87 (m, 2 H), $1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12$ H), $1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.4,152.1,148.5,141.4,138.3,128.9,128.5,126.1,123.0,55.8,48.0,46.1,37.3,34.4$, $31.5,28.3,24.5,24.4,23.83,23.81,21.2,20.6,20.5,20.3$; HRMS: calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 513.3509$. Found: 513.3501.

(S)-2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-2-((R)-1,1-dimethylethylsulfinamido)N, N-diethylacetamide (13a). According to the general procedure, sulfinimine 12a (500 $\mathrm{mg}, 1.87 \mathrm{mmol}$), N, N-diethylformamide ($0.644 \mathrm{~mL}, 5.80 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($2.80 \mathrm{~mL}, 5.61 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 89.9:10.1. Purification by chromatography on SiO_{2} (10-80\% MTBE/hexanes) gave 13a as a colorless oil ($570 \mathrm{mg}, 83 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=2.162 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=2.226 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90-$ $6.81(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.55-$ $3.46(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,143.7$, 143.6, 131.5, $120.9,117.7,116.7,64.3,64.2,56.52,56.49,41.6,40.7,22.5,14.0,12.7$; HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 362.1843$. Found: 362.1832.

(S)-2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-N,N-diethyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)acetamide (13b). According to the general procedure, sulfinimine 12b ($500 \mathrm{mg}, 1.21 \mathrm{mmol}$), N, N-diethylformamide ($0.421 \mathrm{~mL}, 3.75 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($1.81 \mathrm{~mL}, 3.63 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 95.7:4.3. Purification by chromatography on $\mathrm{SiO}_{2} \quad(30-40 \%$ $\mathrm{EtOAc} / \mathrm{hexanes}$) gave 13b as a white solid ($476 \mathrm{mg}, 77 \%$ yield). HPLC (Method B): major diastereomer $\mathrm{t}_{\mathrm{r}}=7.338 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=7.545 \mathrm{~min} . \mathrm{mp} 125.5-127{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 3 \mathrm{H}), 5.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1$ H), $5.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 4 \mathrm{H}), 4.18-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.40-$ $3.24(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.24-$ $1.21(\mathrm{~m}, 12 \mathrm{H}), 1.12-1.06(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,151.9$, 148.1, 143.7, 143.5, 138.3, 131.7, 123.0, 120.7, 117.8, 116.5, 64.5, 59.3, 41.7, 40.7, 34.4, 28.2, 24.4, 24.3, 23.8, 23.78, 14.2, 12.8; HRMS: calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 515.2938$. Found: 515.2924.

(S)-2-(4-Bromophenyl)- N, N-diphenyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)acetamide (15). Note: THF was used as solvent due to the insolubility of N, N diphenylformamide in toluene. According to the general procedure, sulfinimine 14 (500 $\mathrm{mg}, 1.15 \mathrm{mmol}$), N, N-diphenylformamide ($0.704 \mathrm{~g}, 3.57 \mathrm{mmol}$), and THF (10 mL) were treated with LDA ($1.73 \mathrm{~mL}, 3.45 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 98.1:1.9. Purification by chromatography on SiO_{2} (10-40\% MTBE/hexanes) gave 15 as a white solid ($569 \mathrm{mg}, 78 \%$ yield). HPLC (Method A): major diastereomer t_{r} $=4.222 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=4.404 \mathrm{~min} . \mathrm{mp} 84-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.41-7.04(\mathrm{~m}, 12 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1$ H), 5.23 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.83(\mathrm{br}, 2 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 6 H), 1.24-1.22 (m, 12 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.6, 152.2, 147.9, 142.1, $141.0,138.1,137.2,132.0,130.0,129.4,129.1,128.7,126.7,126.0,123.0,122.6,60.1$, 34.4, 28.3, 24.5, 24.2, 23.8, 23.78; HRMS: calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 631.1988$. Found: 631.1972.

(S)-2-(9-Ethyl-9H-carbazol-2-yl)-N,N-diisopropyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)acetamide (17). According to the general procedure, sulfinimine 16 (331 $\mathrm{mg}, 0.700 \mathrm{mmol}$), N, N-diisopropylformamide ($0.315 \mathrm{~mL}, 2.17 \mathrm{mmol}$), and toluene (2.5 mL) were treated with LDA ($1.05 \mathrm{~mL}, 2.10 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 99.1:0.9. Purification by chromatography on SiO_{2} ($10-40 \%$ MTBE/hexanes) gave $\mathbf{1 7}$ as a yellow solid ($380 \mathrm{mg}, 90 \%$ yield). HPLC (Method C):
major diastereomer $\mathrm{t}_{\mathrm{r}}=2.063 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=2.772 \mathrm{~min} . \mathrm{mp} 148-150{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3$ H), 7.35-7.33 (m, 1 H), 7.23-7.20 (m, 1 H), $7.05(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ $(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 1 \mathrm{H})$, 2.90-2.82 (m, 1 H$), 1.48-1.41(\mathrm{~m}, 9 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 21 \mathrm{H}), 0.59(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,151.9,148.4,140.3,139.6,138.1,129.3,125.8$, $125.6,123.1,123.0,122.9,120.5,119.6,118.9,108.9,108.6,61.3,48.6,46.3,37.7,34.4$, $28.2,24.5,24.3,23.83,23.79,23.5,21.1,20.8,20.2,19.9,19.5,13.8$; HRMS: calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 602.3775$. Found: 602.3775 .

(S)-N,N-Dibutyl-2-(pyridin-2-yl)-2-((R)-2,4,6-triisopropylphenylsulfinamido)acetamide (19). According to the general procedure, sulfinimine $18(500 \mathrm{mg}, 1.40 \mathrm{mmol})$, N, N-dibutylformamide ($0.791 \mathrm{~mL}, 4.35 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($2.10 \mathrm{~mL}, 4.21 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 97.1:2.9. Purification by chromatography on SiO_{2} ($10-40 \% \mathrm{MTBE} /$ hexanes) gave 19 as a light yellow oil ($583 \mathrm{mg}, 81 \%$ yield). HPLC (Method B): major diastereomer $\mathrm{t}_{\mathrm{r}}=16.101 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=16.713 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1$ H), 7.67-7.63 (m, 1 H$), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 6.04$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-3.80(\mathrm{br}, 2 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H})$, 3.45-3.38 (m, 1 H), 3.19-3.12 (m, 1 H$), 2.90-2.79(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.16$ $(\mathrm{m}, 23 \mathrm{H}), 0.89-0.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,158.3,151.8,148.8$, 147.7, 138.6, 137.1, 122.9, 121.8, 61.8, 47.5, 46.1, 34.3, 31.2, 29.5, 28.4, 24.4, 24.2, 23.8, 20.0, 19.98, 13.8, 13.78; HRMS: calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 514.3462. Found: 514.3463 .

(R)-2-((S)-1,1-Dimethylethylsulfinamido)-N,N,3,3-tetramethyl-2-phenylbutanamide (21). According to the general procedure, sulfinimine $20(500 \mathrm{mg}, 1.88 \mathrm{mmol}), N, N-$ dimethylformamide ($1.47 \mathrm{~mL}, 19.0 \mathrm{mmol}$), and toluene (10 mL) were treated with LDA ($9.4 \mathrm{~mL}, 18.8 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 97.7:2.3.

Purification by chromatography on SiO_{2} ($10-90 \%$ MTBE/hexanes) gave 21 as an offwhite solid (497 mg , 78% yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=2.650 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=2.803 \mathrm{~min} . \mathrm{mp} 127-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ 7.26 (br, 5 H), 6.00-4.30 (br, 1 H), 3.14-2.73 (br, 3 H), 2.51-2.06 (br, 3 H), 1.32 (s, 9 H), 1.19 (br s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3$, 139.4, 128.1, 127.7, 127.4, 73.1, 57.7, 40.5, 40.3, 37.7, 28.0, 23.4; HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 339.2101$. Found: 339.2102.

(R)-2-((S)-1,1-Dimethylethylsulfinamido)- N, N-dimethyl-2-(1-adamantyl)-2-(4-
fluorophenyl)acetamide (23). According to the general procedure, sulfinimine 22 (1.00 $\mathrm{g}, 2.77 \mathrm{mmol}), N, N$-dimethylformamide ($0.664 \mathrm{~mL}, 8.58 \mathrm{mmol}$), and toluene (10 mL) were treated with LDA ($4.15 \mathrm{~mL}, 8.30 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 96.9:3.1. Purification by chromatography on SiO_{2} (10-70\% MTBE/hexanes) gave 23 as a white solid ($972 \mathrm{mg}, 81 \%$ yield). HPLC (Method A): major diastereomer t_{r} $=3.399 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=3.811 \mathrm{~min} . \mathrm{mp} 184-185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.36-7.14(\mathrm{br}, 2 \mathrm{H}$), 7.12-6.93 (br, 2 H), 2.95 (br s, 3 H), 2.28 (br s, 3 H), 2.131.69 (br, 6 H), 2.01 (br s, 3 H), 1.68-1.53 (br s, 6 H), 1.34 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.9,160.5,129.8,114.9,114.2,72.4,58.0,53.5,42.4,40.2,37.3,36.8,28.9$, 23.5; HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 435.2476$. Found: 435.2477.

(S)-2-((S)-1,1-Dimethylethylsulfinamido)-N,N-diethyl-2-(1-(4-methoxyphenyl)cyclo-hexyl)-2-phenylacetamide (25). According to the general procedure, sulfinimine 24 (500 $\mathrm{mg}, 1.26 \mathrm{mmol}$), N, N-diethylformamide ($0.854 \mathrm{~mL}, 7.67 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($3.77 \mathrm{~mL}, 7.54 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 96.9:3.1. Purification by chromatography on SiO_{2} (5-50\% MTBE/hexanes) gave 25 as a white solid ($472 \mathrm{mg}, 75 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=$ 3.757 min ; minor diastereomer $\mathrm{t}_{\mathrm{r}}=4.071 \mathrm{~min} . \mathrm{mp} 185-187{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.42-7.40(m, 1 H$), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H})$,
6.89-6.86 (m, 1 H$), 6.45-6.41(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1$ H), 4.63 ($\mathrm{s}, 1 \mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 3.45-3.26 (m, 2 H), 3.14-3.07 (m, 1 H$)$, 3.04-2.95 (m, 1 H), 2.88-2.80 (m, 2 H), 2.57-2.47 (m, 1 H$), 1.93(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-0.98(\mathrm{~m}, 1 \mathrm{H})$, $0.87-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2$, $158.0,140.4,133.1,131.7,130.4,129.2$, 127.0, 126.7, 125.9, 113.0, 112.3, 72.6, 58.5, $55.2,53.7,43.8,40.8,30.6,28.1,25.8,23.7,23.1,12.3,11.0$; HRMS: calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 499.2989$. Found: 499.2994.

(R)-2-(4-Bromophenyl)-2-((S)-1,1-dimethylethylsulfinamido)- N, N-dimethyl-2-(1methylcyclopropyl)acetamide (27). According to the general procedure, sulfinimine 26 ($500 \mathrm{mg}, 1.46 \mathrm{mmol}$), N, N-dimethylformamide ($0.351 \mathrm{~mL}, 4.53 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($2.19 \mathrm{~mL}, 4.38 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 95.1:4.9. Purification by chromatography on SiO_{2} (10-100\% MTBE/hexanes) gave 27 as a white solid ($426 \mathrm{mg}, 70 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=2.793 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=3.050 \mathrm{~min}$. mp $125-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.50(\mathrm{~m}, 4 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 12$ H), 0.96-0.90 (m, 1 H$), 0.89-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.58-0.54(\mathrm{~m}, 1 \mathrm{H}), 0.30-0.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,135.4,131.7,131.6,122.9,69.0,57.0,39.8,23.4,23.2$, 23.0, 22.1, 12.7, 9.3; HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 415.1049$. Found: 415.1051.

(R)-2-((S)-1,1-Dimethylethylsulfinamido)-N,N-diisopropyl-3-methyl-2-phenylbutanamide (29). A flask was charged with toluene (10 mL) and LDA ($2.99 \mathrm{~mL}, 5.97 \mathrm{mmol}$, 2.0 M) and the solution was cooled to $-78^{\circ} \mathrm{C} . N, N$-Diisopropylformamide ($0.90 \mathrm{~mL}, 6.17$ $\mathrm{mmol})$ was added dropwise. After 5 min , a solution of $28(500 \mathrm{mg}, 1.99 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise. The reaction was quenched after 10 min by the addition of water, and the reaction mixture was allowed to warm to rt. Reaction diastereoselectivity (from HPLC): 97.1:2.9. The reaction mixture was diluted with EtOAc, and the layers separated. The organic phase was washed with water (2 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered, and concentrated. Purification by chromatography on SiO_{2} ($10-40 \%$ MTBE/hexanes) gave 29 as a white solid (568 mg , 75\% yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=3.124 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=3.387 \mathrm{~min} . \mathrm{mp} \mathrm{186-187.5}{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,138.3,127.8,127.9,70.4,58.0,48.6,47.4,31.7,23.7,19.9,19.8,19.7$, 18.9, 18.0; HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 381.2576$. Found: 381.2572.

(S)-2-Methyl- \boldsymbol{N}-((S,E)-1-morpholino-1-oxo-2,4-diphenylbut-3-en-2-yl)propane-2-
sulfinamide (31). According to the general procedure, sulfinimine $\mathbf{3 0}$ ($500 \mathrm{mg}, 1.61$ mmol), N-formylmorpholine ($0.500 \mathrm{~mL}, 4.98 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($2.41 \mathrm{~mL}, 4.82 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 91.7:8.3. Purification by chromatography on SiO_{2} ($10-40 \% \mathrm{EtOAc} /$ hexanes) gave $\mathbf{3 1}$ as a white solid (460 mg , 67% yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=2.664 \mathrm{~min}$; minor diastereomer $\mathrm{t}_{\mathrm{r}}=2.807 \mathrm{~min} . \mathrm{mp} 181-182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.69(\mathrm{~s}, 1 \mathrm{H}), 3.96-2.81(\mathrm{br} \mathrm{m}, 8 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}){ }^{13}{ }^{13} \mathrm{CNR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0$, 140.8, 136.2, 134.1, 128.9, 128.7, 128.5, 128.4, 127.5, 127.3, 127.0, 68.5, 66.5, 65.6, 56.5, 47.4, 43.9, 22.6; HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]:$ 427.2050. Found: 427.2054.

(S)-2-Methyl- N-((S,E)-1-pyrrolidino-1-oxo-2-tert-butyl-2-(2-phenylethynyl))propane -2-sulfinamide (33). According to the general procedure, sulfinimine 32 ($500 \mathrm{mg}, 1.73$ $\mathrm{mmol})$, N-formylpyrrolidine ($1.00 \mathrm{~mL}, 10.54 \mathrm{mmol}$), and toluene (5 mL) were treated with LDA ($5.18 \mathrm{~mL}, 10.37 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from HPLC): 94.0:6.0. Purification by chromatography on SiO_{2} (10-100\% MTBE/hexanes) gave $\mathbf{3 3}$ as a light brown oil ($491 \mathrm{mg}, 73 \%$ yield). HPLC (Method A): major diastereomer $\mathrm{t}_{\mathrm{r}}=3.130$ min ; minor diastereomer $\mathrm{t}_{\mathrm{r}}=3.272 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.53(\mathrm{~m}, 2$ H), 7.36-7.33 (m, 3 H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.71$
$(\mathrm{m}, 1 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,131.6,128.9,128.4,122.2,93.6,85.3,65.8,55.9,49.3,49.0$, 42.2, 27.3, 25.8, 23.4, 23.1; HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 389.2257$. Found: 389.2250 .

(S)-2-(4-(Dimethylamino)phenyl)-3,3,3-trifluoro- N, N-diisopropyl-2-((R)-2,4,6triisopropylphenylsulfinamido)propanamide (35). According to the general procedure, sulfinimine 34 ($500 \mathrm{mg}, 1.07 \mathrm{mmol}$), N, N-Diisopropylformamide ($0.482 \mathrm{~mL}, 3.32$ mmol), and toluene (5 mL) were treated with LDA ($1.61 \mathrm{~mL}, 3.21 \mathrm{mmol}, 2.0 \mathrm{M}$). Reaction diastereoselectivity (from ${ }^{1} \mathrm{H} N M R$): >97:3 (minor diastereomer not detected). Purification by chromatography on SiO_{2} ($10-40 \%$ MTBE/hexanes) gave 35 as a white solid ($486 \mathrm{mg}, 76 \%$ yield). mp 92-94 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (s, 1 H), $7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.40-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.45-3.35$ (m, 1 H), 3.00 (s, 6 H), 2.90-2.80 (m, 1 H), $1.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 12 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,150.6,150.5,147.0,139.9,129.7,124.6$ $(\mathrm{q}, J=283 \mathrm{~Hz}), 122.8,118.2,112.0,71.1(\mathrm{q}, J=27 \mathrm{~Hz}), 49.5,48.0,40.1,34.2,28.3$, 24.6, 24.2, 23.8, 23.79, 20.3, 20.0, 19.5, 19.3; HRMS: calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 596.3492. Found: 596.3485.

Procedures and data for ester synthesis.

(R)-2-Amino- $N, N, 3,3$-tetramethyl-2-phenylbutanamide hydrochloride (36). A solution of $21(600 \mathrm{mg}, 1.77 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was treated with HCl in dioxane $(1.33 \mathrm{~mL}, 5.32 \mathrm{mmol})$. After stirring at rt for 30 min , the reaction mixture was concentrated on a rotovap, and the residue was repeatedly chased with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{3 6}$
as a light yellow solid ($446 \mathrm{mg}, 93 \%$ yield). $\mathrm{mp} 210-212{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-28.4$ (c 0.44 , MeOH) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d-6 \mathrm{DMSO}$) $\delta 8.84$ (br s, 3 H), 7.49-7.39 (m, 3 H), 7.367.31 (m, 2 H), 2.62 (br s, 6 H), $1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, d-6 \mathrm{DMSO}\right) \delta 167.3$, 135.3, 128.4, 128.38, 127.2, 70.4, 38.7, 38.5, 26.9; HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ [M $\mathrm{HCl}+\mathrm{H}]:$ 235.1805. Found: 235.1804.

(R)- N -(1-(Dimethylamino)-3,3-dimethyl-1-oxo-2-phenylbutan-2-yl)benzamide (37). A solution of $36(1.00 \mathrm{~g}, 3.69 \mathrm{mmol})$ in pyridine (20 mL) was treated with benzoyl chloride ($1.29 \mathrm{~mL}, 11.1 \mathrm{mmol}$). The reaction was heated at $50^{\circ} \mathrm{C}$ for 22 h . After cooling to rt , the reaction mixture was diluted with MTBE and washed sequentially with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and water. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated, and the residue was crystallized from heptane to give $\mathbf{3 7}$ as an off white solid ($1.01 \mathrm{~g}, 81 \%$ yield). mp 176-178 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-14.9\left(c 0.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H})$, 2.96 (s, 3 H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,165.5$, 138.0, 135.2, 131.7, 128.9, 127.9, 127.5, 126.8, 126.6, 69.1, 42.7, 37.6, 37.4, 27.5; HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 339.2067. Found: 339.2068.

(\boldsymbol{R})-Methyl 2-benzamido-3,3-dimethyl-2-phenylbutanoate (39). A solution of $\mathbf{3 7}$ (100 $\mathrm{mg}, 0.295 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was treated with 4 M HCl in dioxane ($0.30 \mathrm{~mL}, 1.20$ $\mathrm{mmol})$. The reaction was stirred at rt for $1 \mathrm{~h} . \mathrm{MeOH}(3 \mathrm{~mL})$ was then added, and the reaction mixture was stirred at rt for 18 h . The reaction mixture was then concentrated to dryness, and the residual solid was chased with $\mathrm{Et}_{2} \mathrm{O}$ twice. The solid was then triturated with $\mathrm{Et}_{2} \mathrm{O}$ and filtered to remove the solid $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$. The filtrate was concentrated to give 39 as a white solid ($87 \mathrm{mg}, 91 \%$ yield). $\mathrm{mp} 149.5-151{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-57.8$ (c 1.12, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45$ (m, 2 H), 7.31-7.22 (m, 3 H), $6.83(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,166.9,136.9,134.8,131.8,128.8,128.4,127.2,127.1,127.0$, 70.0, 52.2, 38.6, 26.6; HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]: 326.1751$. Found: 326.1746.

Procedure and data for diamine synthesis.

(S)- N^{1}, N^{1}-Diisopropyl-3,3-dimethylbutane-1,2-diamine (40). A flask was charged with $\mathrm{LiAlH}_{4}(303 \mathrm{mg}, 7.97 \mathrm{mmol})$ and THF $(35 \mathrm{~mL})$. To the resultant slurry was added in portions at rt $3(1.00 \mathrm{~g}, 3.99 \mathrm{mmol})$. After stirring at rt for 1 h , the reaction was quenched by the slow dropwise addition of aqueous $2 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL}$). The resultant mixture was treated with $\mathrm{Na}_{2} \mathrm{SO}_{4}(5 \mathrm{~g})$ and was filtered. The filtrate was treated with 4 N HCl in dioxane ($4.0 \mathrm{~mL}, 16.0 \mathrm{mmol}$), and was concentrated to dryness. The resultant solid was triturated with EtOAc, filtered, and the solid washed with EtOAc and dried under vacuum to afford 40 as a white solid ($842 \mathrm{mg}, 77 \%$ yield $) . \mathrm{mp} 256-260{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}+21.8(c 1.03$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.01-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.48$ $(\mathrm{m}, 2 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 56.3,56.2,54.6,46.5,33.8$, 24.9, 18.9, 18.0, 16.5, 16.1; HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{29} \mathrm{~N}_{2}[\mathrm{M}-2 \mathrm{HCl}+\mathrm{H}]$: 201.2325. Found: 201.2332.

Procedures and data for dipeptide synthesis.

(S)-2-Formamido- N, N-diisopropyl-3,3-dimethylbutanamide. A flask was charged with CDI ($1.29 \mathrm{~g}, 7.97 \mathrm{mmol}$) and THF (20 mL). To the resultant slurry was added dropwise at rt formic acid $(0.30 \mathrm{~mL}, 7.97 \mathrm{mmol})$. After stirring at rt for 30 min , the reaction mixture was treated with $3(1.00 \mathrm{~g}, 3.99 \mathrm{mmol})$ followed by $\mathrm{Et}_{3} \mathrm{~N}(1.67 \mathrm{~mL}$, $11.96 \mathrm{mmol})$. The reaction was stirred at rt for 15 min , and then diluted with water and EtOAc. The layers were separated, and the organic phase was washed with 0.5 N aqueous HCl and water (2 x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to give (S)-2-formamido- N, N-diisopropyl-3,3-dimethylbutanamide as a white solid ($833 \mathrm{mg}, 86 \%$ yield). mp 96-99 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-63.9\left(c 0.74, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 1$ H), 3.52-3.42 (m, 1 H$), 1.39(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=$
$6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,160.9,53.3,49.6,46.3$, 35.5, 26.7, 21.6, 20.7, 20.2, 20.1; HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]:$ 243.2067. Found: 243.2070.

41
(S)-N,N-Diisopropyl-3,3-dimethyl-2-(N-methylformamido)butanamide (41). A flask was charged with (S)-2-formamido- N, N-diisopropyl-3,3-dimethylbutanamide (2.00 g , $8.25 \mathrm{mmol})$ and DMF $(10 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(363 \mathrm{mg}, 9.08$ $\mathrm{mmol}, 60 \mathrm{wt} . \%$ in mineral oil) was added in portions. After 5 min , MeI ($0.62 \mathrm{~mL}, 9.90$ mmol) was added. After 30 min , the reaction mixture was quenched with water (150 mL), resulting in the precipitation of the product. The solid was filtered and washed with water, and then dried under vacuum to provide 41 as a white solid ($1.95 \mathrm{~g}, 92 \%$ yield). $\mathrm{mp} 113-115^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-74.9$ (c 2.03, CHCl_{3}); Note: product is a $\sim 1: 1$ mixture of amide rotomers. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.17-$ $4.07(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.49-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}$, $3 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.07(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7$, $166.6,164.1,163.4,65.0,57.2,49.0,48.4,46.5,46.2,36.7,36.4,33.5,30.3,29.6,27.8$, 27.3, 21.1, 20.9, 20.7, 20.5, 20.47, 20.4, 20.3; HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 257.2224. Found: 257.2221.

(S)-2-((S)-2-(4-Bromophenyl)- N-methyl-2-((R)-2,4,6-triisopropylphenylsulfinamido)

 acetamido)- N, N-diisopropyl-3,3-dimethylbutanamide (42). A flask was charged with sulfinimine 14 ($1.69 \mathrm{~g}, 3.89 \mathrm{mmol}, 1.00$ equiv), $41(1.50 \mathrm{~g}, 5.84 \mathrm{mmol}, 1.50$ equiv) and toluene (15 mL) and the resultant solution was cooled to $-78^{\circ} \mathrm{C}$. The solution was treated with LDA ($2.92 \mathrm{~mL}, 5.84 \mathrm{mmol}, 2.0 \mathrm{M}, 1.50$ equiv). After 10 min at $-7{ }^{\circ} \mathrm{C}$, the reaction was quenched with water and allowed to warm to rt. The mixture was diluted with EtOAc and the layers were separated. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Reaction diastereoselectivity (from ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}): >97:3 (minor diastereomer not detected). Purification by crystallization from heptane gave 42 as a white solid ($2.12 \mathrm{~g}, 79 \%$ yield). mp $130-131.5{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-115.9\left(c 1.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2$ H), $5.33(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-3.77(\mathrm{~m}, 3 \mathrm{H})$, 3.36-3.23 (m, 1 H$), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.21$ $(\mathrm{m}, 21 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,168.1,152.5,148.8,137.2,136.5,132.1,129.5,123.0,122.6$, 59.0, 58.9, 48.5, 46.1, 37.3, 34.4, 32.9, 31.9, 29.0, 28.1, 27.8, 24.4, 24.3, 23.8, 23.76, 22.7, 21.05, 21.0, 20.6, 20.3, 14.1; HRMS: calcd for $\mathrm{C}_{36} \mathrm{H}_{57} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 690.3299$. Found: 690.3295.

Synthesis of ${ }^{13} \mathrm{C}$-labeled DIPF and low temperature ${ }^{13} \mathrm{C}$ NMR experiment.

43
${ }^{13}$ C-N,N-Diisopropylformamide (43). A flask was charged with CDI ($17.25 \mathrm{~g}, 106.4$ $\mathrm{mmol})$ and THF (100 mL). To the resultant slurry was added dropwise at $\mathrm{rt}>99 \%{ }^{13} \mathrm{C}$ labeled formic acid $(5.00 \mathrm{~g}, 106.4 \mathrm{mmol})$. After stirring at rt for 30 min , the reaction mixture was treated with diisopropylamine $(16.4 \mathrm{~mL}, 117.0 \mathrm{mmol})$. The reaction was stirred at rt for 30 min , and then diluted with water and MTBE. The layers were separated, and the organic phase was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude product was purified by vacuum distillation (bp $82^{\circ} \mathrm{C}, 12 \mathrm{~mm}$ Hg) using a short path distillation head to give 43 as a colorless liquid ($4.98 \mathrm{~g}, 36 \%$ yield). bp $82{ }^{\circ} \mathrm{C}, 12 \mathrm{~mm} \mathrm{Hg} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=188.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24-4.13 (m, 1 H$), 3.68-3.56(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,46.5(\mathrm{~d}, J=16.3 \mathrm{~Hz}), 43.8,23.3(\mathrm{~d}, J=4.7$ $\mathrm{Hz})$, 20.1; HRMS: calcd for $\mathrm{C}_{6}{ }^{13} \mathrm{CH}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]:$ 131.1260. Found: 131.1259.

Deprotonation of 43 and low temperature ${ }^{13} \mathrm{C}$ NMR analysis of the anion. To a flask containing $43(400 \mathrm{mg}, 3.10 \mathrm{mmol}), d-8 \mathrm{THF}(5 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, and pentane (1.25 mL) cooled to $-100^{\circ} \mathrm{C}$ was added dropwise $t-\mathrm{BuLi}(2.00 \mathrm{~mL}, 3.41 \mathrm{mmol}, 1.7 \mathrm{M} /$ pentane, 1.1 equiv). After stirring for 5 min at $-100{ }^{\circ} \mathrm{C}$, approximately 1.0 mL of the anion solution was transferred via cannula to an inerted NMR tube immersed in an EtOH/liquid nitrogen dewar (temperature $-90^{\circ} \mathrm{C}$). The NMR tube was transferred quickly to a 500 MHz NMR spectrometer, the probe of which had previously been cooled to $-68^{\circ} \mathrm{C}$. After shimming, the ${ }^{13} \mathrm{C}$ NMR spectrum was recorded using a broad sweep width. The spectrum was referenced to the $\alpha-\mathrm{C}$ of $d-8 \mathrm{THF}$ at 67.57 ppm . Due to ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ coupling with ${ }^{13} \mathrm{C}$, the signals were broad. See page S 104 for copies of the spectrum
taken at $-68^{\circ} \mathrm{C}$, from 370 to 130 ppm , and from 220 to $-30 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d-$ 8 THF, $-68^{\circ} \mathrm{C}$) $\delta 259.6$ (broad).

Computational Modeling Studies.

All calculations were conducted with the Guassian 09^{4} Unix version on a HPC system at the DFT B3LYP level of theory with the $6-311 \mathrm{G}+(\mathrm{d}, 2 \mathrm{p})$ basis set with the CPCM (THF) solvation model. All optimized conformers were subjected to a frequency check to verify the optimized structure is a stable structure (zero imaginary frequencies). To complete the tetrahedral structure of the Li species, the lithium atom was saturated with THF molecules. All structures were subjected to a Conformation search employing the Moe2011.10 program with the LowModeMd method. The lowest energy conformer was then subjected to the DFT optimization with the Gaussian 09 program. ${ }^{4}$ The optimized structures were then subjected to a NMR calculation (B3LYP/6-311G+(d,2p)) with the CPCM (THF) solvation model employing the IGAIM method within Gaussian 09. The final carbon shift was determined by referencing to a separately calculated reference carbon NMR with the optimized TMS structure (B3LYP/6-311G+(d,2p)) with the CPCM (THF) solvation model employing the IGAIM method within Gaussian 09.

Anion Structure 44:

[^1]
The Cartesian coordinates for the optimized structure are as follows:

H	3.70703129	3.87665730	-1.25579310
C	3.29093025	-1.11596808	3.12006624
H	4.32374333	-0.80444706	2.95287922
H	3.29840025	-1.97995015	3.78282129
C	2.45733319	0.05541800	3.66155128
H	1.54134412	-0.31127402	4.12729632
H	2.99292423	0.66323905	4.38934333
H	1.76224013	-4.21787732	-0.91546307
H	0.65744205	-4.70552936	-2.20717117
H	3.05370323	-3.58263028	-2.89702222
H	1.59420212	-3.06638624	-3.74351328
Sum of electronic	and zero-po	t Energies=	-1109.892804
Sum of electronic	and thermal	nergies=	-1109.860034
Sum of electronic	and thermal	nthalpies=	-1109.859090
Sum of electronic	and thermal	ree Energies=	-1109.963880
Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): -81.2366 ppm Carbon shift (TMS referenced, 185.863 ppm$)=267.1 \mathrm{ppm}$			

Anion Structure 46:

The Cartesian coordinates for the optimized structure are as follows:
Charge: 0 Spin: 1
Coordinates (Angstroms)
X
Y
Z

C	-1.79190000	0.31170000	0.04020000
N	-3.05130000	-0.18580000	-0.23340000
C	-3.27650000	-1.45060000	-0.96900000
H	-2.26930000	-1.79980000	-1.19150000
C	-4.23670000	0.56190000	0.23540000
H	-5.10290000	-0.01550000	-0.09140000
C	-4.31020000	0.65210000	1.76730000
H	-4.27340000	-0.34120000	2.21740000
H	-3.47310000	1.23170000	2.15480000
H	-5.24150000	1.13370000	2.07690000
C	-4.35670000	1.95090000	-0.40990000

H	-3.52800000	2.58780000	-0.10290000
H	-4.34380000	1.87610000	-1.49840000
H	-5.29290000	2.42930000	-0.11090000
C	-4.00960000	-1.23500000	-2.30160000
H	-4.08300000	-2.17760000	-2.85020000
H	-5.02650000	-0.86230000	-2.15650000
H	-3.47390000	-0.51970000	-2.92740000
C	-3.96970000	-2.51860000	-0.10940000
H	-4.03550000	-3.46150000	-0.65840000
H	-3.41050000	-2.69970000	0.80970000
H	-4.98710000	-2.22940000	0.16490000
0	-0.81500000	-0.40440000	-0.39430000
C	3.49640000	-1.74730000	-0.32430000
C	1.63830000	-2.56570000	-1.55660000
H	0.81450000	-3.04650000	-1.02780000
Li	0.96770000	0.02820000	-0.06710000
0	1.53710000	0.17770000	1.87000000
0	1.57860000	1.71740000	-0.96150000
C	1.26440000	-0.92670000	2.77130000
H	0.53260000	-1.57860000	2.29700000
C	1.51170000	1.43180000	2.60050000
H	0.60360000	1.97340000	2.32660000
C	0.69680000	2.43350000	-1.86460000
H	0.58340000	1.84800000	-2.78140000
H	-0.27240000	2.51800000	-1.37810000
C	2.90550000	2.30020000	-0.99570000
H	3.10720000	2.74500000	-0.01880000
H	2.19220000	-1.48400000	2.92450000
H	2.37940000	2.01680000	2.29880000
H	3.62860000	1.50530000	-1.17630000
H	4.17450000	-1.17450000	-0.96400000
H	3.61250000	-1.41140000	0.70420000
H	1.25860000	-2.14220000	-2.48570000
0	2.13210000	-1.48150000	-0.72450000
C	2.82300000	-3.51460000	-1.76250000
C	3.68750000	-3.24800000	-0.52030000
H	3.37240000	-3.25210000	-2.66810000
H	2.50380000	-4.55210000	-1.84840000
H	4.73320000	-3.51820000	-0.65960000
H	3.30170000	-3.79540000	0.34170000
C	1.39440000	3.76230000	-2.13530000
C	2.87640000	3.35650000	-2.10340000
C	0.76960000	-0.29240000	4.07010000
C	1.51630000	1.05030000	4.07970000
H	1.17470000	4.47740000	-1.34020000
H	1.09160000	4.20120000	-3.08480000
H	3.54690000	4.18830000	-1.89300000
H	3.16870000	2.91660000	-3.05850000
H	0.98800000	-0.91160000	4.93890000
H	-0.30820000	-0.12820000	4.02620000
H	2.53880000	0.91600000	4.43760000
H	1.03390000	1.80510000	4.69880000
Sum	and zero-poi	Energies=	-1109.899145
Sum	and thermal	nergies=	-1109.866496
Sum	and thermal	thalpies=	-1109.865552
Sum	and thermal	ree Energies=	-1109.970499

Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): -86.0708 ppm
Carbon shift (TMS referenced, 185.863 ppm$)=271.9 \mathrm{ppm}$

Anion Structure 45:

The Cartesian coordinates for the optimized structure are as follows:

C	1.67834200	-2.84560400	-0.73858000
H	0.76229100	-3.25120600	-0.30324200
H	1.49736600	-2.60996800	-1.78561100
C	3.37125800	-3.32210300	0.87120300
H	4.41358600	-3.57788700	1.05470100
H	2.76428800	-3.77028200	1.65970800
C	2.87128800	-3.77105800	-0.51090400
H	3.63830400	-3.59937500	-1.26822300
H	2.58744000	-4.82172900	-0.54350600
C	3.45372100	3.39028400	-0.61594500
C	2.26540700	3.95356100	0.17857300
H	2.38620100	2.07273600	-1.99000000
H	0.66386700	2.73045100	1.07617800
H	2.55063400	4.73691200	0.87898500
H	1.50975400	4.35606200	-0.49823500
H	4.32695300	3.28284100	0.02990400
H	3.73274600	4.00857800	-1.46764000
			-877.489283
Sum of electronic and zero-point Energies=	-877.463272		
Sum of electronic and thermal Energies $=$	-877.462328		
Sum of electronic and thermal Enthalpies $=$	-877.551986		
Sum of electronic and thermal Free Energies=			

```
Total of Energy of system (eta-2 Anion with free THF): THF (-
232.437992) plus eta-2 Li anion= -1109.989978
Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): -75.4454
ppm
Carbon shift (TMS referenced, 185.863 ppm)= 261.3 ppm
```


THF

The Cartesian coordinates for the optimized structure are as follows:

Charge: 0 Spin: 1	Coordinates (Angstroms)			
		X	Y	Z
O		0.00000241	-1.25566627	0.00000597
C		1.17445772	-0.42618584	-0.13067911
H		1.94787830	-0.81880701	0.52991905
H		1.53428220	-0.48395688	-1.16269831
C		-1.17445902	-0.42618841	0.13067169
H		-1.94786643	-0.81880991	-0.52994135
H		-1.53429940	-0.48396494	1.16268435

C	0.73424761	0.99538011	0.22533835
C	-0.73424823	0.99538101	-0.22533514
H	0.80156737	1.15715481	1.30285831
H	1.33785450	1.75311631	-0.27247511
H	-1.33785632	1.75311238	0.27248412
H	-0.80156798	1.15716419	-1.30285363
Sum of electronic and zero-point Energies $=$	-232.409569		
Sum of electronic and thermal Energies $=$	-232.404598		
Sum of electronic and thermal Enthalpies $=$	-232.403654		
Sum of electronic and thermal Free Energies $=$	-232.437992		

TMS

The Cartesian coordinates for the optimized structure are as follows:
Charge: 0 Spin: 1
Coordinates (Angstroms)
X
Y
Z

Si	0.00000000	0.00000000	0.00000000
C	1.09190000	1.09190000	1.09190000
H	1.73490000	0.48650000	1.73490000
H	1.73490000	1.73490000	0.48650000
H	0.48650000	1.73490000	1.73490000
C	-1.09190000	-1.09190000	1.09190000
H	-1.73490000	-0.48650000	1.73490000
H	-1.73490000	-1.73490000	0.48650000
H	-0.48650000	-1.73490000	1.73490000
C	-1.09190000	1.09190000	-1.09190000
H	-0.48650000	1.73490000	-1.73490000
H	-1.73490000	0.48650000	-1.73490000
H	-1.73490000	1.73490000	-0.48650000
C	1.09190000	-1.09190000	-1.09190000
H	0.48650000	-1.73490000	-1.73490000
H	1.73490000	-0.48650000	-1.73490000
H	1.73490000	-1.73490000	-0.48650000

Sum of electronic and zero-point Energies= -449.

Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= -449.121924
-449.120980
Sum of electronic and thermal Free Energies= -449.161441

Carbon NMR shielding (IGAIM, B3LYP/6-311G+(d,2p), CPCM=THF): 185.863 ppm

HPLC chromatograms of crude α-amino amides.

HPLC of crude 2a:

HPLC of crude 2b:

HPLC of crude 4a:

HPLC of crude 4b:

HPLC of crude $\mathbf{5 b}$:

HPLC of crude 7a:

HPLC of crude 7b:

HPLC of crude 9 :

HPLC of crude 11:

HPLC of crude 13a:

HPLC of crude 13b:

HPLC of crude 15:

HPLC of crude 17:

HPLC of crude 19:

HPLC of crude 21:

HPLC of crude 23:

HPLC of crude 25 :

HPLC of crude 27:

HPLC of crude 29 :

HPLC of crude 31:

HPLC of crude 33 :

Chiral HPLC of $\mathbf{3}$ ($\mathbf{3}$ is top chromatogram, ent $\mathbf{3}$ is bottom chromatogram):

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.
${ }^{1} \mathrm{H}$ NMR of 1a:

${ }^{13} \mathrm{C}$ NMR of 1a:

${ }^{1} \mathrm{H}$ NMR of 2a:

${ }^{13}$ C NMR of 2a:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 b}$:

${ }^{13}$ C NMR of $\mathbf{1 b}$:

1	180	180	160	140	120	100	80	60	40	20	ppm

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 b}$:

${ }^{13}$ C NMR of 2b:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3}$:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3}$:

${ }^{1} \mathrm{H}$ NMR of 4a:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 a}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b}$:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}$:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 b}$:

5b

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 a}$:

${ }^{1} \mathrm{H}$ NMR of 7a:

${ }^{13}$ C NMR of 7a:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 b}$:

${ }^{13}$ C NMR of $\mathbf{6 b}$:

${ }^{1} \mathrm{H}$ NMR of 7b:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{7 b}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}$:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8}$:

${ }^{1} \mathrm{H}$ NMR of 9 :

${ }^{13} \mathrm{C}$ NMR of 9 :

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0}$:

${ }^{13}$ C NMR of $\mathbf{1 0}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1}$:

11
${ }^{13}$ C NMR of 11 :

${ }^{1} \mathrm{H}$ NMR of 12a:

${ }^{13} \mathrm{C}$ NMR of 12a:

${ }^{1} \mathrm{H}$ NMR of 13a:

${ }^{13} \mathrm{C}$ NMR of 13a:

${ }^{1} \mathrm{H}$ NMR of 12b:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2 b}$:

${ }^{1} \mathrm{H}$ NMR of 13b:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3 b}$:

13b

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 4}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 5}$:

\qquad

${ }^{13}$ C NMR of 15:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 6}$:

${ }^{13}$ C NMR of 16 :

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7}$:

${ }^{13}$ C NMR of 17 :

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 8}$:

${ }^{13}$ C NMR of 18:

| 1 | 1 | 1 | 1 | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 9}$:

${ }^{13}$ C NMR of $\mathbf{1 9}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 0}$:

${ }^{13}$ C NMR of 20:

${ }^{1} \mathrm{H}$ NMR of 21:

${ }^{13}$ C NMR of 21:

${ }^{1} \mathrm{H}$ NMR of 4-fluorophenyl 1-adamantyl ketone:

${ }^{13} \mathrm{C}$ NMR of 4-fluorophenyl 1-adamantyl ketone:

${ }^{1} \mathrm{H}$ NMR of 22:

${ }^{13}$ C NMR of 22:

${ }^{1} \mathrm{H}$ NMR of 23:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 3}$:

${ }^{13} \mathrm{C}$ NMR of (1-(4-Methoxyphenyl)cyclohexyl)(phenyl)methanone:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 4}$:

${ }^{13}$ C NMR of 24:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 5}$:

${ }^{13}$ C NMR of 25:

${ }^{1} \mathrm{H}$ NMR of (4-Bromophenyl)(1-methylcyclopropyl)methanone:

${ }^{13}$ C NMR of (4-Bromophenyl)(1-methylcyclopropyl)methanone:

${ }^{1} \mathrm{H}$ NMR of 26:

${ }^{13}$ C NMR of 26:

200	180	160	140	120	100	80	60	40	20	ppm

${ }^{1} \mathrm{H}$ NMR of 27:

${ }^{13}$ C NMR of 27:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 8}$:

${ }^{13}$ C NMR of 28:

${ }^{1} \mathrm{H}$ NMR of 29:

${ }^{13}$ C NMR of 29:

| | 180 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 0}$:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 0}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 1}$:

${ }^{13}$ C NMR of 31:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 2}$:

${ }^{13}$ C NMR of 32:

${ }^{1} \mathrm{H}$ NMR of 33 :

33

$\begin{array}{llllllllllllllllll}8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{ppm}\end{array}$

${ }^{13}$ C NMR of 33:

33

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 4}$:

${ }^{13}$ C NMR of 34:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 5}$:

${ }^{13}$ C NMR of 35:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 6}$:

${ }^{13}$ C NMR of 36:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 7}$:

${ }^{13}$ C NMR of 37:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 9}$:

39

${ }^{13}$ C NMR of 39:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 0}$:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 0}$:

${ }^{1} \mathrm{H}$ NMR of \boldsymbol{N}-formylated 3:

${ }^{13} \mathrm{C}$ NMR of N -formylated 3:

${ }^{1} \mathrm{H}$ NMR of 41 ($\sim 1: 1$ mixture of rotamers):

41

${ }^{13} \mathrm{C}$ NMR of 41 ($\sim 1: 1$ mixture of rotamers):

41

${ }^{1} \mathrm{H}$ NMR of 42:

${ }^{13}$ C NMR of 42:

${ }^{1} \mathrm{H}$ NMR of 43:

${ }^{13}$ C NMR of 43:

${ }^{13} \mathrm{C}$ NMR of the anion of 43 at $-68^{\circ} \mathrm{C}(370$ to 130 ppm$)$:

[^0]: ${ }^{1}$ Lee, K. Y.; Lee, M. J.; Kim, J. N. Tetrahedron 2005, 61, 8705.
 ${ }^{2}$ Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.
 ${ }^{3}$ Brak, K.; Barrett, K. T.; Ellman, J. A. J. Org. Chem. 1999, 74, 3606.

[^1]: ${ }^{4}$ Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

