Supporting Information for

Asymmetric Syntheses of (-)-1-Deoxymannojirimycin and (+)-1-Deoxyallonojirimycin via a Ring-Expansion Approach

Stephen G. Davies,* Aude L. A. Figuccia, Ai M. Fletcher, Paul M. Roberts and James E. Thomson

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.
steve.davies@chem.ox.ac.uk

Table of Contents

1. Experimental 2-14
2. X-ray crystal structure determination 15
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra 16-43

1. Experimental

1.1. General Experimental

All reactions involving organometallic or other moisture sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs and co-workers. ${ }^{1}$ Water was purified by an Elix ${ }^{\circledR}$ UV-10 system. BuLi was purchased as a solution in hexanes and titrated against diphenylacetic acid before use. All other reagents were used as supplied without prior purification. Organic layers were dried over MgSO_{4}. Thin layer chromatography was performed on aluminium plates coated with $60 \mathrm{~F}_{254}$ silica. Plates were visualised using UV light (254 nm), iodine, 1% aq KMnO_{4}, or 10% ethanolic phosphomolybdic acid. Flash column chromatography was performed on Kieselgel 60 silica.

Melting points are uncorrected. Optical rotations were recorded in a water-jacketed 10 cm cell. Specific rotations are reported in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ and concentrations in $\mathrm{g} / 100 \mathrm{~mL}$. IR spectra were recorded using an ATR module. Selected characteristic peaks are reported in cm^{-1}. NMR spectra were recorded in the deuterated solvent stated. Spectra were recorded at rt. The field was locked by external referencing to the relevant deuteron resonance. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMQC}$, and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC analyses were used to establish atom connectivity. Accurate mass measurements were run on a TOF spectrometer internally calibrated with polyalanine.

[^0]
1.2. Experimental Data

(R, R, R, R) - and (3S,4R,5R, αR)-4-Benzyloxy-5-[N-benzyl- N-(α-methylbenzyl)amino]-6-

(triisopropylsilyloxy)hex-1-en-3-ol 11 and 12

11

12

Step 1: DMSO ($1.11 \mathrm{~mL}, 15.7 \mathrm{mmol})$ was added dropwise to a stirred solution of $(\mathrm{COCl})_{2}(0.55 \mathrm{~mL}, 6.41$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 20 min , a solution of $\mathbf{1 0}^{2}(2.00 \mathrm{~g}, 3.56 \mathrm{mmol},>99: 1 \mathrm{dr})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise via cannula. After a further $30 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(2.98 \mathrm{~mL}, 21.4 \mathrm{mmol})$ was added and the resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min before being allowed to warm to rt over a period of 30 min . The reaction mixture was then concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo to give (R, R, R)-2-benzyloxy-3-[N -benzyl- N-(α-methylbenzyl)amino]-4-(triisopropylsilyloxy)butanal as a yellow oil ($1.85 \mathrm{~g},>99: 1 \mathrm{dr}$) $;^{3} \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.01-1.12\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 1.38(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{C}(\alpha) M e), 3.45-3.51(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.56$ $(1 \mathrm{H}, \mathrm{dd}, J 4.0,2.7, \mathrm{C}(2) H), 3.78\left(1 \mathrm{H}, \mathrm{d}, J 14.8, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.81-3.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}, \mathrm{C}(\alpha) H\right), 4.06(1 \mathrm{H}, \mathrm{dd}$, J 9.6, 7.6, C $\left.(4) H_{\mathrm{B}}\right), 4.12\left(1 \mathrm{H}, \mathrm{d}, J 14.8, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.34\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.48(1 \mathrm{H}, \mathrm{d}, J 11.4$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.16-7.40(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.19$ (1H, d, J 2.7, C(1)H).

Step 2: Vinylmagnesium bromide (1.0 M in THF, $9.90 \mathrm{~mL}, 9.90 \mathrm{mmol}$) was added dropwise to a stirred solution of the residue $(1.85 \mathrm{~g},>99: 1 \mathrm{dr})$ in $\mathrm{THF}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt and was stirred at rt for 16 h . The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ was added dropwise. The resultant mixture was concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(100$ $\mathrm{mL})$ and EtOAc (100 mL). The aqueous layer was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with brine (100 mL), then dried and concentrated in vacuo to give a $65: 35$ mixture of $\mathbf{1 1}$ and 12. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/EtOAc, 25:1) gave 11 as a colourless oil ($1.06 \mathrm{~g}, 55 \%$ from 10, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}+36.5$ (c 1.0 in CHCl_{3}); $v_{\text {max }}$ (ATR) 3370 $(\mathrm{O}-\mathrm{H}), 2942,2866(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05-1.14\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}(\mathrm{CHMe})_{3}\right), 1.45(3 \mathrm{H}, \mathrm{d}, J 6.8$,

[^1]$\mathrm{C}(\alpha) M e), 3.18(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OH}), 3.23(1 \mathrm{H}, \mathrm{dd}, J 7.8,2.3, \mathrm{C}(4) H), 3.38-3.49(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 3.96(2 \mathrm{H}, \mathrm{app} \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.97-4.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 4.05-4.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}, \mathrm{C}(\alpha) H\right), 4.29\left(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)$, $4.46\left(1 \mathrm{H}, \mathrm{br}\right.$ s, C(3)H), $4.51\left(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 5.04\left(1 \mathrm{H}, \mathrm{dd}, J 10.5,1.6, \mathrm{C}(1) H_{\mathrm{A}}\right), 5.24(1 \mathrm{H}, \mathrm{dd}, J$ 17.2, 1.6, C(1) H_{B}), $5.58(1 \mathrm{H}, \mathrm{ddd}, J 17.2,10.6,4.6, \mathrm{C}(2) H), 7.14-7.44(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $12.1\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 18.2\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 19.5(\mathrm{C}(\alpha) M e), 52.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.2(C(5)), 60.5(C(\alpha)), 62.7(C(6))$, 71.9 ($C(3)$), $74.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 80.7(C(4))$, 114.6 ((1)), 126.8, 126.9, 127.6, 127.8, 127.9, 128.2, 128.3, 128.9 (o,m,p-Ph), 138.2 (i-Ph), 139.6 (C(2)), 141.4, 145.6 (i-Ph); m/z (ESI ${ }^{+} 588$ ([M+H] ${ }^{+}, 100 \%$); HRMS (ESI $\left.{ }^{+}\right)$ $\mathrm{C}_{37} \mathrm{H}_{54} \mathrm{NO}_{3} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 588.3867 ; found 588.3857. Further elution gave $\mathbf{1 2}$ as a colourless oil (490 $\mathrm{mg}, 26 \%$ from 10, >99:1 dr); $[\alpha]_{\mathrm{D}}^{20}+2.4$ (c 1.0 in CHCl_{3}); $v_{\max }(\mathrm{ATR}) 3376(\mathrm{O}-\mathrm{H}), 2942,2866(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.03-1.18 (21H, m, $\left.\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 1.34(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{C}(\alpha) \mathrm{Me}), 3.20-3.26(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 3.52$ (1H, app t, J 4.4, C(4)H), 3.88-4.01 (3H, m, NCH2 Ph, C(6)H H_{A}), $4.06(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{C}(\alpha) H), 4.12-4.20(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 4.24\left(1 \mathrm{H}\right.$, br s, C(3)H), $4.38\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.95$ (1H, app d, $\left.J 10.4, \mathrm{C}(1) H_{\mathrm{A}}\right), 5.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.18\left(1 \mathrm{H}\right.$, app d, $\left.J 17.1, \mathrm{C}(1) H_{\mathrm{B}}\right), 5.43-5.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H)$, 7.15-7.36 (15H, m, Ph); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.0\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 18.0\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 18.7(\mathrm{C}(\alpha) \mathrm{Me}), 51.7$ $\left(\mathrm{N}_{2} \mathrm{H}_{2} \mathrm{Ph}\right), 59.1(C(\alpha)), 59.3(C(5)), 61.8(C(6)), 71.7\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.4(C(3)), 82.1(C(4)), 115.6(C(1)), 126.7$, 126.8, 127.5, 127.8, 128.2, 128.7 (o,m,p-Ph), 138.1 ($C(2)$), 138.3, 141.3, 144.8 (i-Ph); m/z ($\left.\mathrm{ESI}^{+}\right) 588$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{37} \mathrm{H}_{54} \mathrm{NO}_{3} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 588.3867; found 588.3847.

$(\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R})$-4-Benzyloxy-5-[N-benzyl- N-(α-methylbenzyl)amino]hex-1-en-3,6-diol 13

TBAF (1.0 M in THF, $2.49 \mathrm{~mL}, 2.49 \mathrm{mmol}$) was added dropwise to a stirred solution of $\mathbf{1 1}(978 \mathrm{mg}, 1.66$ mmol, $>99: 1 \mathrm{dr}$) in THF (80 mL) at $0^{\circ} \mathrm{C}$. The resultant mixture was allowed to warm to rt and was stirred at rt for 16 h . The reaction mixture was then concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/ EtOAc, 6:1) gave 13 as a white solid ($555 \mathrm{mg}, 77 \%,>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}+105.6$ (c 1.0 in CHCl_{3}); $v_{\text {max }}(\mathrm{ATR}) 3409(\mathrm{O}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.46(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{C}(\alpha) M e)$, $2.61(1 \mathrm{H}, \mathrm{br}$ s, OH$), 2.91(1 \mathrm{H}, \mathrm{br}$ s, OH$), 3.20-3.27(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 3.45-3.50(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H), 3.72-3.85(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}(6) H_{2}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.89\left(1 \mathrm{H}, \mathrm{d}, J 14.1, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.01(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{C}(\alpha) H), 4.26(1 \mathrm{H}, \mathrm{br}$ s, C(3)H), $4.39\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 5.06\left(1 \mathrm{H}, \operatorname{app} \mathrm{dt}, J 10.6,1.5, \mathrm{C}(1) H_{\mathrm{A}}\right)$,
$5.20\left(1 \mathrm{H}, \operatorname{app} \mathrm{d}, J 17.1, \mathrm{C}(1) H_{\mathrm{B}}\right), 5.52(1 \mathrm{H}$, ddd, $J 17.1,10.6,4.7, \mathrm{C}(2) H), 7.20-7.37(15 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.9(\mathrm{C}(\alpha) M e), 50.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 58.3(C(\alpha)), 59.3(C(5)), 61.9(C(6)), 71.9(C(3)), 74.0$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 81.5(C(4)), 115.2(C(1)), 127.3,127.5,128.1,128.2,128.2,128.2,128.5,128.6,129.0(o, m, p-P h)$, 137.3, 140.1, 142.8 (i-Ph), 138.6 (C(2)); m/z (ESI $) 432\left([M+H]^{+}, 100 \%\right) ; H R M S ~(E S I+) \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{3}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 432.2533; found 432.2522 .

(R, R, R, R)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4-hydroxy-5(iodomethyl)pyrrolidine 14

$\mathrm{I}_{2}(518 \mathrm{mg}, 2.04 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(171 \mathrm{mg}, 2.04 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{1 1}(400 \mathrm{mg}$, $0.68 \mathrm{mmol},>99: 1 \mathrm{dr})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ at rt and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, washed with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and the organic layer was dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/EtOAc, 50:1) gave 14 as a yellow oil ($83 \mathrm{mg}, 20 \%,>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}+50.7\left(c 1.0\right.$ in CHCl_{3}); $v_{\text {max }}$ (ATR) $3384(\mathrm{O}-\mathrm{H}), 2942,2866(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95-1.04\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}(\mathrm{CHMe})_{3}\right), 3.11(1 \mathrm{H}, \mathrm{dd}, J$ 8.9, 3.1, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{I}\right), 3.19(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 3.22-3.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.30\left(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{I}\right), 3.40(1 \mathrm{H}$, app dt, $J 11.1,3.1, \mathrm{C}(5) H), 3.48\left(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.68\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.86(1 \mathrm{H}$, app $\mathrm{s}, \mathrm{C}(3) H), 3.95-4.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}, \mathrm{OH}\right), 4.23$ (1H, dd, J 11.1, 3.2, C(4)H), 4.53 ($1 \mathrm{H}, \mathrm{d}, J 12.0$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.22-7.40(10 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.4\left(\mathrm{CH}_{2} \mathrm{I}\right)$, $11.8\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 17.8\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 58.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 64.5\left(\mathrm{C}(2) \mathrm{CH}_{2}\right), 70.0(\mathrm{C}(5)), 71.2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 74.0$ (C(4)), $74.3(C(2)), 84.7(C(3)), 127.2,127.6,127.7,128.3,128.4,128.6$ (o,m,p-Ph), 138.0, $139.7(i-P h) ; m / z$ $\left(\mathrm{ESI}^{+}\right) 610\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{45} \mathrm{INO}_{3} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 610.2208; found 610.2198.
(1S,2R,3R,4R,5S)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4-hydroxy-1azabicyclo[3.1.0]hexanium tetrafluoroborate 15

$\mathrm{AgBF}_{4}(23 \mathrm{mg}, 0.118 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{1 4}(60 \mathrm{mg}, 0.10 \mathrm{mmol},>99: 1 \mathrm{dr})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt and the resultant mixture was allowed to stir at rt for 1 h . The reaction mixture was then filtrated through

Celite ${ }^{\circledR}$ (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and concentrated in vacuo to give 15 as an orange oil (65 mg , quant, $>99: 1 \mathrm{dr}$); $[\alpha]_{D}^{20}$ $+0.6\left(c 0.4\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{ATR}) 3510(\mathrm{O}-\mathrm{H}), 2945,2867(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 0.94-1.24(21 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Si}(\mathrm{CHMe})_{3}\right), 3.09\left(1 \mathrm{H}, \mathrm{dd}, J 8.0,4.5, \mathrm{C}(6) H_{\mathrm{A}}\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J 6.3,4.5, \mathrm{C}(6) H_{\mathrm{B}}\right), 3.76-3.86(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H$, $\mathrm{C}(3) H), 3.98-4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, \mathrm{OH}\right), 4.07-4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}, \mathrm{C}(5) H\right), 4.42(1 \mathrm{H}, \mathrm{d}, J 13.1$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J 13.1, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.82(1 \mathrm{H}, \mathrm{d}, J 11.6$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.83-4.88(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H), 7.28-7.58(10 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 11.7\left(\mathrm{Si}\left(C \mathrm{HMe}_{2}\right)_{3}\right)$, $17.8\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 37.4(C(6)), 49.2(C(5)), 59.5\left(\mathrm{C}(2) \mathrm{CH}_{2}\right), 61.3\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 68.3(C(2)), 72.6(C(4)), 72.7$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 79.0(C(3)), 128.1,128.3,128.5,129.9,131.0,131.2$ ($\left.o, m, p-P h\right), 136.9(2 \times i-P h) ; m / z\left(\mathrm{ESI}^{+}\right) 514$ $\left([\mathrm{M}+\mathrm{MeOH}]^{+}, 40 \%\right), 482\left([\mathrm{M}]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{30} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{MeOH}]^{+}\right)$requires 514.3347; found 514.3345.
(R, R, R, R)- $N(1)$-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4,5-dihydroxy-4,5-Ocarbonylpiperidine 16

Method A (from 11) - Step 1: $\mathrm{I}_{2}(129 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(43 \mathrm{mg}, 0.51 \mathrm{mmol})$ were added to a stirred solution of $11(100 \mathrm{mg}, 0.17 \mathrm{mmol},>99: 1 \mathrm{dr})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(3: 1,4 \mathrm{~mL})$ at rt and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and washed with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$, then dried and concentrated in vacuo to give a $50: 50$ mixture of 16 and 1-phenylethanol (100 mg).

Step 2: $\mathrm{Ac}_{2} \mathrm{O}(0.18 \mathrm{~mL}, 1.9 \mathrm{mmol})$ and DMAP ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added to a stirred solution of the residue of 16 and 1-phenylethanol $(100 \mathrm{mg})$ in pyridine $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resultant mixture was allowed to warm to rt and was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, then dried and concentrated in vacuo to give a $50: 50$ mixture of 16 and α methylbenzylacetate. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/ EtOAc, 12:1) gave 16 as a colourless oil ($23 \mathrm{mg}, 26 \%,>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-32.6$ (c 1.0 in CHCl_{3}); $v_{\max }$ (ATR) 2943, 2866 $(\mathrm{C}-\mathrm{H}), 1810(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.02-1.15\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}(\mathrm{CHMe})_{3}\right), 2.83(1 \mathrm{H}, \mathrm{dd}, J 13.7,1.0$, $\left.\mathrm{C}(6) H_{\mathrm{A}}\right), 2.90\left(1 \mathrm{H}, \mathrm{dd}, J 13.7,2.0, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.98(1 \mathrm{H}$, app dd, $J 9.2,4.5, \mathrm{C}(2) H), 3.43(1 \mathrm{H}, \mathrm{d}, J 14.2$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.71\left(1 \mathrm{H}, \operatorname{app} \mathrm{t}, J 9.2, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.91\left(1 \mathrm{H}, \mathrm{dd}, J 10.1,4.5, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.06(1 \mathrm{H}, \mathrm{d}, J 14.2$,
$\left.\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.30(1 \mathrm{H}, \operatorname{app} \mathrm{d}, J 3.6, \mathrm{C}(3) H), 4.52\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.70-4.78(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.79-4.84\left(1 \mathrm{H}, \mathrm{dd}, J\right.$ 8.3, 3.6, C(4)H), 7.23-7.40(10H, m, Ph); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.9$ $\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 18.0\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 49.1(\mathrm{C}(6)), 59.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 62.8\left(\mathrm{C}(2) \mathrm{CH}_{2}\right), 65.0(\mathrm{C}(2)), 71.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $72.4(C(3)), 73.4(C(4))$, $74.4(C(5)), 127.3,127.6,128.0,128.3,128.5,128.5$ (o,m,p-Ph), 137.5, 137.9 (i-Ph),
 526.2968.

Method B (from 14): $\mathrm{AgBF}_{4}(23 \mathrm{mg}, 0.118 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{1 4}(60 \mathrm{mg}, 0.10 \mathrm{mmol}$, $>99: 1 \mathrm{dr}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt and the resultant mixture was allowed to stir at rt for 1 h . The reaction mixture was then filtered through Celite ${ }^{\circledR}$ (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and concentrated in vacuo to give $\mathbf{1 5}$ as an orange oil (65 mg , quant, $>99: 1 \mathrm{dr}) . \mathrm{NaHCO}_{3}(25 \mathrm{mg}, 0.29 \mathrm{mmol})$ was added to a stirred solution of the residue of $\mathbf{1 5}(65 \mathrm{mg}$, $>99: 1 \mathrm{dr})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(3: 1,4 \mathrm{~mL})$ at rt and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and washed with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$, then dried and concentrated in vacuo to give 16 as a yellow oil (52 mg , quant, $>99: 1 \mathrm{dr}$).

(R, R, R, R)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4,5-dihydroxypiperidine 17

$\mathrm{K}_{2} \mathrm{CO}_{3}(32 \mathrm{mg}, 0.23 \mathrm{mmol})$ was added to a stirred solution of $16(40 \mathrm{mg}, 0.08 \mathrm{mmol},>99: 1 \mathrm{dr})$ in $\mathrm{MeOH}(2$ mL) at rt and the resulting mixture was allowed to stir at rt for 16 h . The reaction mixture was then concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and EtOAc (15 mL). The aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo to give 17 as a yellow oil (40 mg , quant, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-19.8\left(c 1.0 \mathrm{in} \mathrm{CHCl}_{3}\right.$); $v_{\text {max }}$ (ATR) $3395(\mathrm{O}-\mathrm{H}), 2942,2866(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.02-1.14\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}(\mathrm{CHMe})_{3}\right), 2.24(1 \mathrm{H}, \mathrm{d}, J$ $\left.12.4, \mathrm{C}(6) H_{\mathrm{A}}\right), 2.38-2.47(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 2.92\left(1 \mathrm{H}, \mathrm{dd}, J 12.4,4.6, \mathrm{C}(6) H_{\mathrm{B}}\right), 3.36\left(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)$, 3.57 (1H, app t, $J 8.1, \mathrm{C}(3) H), 3.65(1 \mathrm{H}, \mathrm{dd}, J 8.1,3.3, \mathrm{C}(4) H), 3.72-3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 4.03(1 \mathrm{H}, \mathrm{dd}, J$ $\left.11.1,4.0, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J 11.1,1.8, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.43\left(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.65(1 \mathrm{H}, \mathrm{d}$, $\left.J \quad 11.4, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 5.03\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.26-7.40(10 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.0$ $\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 18.1\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 54.1(C(6)), 57.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 61.9\left(\mathrm{C}(2) \mathrm{CH}_{2}\right), 66.6(C(2)), 67.9(C(5)), 74.3$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.8(C(4)), 78.6(C(3)), 127.2,127.6,127.9,128.4,128.5,129.0(o, m, p-P h), 138.5(i-P h) ; m / z$ $\left(\mathrm{ESI}^{+}\right) 500\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 500.3191; found 500.3190.

(R, R, R, R)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4,5-diacetoxypiperidine 18

$\mathrm{Ac}_{2} \mathrm{O}(0.08 \mathrm{~mL}, 0.80 \mathrm{mmol})$ and DMAP $(2 \mathrm{mg}, 0.02 \mathrm{mmol})$ were added to a stirred solution of $17(40 \mathrm{mg}, 80$ $\mu \mathrm{mol},>99: 1 \mathrm{dr})$ in pyridine $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resultant mixture was allowed to warm to rt and was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\operatorname{EtOAc}(15 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40^{\circ} \mathrm{C}$ petrol/EtOAc, 9:1) gave 18 as a yellow oil (47 mg , quant, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-14.0\left(c 1.0\right.$ in CHCl_{3}); $v_{\max }$ (ATR) 2942, $2866(\mathrm{C}-\mathrm{H})$, $1748(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90-1.07\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.07(3 \mathrm{H}, \mathrm{s}$, COMe), $2.41\left(1 \mathrm{H}, \mathrm{dd}, J\right.$ 13.2, 2.6, C(6) $\left.H_{\mathrm{A}}\right), 2.66-2.72(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 2.94\left(1 \mathrm{H}, \mathrm{dd}, J 13.2,6.2, \mathrm{C}(6) H_{\mathrm{B}}\right), 3.53$ $\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.88(1 \mathrm{H}$, app t, $J 7.3, \mathrm{C}(3) H), 3.98\left(1 \mathrm{H}, \mathrm{dd}, J 10.6,5.3, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.12(1 \mathrm{H}$, dd, $\left.J 10.6,3.5, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.33\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.74(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.4, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 5.15(1 \mathrm{H}, \mathrm{dd}, J 7.3,3.2, \mathrm{C}(4) H), 5.26(1 \mathrm{H}, \operatorname{app} \mathrm{dt}, J 6.2,3.2, \mathrm{C}(5) H), 7.20-7.37(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.9\left(\mathrm{Si}\left(C \mathrm{HMe}_{2}\right)_{3}\right), 18.0\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 21.0(2 \times \mathrm{COMe}), 49.9(C(6)), 57.7$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.4\left(\mathrm{C}(2) C \mathrm{H}_{2}\right), 61.3(C(2)), 65.2(C(5)), 67.1(C(4)), 73.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.0(C(3)), 126.9,127.4$, 127.6, 128.1, 128.3, 128.5 (o,m,p-Ph), 138.3, 139.3 (i-Ph), 170.1, 170.3 (COMe); m/z (ESI $\left.{ }^{+}\right) 584$ ([M+H] ${ }^{+}$, $100 \%) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{NO}_{6} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 584.3402; found 584.3401.

(R, R, R, R)-N(1)-Benzyl-2-(hydroxymethyl)-3-benzyloxy-4,5-dihydroxypiperidine 19

Method A (from 18) - Step 1: HF-pyridine (70%, $0.15 \mathrm{~mL}, 5.70 \mathrm{mmol}$) was added dropwise to a stirred solution of $\mathbf{1 8}(111 \mathrm{mg}, 0.19 \mathrm{mmol},>99: 1 \mathrm{dr})$ in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$. The resultant mixture was allowed to warm to rt and was stirred at rt for 16 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and satd aq $\mathrm{NaHCO}_{3}(0.5$ mL) was then carefully added. The resultant mixture was concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo (89 mg).

Step 2: $\mathrm{K}_{2} \mathrm{CO}_{3}(73 \mathrm{mg}, 0.57 \mathrm{mmol})$ was added to a stirred solution of the residue $(89 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at rt and the resultant mixture was allowed to stir at rt for 6 h before being concentrated in vacuo. The residue was
dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3} / \mathrm{PrOH}(3: 1,3 \times 5 \mathrm{~mL})$. The combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 50: 1$) gave 19 as a white solid ($46 \mathrm{mg}, 70 \%$ from 18, $>99: 1 \mathrm{dr}$); mp $70-72{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-36.0(c$ 1.0 in CHCl_{3}); $v_{\max }(\mathrm{ATR}) 3384(\mathrm{O}-\mathrm{H}), 2921(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.29-2.34(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}$, $\left.\mathrm{C}(6) H_{\mathrm{A}}\right), 3.04\left(1 \mathrm{H}, \mathrm{dd}, J 12.6,3.8, \mathrm{C}(6) H_{\mathrm{B}}\right), 3.39\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J 8.7,3.3, \mathrm{C}(4) H)$, $3.77(1 \mathrm{H}$, app t, $J 8.7, \mathrm{C}(3) H), 3.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(5) H), 3.93\left(1 \mathrm{H}, \mathrm{dd}, J 12.0,1.6, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.03(1 \mathrm{H}, \mathrm{dd}, J$ $\left.12.0,2.7, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.14\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.93(1 \mathrm{H}, \mathrm{d}, J$ $\left.11.3, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.26-7.42(10 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 54.8(C(6)), 57.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 58.3$ $\left(\mathrm{C}(2) C \mathrm{H}_{2}\right), 65.7(C(2)), 67.8(C(5)), 75.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.2(C(4)), 77.2(C(3)), 127.5,128.0,128.1,128.6$, 128.7, 128.8 (o,m,p-Ph), 137.7, 138.3 (i-Ph); m/z (ESI $) 344\left([M+H]^{+}, 100 \%\right) ; \mathrm{HRMS}^{+}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 344.1856 ; found 344.1855 .

Method B (from 11) - Step $1: \mathrm{I}_{2}(411 \mathrm{mg}, 1.62 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(136 \mathrm{mg}, 1.62 \mathrm{mmol})$ were added to a stirred solution of $11(319 \mathrm{mg}, 0.54 \mathrm{mmol},>99: 1 \mathrm{dr})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(3: 1,20 \mathrm{~mL})$ at rt and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$, then dried and concentrated in vacuo to give a $50: 50$ mixture of $\mathbf{1 6}$ and 1-phenylethanol (319 mg).

Step 2: HF-pyridine ($70 \%, 0.46 \mathrm{~mL}, 17.7 \mathrm{mmol}$) was added dropwise to a solution of the residue of $\mathbf{1 6}$ and 1-phenylethanol (319 mg) in THF (5 mL) at $0^{\circ} \mathrm{C}$. The resultant mixture was allowed to warm to rt and was stirred at rt for 16 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and satd aq $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was carefully added. The resultant mixture was concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc (10 mL). The aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo to give $\mathbf{2 0}(230 \mathrm{mg})$.

Step 3: $\mathrm{K}_{2} \mathrm{CO}_{3}(245 \mathrm{mg}, 1.77 \mathrm{mmol})$ was added to a stirred solution of the residue of $\mathbf{2 0}(230 \mathrm{mg})$ in $\mathrm{MeOH}(5$ mL) at rt and the resultant mixture was allowed to stir at rt for 6 h before being concentrated in vacuo. The residue was then dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3} / \mathrm{PrOH}(3: 1,3 \times 5 \mathrm{~mL})$. The combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 50: 1$) gave 19 as a white solid ($75 \mathrm{mg}, 40 \%$ from 11, >99:1 dr).

(R, R, R, R, R)-1,5-Dideoxy-1,5-imino-D-mannose [(-)-1-deoxymannojirimycin] 21

$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(35 \mathrm{mg})$ was added to a stirred solution of $\mathbf{1 9}(70 \mathrm{mg}, 0.20 \mathrm{mmol},>99: 1 \mathrm{dr})$ in degassed $\mathrm{MeOH}(4$ $\mathrm{mL})$ and the resultant suspension was stirred at rt for 48 h under an atmosphere of $\mathrm{H}_{2}(5 \mathrm{~atm}) . \mathrm{HCl}(1.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~mL}$) was then added and the resultant suspension was stirred for a further 5 min before being filtered through Celite ${ }^{\circledR}$ (eluent MeOH). The filtrate was concentrated in vacuo. Purification via ion exchange chromatography on Dowex-50WX8 resin (hydrogen form, 100-200 mesh, eluent $\mathrm{H}_{2} \mathrm{O}$) gave 21 as a white solid ($29 \mathrm{mg}, 87 \%,>99: 1 \mathrm{dr}$); mp $180-182^{\circ} \mathrm{C}$; \{lit..$\left.^{4} \mathrm{mp} 185{ }^{\circ} \mathrm{C}\right\} ;[\alpha]_{\mathrm{D}}^{20}-38.6\left(c 1.0\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\left\{\mathrm{lit} .^{5}\right.$ for sample isolated from a natural source $[\alpha]_{\mathrm{D}}-41.4\left(c 0.74\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; lit. ${ }^{6}[\alpha]_{\mathrm{D}}^{20}-40\left(c 1.35\right.$ in $\left.^{2} \mathrm{H}_{2} \mathrm{O}\right)$; lit. ${ }^{7}[\alpha]_{\mathrm{D}}{ }^{22}-36.1(c$ 0.33 in $\mathrm{H}_{2} \mathrm{O}$); lit. ${ }^{8}[\alpha]_{\mathrm{D}}-39.0$ (c 0.1 in $\mathrm{H}_{2} \mathrm{O}$); lit. ${ }^{9}$ for enantiomer $[\alpha]_{\mathrm{D}}+40.2$ (c 0.65 in $^{2} \mathrm{H}_{2} \mathrm{O}$); lit. ${ }^{10}$ for enantiomer $[\alpha]_{\mathrm{D}}+40.42\left(c 0.728\right.$ in $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\right\}$; $v_{\max }(\mathrm{ATR}) 3300(\mathrm{O}-\mathrm{H}), 2921(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 2.44$ (1H, dt, J 9.8, 4.1, C(5)H), $2.72\left(1 \mathrm{H}, \mathrm{dd}, J 14.3,1.4, \mathrm{C}(1) H_{\mathrm{A}}\right), 2.96\left(1 \mathrm{H}, \mathrm{dd}, J 14.3,2.7, \mathrm{C}(1) H_{\mathrm{B}}\right), 3.52(1 \mathrm{H}, \mathrm{dd}$, J 9.8, 2.9, C(3)H), $3.56(1 \mathrm{H}$, app t, $J 9.8, \mathrm{C}(4) H), 3.73\left(2 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{C}(6) H_{2}\right), 3.94-3.97(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 48.1(C(1)), 60.4(C(5)), 60.5(C(6)), 68.2(C(4)), 69.0(C(2)), 74.4(C(3)) ; m / z\left(\mathrm{FI}^{+}\right) 163$ $\left([\mathrm{M}]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{FI}^{+}\right) \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}]^{+}\right)$requires 163.0839; found 163.0851.

(2R,3R,4S,5S)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4,5-dihydroxypiperidine 22

$\mathrm{K}_{2} \mathrm{CO}_{3}(32 \mathrm{mg}, 0.23 \mathrm{mmol})$ was added to a stirred solution of $24(45 \mathrm{mg}, 0.08 \mathrm{mmol}$, $>99: 1 \mathrm{dr})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ at rt and the resultant mixture was allowed to stir at rt for 16 h . The resultant mixture was concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc (10 mL). The aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$ and the combined organic extracts were then dried

[^2]and concentrated in vacuo to give 22 as a yellow oil (40 mg , quant, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-1.0\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}$ (ATR) $3425(\mathrm{O}-\mathrm{H}), 2942,2866(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.01-1.12\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 2.80(1 \mathrm{H}, \mathrm{dd}$, $\left.J 12.4,4.0, \mathrm{C}(6) H_{\mathrm{A}}\right), 2.94\left(1 \mathrm{H}, \mathrm{dd}, J 12.4,2.0, \mathrm{C}(6) H_{\mathrm{B}}\right), 3.10-3.18(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 3.70-3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H)$, 3.80-3.98 (6H, m, C(3)H, C(4)H, C(2) $\left.\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.44\left(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.52(1 \mathrm{H}, \mathrm{d}, J 11.5$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.25-7.38(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.8\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 18.0\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 52.6$ $(C(6)), 58.1,58.3\left(\mathrm{C}(2) C \mathrm{H}_{2}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 59.9(C(2)), 67.4(C(4)), 69.7(C(5)), 72.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 78.6(C(3))$, 127.2, 127.8, 127.9, 128.3, 128.5, 128.6 (o,m,p-Ph), 137.8 ($i-\mathrm{Ph}) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 500\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 500.3191 ; found 500.3185 .

(2R,3R,4S,5S)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4,5-diacetoxypiperidine 24

Step 1: $\mathrm{I}_{2}(1.35 \mathrm{~g}, 5.31 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(446 \mathrm{mg}, 5.31 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{1 2}$ $(1.04 \mathrm{~g}, 1.77 \mathrm{mmol},>99: 1 \mathrm{dr})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(3: 1,40 \mathrm{~mL})$ at rt and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$, then dried and concentrated in vacuo to give a 73:27 mixture of $\mathbf{2 2}$ and $\mathbf{2 3}(1.10 \mathrm{~g})$. Data for mixture: $v_{\max }$ (ATR) 2943, $2866(\mathrm{C}-\mathrm{H}), 1804(\mathrm{C}=\mathrm{O}) ; m / z\left(\mathrm{ESI}^{+}\right) 526\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; H R M S\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{Si}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 526.2983; found 526.2970. Data for 23: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.00-1.16(21 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Si}(\mathrm{CHMe})_{3}\right), 2.95\left(1 \mathrm{H}, \mathrm{dd}, J 12.3,6.1, \mathrm{C}(6) H_{\mathrm{A}}\right), 3.01-3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 3.21\left(1 \mathrm{H}, \mathrm{dd}, J 12.3,5.6, \mathrm{C}(6) H_{\mathrm{B}}\right)$, $3.67\left(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.72-3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{CH}_{2}\right), 3.89\left(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.13(1 \mathrm{H}, \mathrm{dd}$, $J 5.8,3.2, \mathrm{C}(3) H), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.68-4.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.96(1 \mathrm{H}, \mathrm{dd}, J$ 8.4, 3.2, C(4)H), 7.24-7.40 (10H, m, Ph); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.0\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 18.1\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right), 48.7$ $(C(6)), 58.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 61.7(C(2)), 62.0\left(\mathrm{C}(2) C \mathrm{H}_{2}\right), 72.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.6(C(4))$, 73.8, $73.9(C(3), C(5))$, 126.9, 127.7, 127.8, 128.2, 128.4, 128.6 (o,m,p-Ph), 137.5, 138.0 (i-Ph), 155.2 (CO).

Step 2: $\mathrm{K}_{2} \mathrm{CO}_{3}(734 \mathrm{mg}, 5.31 \mathrm{mmol})$ was added to a stirred solution of the residue of the $73: 27$ mixture of $\mathbf{2 2}$ and $23(1.10 \mathrm{~g})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ at rt and the resultant mixture was allowed to stir at rt for 16 h . The reaction mixture was then concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and EtOAc (50 $\mathrm{mL})$. The aqueous layer was extracted with EtOAc $(2 \times 25 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo to give 22 ($760 \mathrm{mg},>99: 1 \mathrm{dr}$).

Step 3: $\mathrm{Ac}_{2} \mathrm{O}(1.67 \mathrm{~mL}, 17.7 \mathrm{mmol})$ and DMAP ($43 \mathrm{mg}, 0.35 \mathrm{mmol}$) were added to a stirred solution of the residue of $22(760 \mathrm{mg})$ in pyridine $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resultant mixture was allowed to warm to rt and was
stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc $(2 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine $(25 \mathrm{~mL})$, then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40^{\circ} \mathrm{C}$ petrol/ EtOAc, 12:1) gave 24 as a colourless oil ($440 \mathrm{mg}, 43 \%$ from 12, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-1.7\left(c 1.0\right.$ in CHCl_{3}); $v_{\max }(\mathrm{ATR}) 2944,2866(\mathrm{C}-\mathrm{H}), 1747(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95-1.12\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}(\mathrm{CHMe})_{3}\right), 1.95$ (3H, s, COMe), $2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.41\left(1 \mathrm{H}, \mathrm{t}, J 10.9, \mathrm{C}(6) H_{\mathrm{A}}\right), 2.64\left(1 \mathrm{H}, \mathrm{dd}, J 10.9,4.7, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.69(1 \mathrm{H}$, app dd, $J 9.6,3.2, \mathrm{C}(2) H), 3.31\left(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 9.6,2.2, \mathrm{C}(3) H), 3.96(1 \mathrm{H}, \mathrm{dd}, J$ $\left.11.1,3.2, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.22\left(1 \mathrm{H}, \operatorname{app} \mathrm{d}, J 11.1, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.36\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.50(1 \mathrm{H}, \mathrm{d}, J$ 13.7, $\left.\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.83-4.89(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 5.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(4) H), 7.22-$ $7.36(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.0\left(\mathrm{Si}\left(\mathrm{CHMe}_{2}\right)_{3}\right), 18.1\left(\mathrm{Si}(\mathrm{CHMe})_{3}\right)$, 20.8, $20.9(\mathrm{COMe}), 48.8$ $(C(6)), 57.1\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 61.9\left(\mathrm{C}(2) \mathrm{CH}_{2}\right), 62.8(C(2)), 66.6(C(4)), 68.0(C(5)), 71.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 74.2(C(3))$, 126.9, 127.7, 128.2, 128.2, 128.3, 128.7 (o,m,p-Ph), 137.6, 139.4 (i-Ph), 170.0, 170.5 (COMe); m/z (ESI $\left.{ }^{+}\right) 584$

(2R,3R,4S,5S)-N(1)-Benzyl-2-(hydroxymethyl)-3-benzyloxy-4,5-dihydroxypiperidine 25

Method A (from 24): $6.0 \mathrm{M} \mathrm{aq} \mathrm{HCl}(2 \mathrm{~mL})$ was added to a stirred solution of $\mathbf{2 4}(110 \mathrm{mg}, 0.19 \mathrm{mmol},>99: 1 \mathrm{dr})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ and the resultant mixture was heated at $50^{\circ} \mathrm{C}$ for 16 h before being allowed to cool to rt and concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(520 \mathrm{mg}, 3.76 \mathrm{mmol})$ was added to the resultant solution. The reaction mixture was then stirred at rt for 6 h , then concentrated in vacuo. The residue was then dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the resultant solution was extracted with $\mathrm{CHCl}_{3} j^{i} \mathrm{PrOH}$ (3:1, $3 \times 5 \mathrm{~mL}$). The combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 50: 1$) gave 25 as a white solid ($56 \mathrm{mg}, 86 \%,>99: 1 \mathrm{dr}$); $\mathrm{mp} 70-72{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-5.4\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{ATR}) 3500(\mathrm{O}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.53(1 \mathrm{H}, \mathrm{dd}, J$ 11.1, 9.3, C(6) H_{A}), $2.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.68-2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 2.80\left(1 \mathrm{H}, \mathrm{dd}, J 11.1,4.2, \mathrm{C}(6) H_{\mathrm{B}}\right), 3.45$ ($1 \mathrm{H}, \mathrm{d}, J$ 13.6, $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}$), 3.61-3.69 (1H, m, C(5)H), $3.71(1 \mathrm{H}, \mathrm{dd}, J 7.8,3.0, \mathrm{C}(3) H), 3.88(1 \mathrm{H}, \mathrm{dd}, J 11.6$, $\left.2.0, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J 11.6,3.8, \mathrm{C}(2) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.06\left(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.10-4.14(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(4) H), 4.62\left(2 \mathrm{H}, \mathrm{app} \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.25-7.43(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 51.8(C(6)), 57.5$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 57.8\left(\mathrm{C}(2) \mathrm{CH}_{2}\right), 59.9(C(2)), 67.6(C(4)), 68.0(C(5)), 72.2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 76.5(C(3)), 127.4,128.0$,
128.2, 128.5, 128.7, 128.8 (o,m,p-Ph), 137.5, $138.2(i-P h) ; m / z\left(\mathrm{ESI}^{+}\right) 344\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$ $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$requires 366.1676; found 366.1682.

Method B (from 12) - Step 1: $\mathrm{I}_{2}(207 \mathrm{mg}, 0.82 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(69.0 \mathrm{mg}, 0.82 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{1 2}(160 \mathrm{mg}, 0.27 \mathrm{mmol},>99: 1 \mathrm{dr})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(3: 1,4 \mathrm{~mL})$ at rt and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, then dried and concentrated in vacuo to give a 73:27 mixture of $\mathbf{2 2}$ and $\mathbf{2 3}$ and benzylalcohol $(127 \mathrm{mg})$.

Step 2: $6.0 \mathrm{M} \mathrm{aq} \mathrm{HCl}(3 \mathrm{~mL})$ was added to a stirred solution of the residue (127 mg) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and the resultant mixture was heated at $50^{\circ} \mathrm{C}$ for 16 h before being concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(752 \mathrm{mg}, 5.44 \mathrm{mmol})$ was added to the resultant solution. The reaction mixture was then stirred at rt for 6 h , then concentrated in vacuo. The residue was then dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the resultant solution was extracted with $\mathrm{CHCl}_{3} /^{i} \operatorname{PrOH}(3: 1,3 \times 5 \mathrm{~mL})$. The combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $\mathrm{CHCl}_{3} / \mathrm{MeOH}$, 50:1) gave 25 as a white solid ($37 \mathrm{mg}, 39 \%$ from 12, >99:1 dr).
(2S,3S,4R,5R)-1,5-Dideoxy-1,5-imino-D-allose [(+)-1-deoxyallonojirimycin] 26

$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(32 \mathrm{mg})$ was added to a stirred solution of $25(64 \mathrm{mg}, 0.19 \mathrm{mmol},>99: 1 \mathrm{dr})$ in degassed $\mathrm{MeOH}(4$ $\mathrm{mL})$ and the resultant suspension was stirred at rt for 48 h under an atmosphere of $\mathrm{H}_{2}(5 \mathrm{~atm}) . \mathrm{HCl}(1.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~mL}$) was then added and the resultant suspension was stirred for a further 5 min before being filtered through Celite ${ }^{\circledR}$ (eluent MeOH) and concentrated in vacuo. Purification via ion exchange chromatography on Dowex-50WX8 resin (hydrogen form, 100-200 mesh, eluent $\mathrm{H}_{2} \mathrm{O}$) gave 26 as a white solid ($25 \mathrm{mg}, 83 \%$, $>99: 1 \mathrm{dr}) ; \mathrm{mp} 162-164{ }^{\circ} \mathrm{C}$; $\left\{\right.$ lit. $\left.{ }^{11} \mathrm{mp} 163{ }^{\circ} \mathrm{C}\right\} ;[\alpha]_{\mathrm{D}}^{20}+28.3\left(c 1.0\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}^{20}+30.2(c 1.0$ in MeOH$) ;\left\{\right.$ lit. ${ }^{12}$ for sample isolated from a natural source $[\alpha]_{\mathrm{D}}+25.7\left(c 0.65\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; lit. ${ }^{13}[\alpha]_{\mathrm{D}}{ }^{25}+30.5\left(c 0.15\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; lit. ${ }^{14}$ $[\alpha]_{\mathrm{D}}{ }^{20}+28.1\left(c 0.8\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; lit. ${ }^{15}$ for enantiomer $[\alpha]_{\mathrm{D}}-37.0(c 1.04$ in MeOH$)$; lit. ${ }^{16}[\alpha]_{\mathrm{D}}{ }^{25}+35.1(c 0.1$ in

[^3]$\mathrm{MeOH}) ;$ lit. $\left.{ }^{17}[\alpha]_{\mathrm{D}}+34.0(c 0.1 \mathrm{in} \mathrm{MeOH})\right\} ; v_{\max }(\mathrm{ATR}) 3275(\mathrm{O}-\mathrm{H}), 2873(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 2.65$ (1 H , app t, $\left.J 11.8, \mathrm{C}(1) H_{\mathrm{A}}\right), 2.70(1 \mathrm{H}$, ddd, $J 10.2,5.8,2.8, \mathrm{C}(5) H), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J 11.8,5.0, \mathrm{C}(1) H_{\mathrm{B}}\right), 3.43$ ($1 \mathrm{H}, \mathrm{dd}, J 10.2,2.8, \mathrm{C}(4) H), 3.60\left(1 \mathrm{H}, \mathrm{dd}, J 11.8,5.8, \mathrm{C}(6) \mathrm{CH}_{\mathrm{A}}\right), 3.65(1 \mathrm{H}, \mathrm{ddd}, J 11.8,5.0,2.8, \mathrm{C}(2) H), 3.75$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.8,2.8, \mathrm{C}(6) H_{\mathrm{B}}\right), 4.04(1 \mathrm{H}$, app t$, J 2.8, \mathrm{C}(3) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 43.4(C(1)), 54.4(C(5)), 60.9$ $(C(6)), 67.8(C(2)), 68.3(C(4)), 71.3(C(3)) ; m / z\left(\mathrm{FI}^{+}\right) 163\left([\mathrm{M}]^{+}, 100 \%\right) ; \mathrm{HRMS}^{\left(\mathrm{FI}^{+}\right)} \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4}^{+}\left([\mathrm{M}]^{+}\right)$ requires 163.0839; found 163.0852 .

[^4]
2. X-ray crystal structure determination for $13,19 \cdot \mathbf{C H C l}_{3}$ and 25

Data were collected using either an Oxford Diffraction SuperNova diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation (for 13 and 25), or a Nonius κ - CCD diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation (for $19 \cdot \mathrm{CHCl}_{3}$), using standard procedures at 150 K . The structures were solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS. ${ }^{18,19}$

X-ray crystal structure data for $13\left[\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{3}\right]: M=431.57$, monoclinic, space group $P 2_{1}, a=12.8417(4) \AA$, $b=6.6522(1) \AA, c=14.8628(5) \AA, \beta=109.357(4)^{\circ}, V=1197.89(6) \AA^{3}, Z=2, \mu=0.605 \mathrm{~mm}^{-1}$, colourless block, crystal dimensions $=0.05 \times 0.06 \times 0.19 \mathrm{~mm}$. A total of 4855 unique reflections were measured for $3<\theta<80$ and 4265 reflections were used in the refinement. The final parameters were $w R_{2}=0.110$ and $R_{1}=0.047[I>-3.0 \sigma(I)]$.

X-ray crystal structure data for $19 \cdot \mathrm{CHCl}_{3}\left[\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{NO}_{4}\right]: M=462.80$, monoclinic, space group $P 2_{1}$, $a=11.1676(4) \AA, b=8.2551(3) \AA, c=12.4524(5) \AA, \beta=90.8174(16)^{\circ}, V=1147.87(7) \AA^{3}, Z=2$, $\mu=0.425 \mathrm{~mm}^{-1}$, colourless block, crystal dimensions $=0.23 \times 0.26 \times 0.27 \mathrm{~mm}$. A total of 5050 unique reflections were measured for $5<\theta<27$ and 2656 reflections were used in the refinement. The final parameters were $w R_{2}=0.062$ and $R_{1}=0.051[I>-3.0 \sigma(I)]$, with Flack enantiopole $=-0.09(12) .{ }^{20}$

X-ray crystal structure data for $\mathbf{2 5}\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}\right]: M=343.43$, monoclinic, space group $P 2_{1}, a=10.3223(3) \AA$, $b=6.9861(2) \AA, c=12.9927(3) \AA, \beta=101.708(3)^{\circ}, V=917.44(4) \AA^{3}, Z=2, \mu=0.698 \mathrm{~mm}^{-1}$, colourless block, crystal dimensions $=0.07 \times 0.09 \times 0.16 \mathrm{~mm}$. A total of 3813 unique reflections were measured for $3<\theta<77$ and 3796 reflections were used in the refinement. The final parameters were $w R_{2}=0.064$ and $R_{1}=0.033[I>-3.0 \sigma(I)]$, with Flack enantiopole $=-0.05(16) .{ }^{20}$

[^5]3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
$(\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R})$-4-Benzyloxy-5-[N-benzyl- N-(α-methylbenzyl)amino]-6-(triisopropylsilyloxy)hex-1-en-3-ol 11 (400 $\mathbf{M H z}{ }^{\mathbf{1}} \mathbf{H}, \mathrm{CDCl}_{3}$)

 Chemical Shift (ppm)

($\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}$)-4-Benzyloxy-5-[N-benzyl- N-(α-methylbenzyl)amino]hex-1-en-3,6-diol 13 ($100 \mathrm{MHz}{ }^{13} \mathbf{C}, \mathrm{CDCl}_{3}$)

(1S,2R,3R,4R,5S)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4-hydroxy-1-azabicyclo[3.1.0]hexanium tetrafluoroborate 15 (400 MHz ${ }^{1} \mathrm{H}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)

(1S,2R,3R,4R,5S)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4-hydroxy-1-azabicyclo[3.1.0]hexanium tetrafluoroborate 15 $\left(100 \mathrm{MHz}{ }^{13} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$)

$(R, R, R, R)-N(1)$-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4,5-dihydroxypiperidine $17\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right)$

(R, R, R, R)-N(1)-Benzyl-2-(hydroxymethyl)-3-benzyloxy-4,5-dihydroxypiperidine $19\left(400 \mathrm{MHz}^{1} \mathbf{H}, \mathrm{CDCl}_{3}\right)$

(R, R, R, R) - $N(1)$-Benzyl-2-(hydroxymethyl)-3-benzyloxy-4,5-dihydroxypiperidine $19\left(100 \mathrm{MHz}^{13} \mathbf{C}, \mathrm{CDCl}_{3}\right)$

(R, R, R, R)-1,5-Dideoxy-1,5-imino-D-mannose [(-)-1-deoxymannojirimycin] $21\left(100 \mathrm{MHz}{ }^{13} \mathrm{C}^{2}, \mathrm{D}_{2} \mathrm{O}\right)$

($2 R, 3 R, 4 S, 5 S$)-N(1)-Benzyl-2-[(triisopropylsilyloxy)methyl]-3-benzyloxy-4,5-diacetoxypiperidine $24\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right)$

($2 R, 3 R, 4 S, 5 S$)- $N(1)$-Benzyl-2-(hydroxymethyl)-3-benzyloxy-4,5-dihydroxypiperidine $25\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right)$

[^0]: ${ }^{1}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

[^1]: ${ }^{2}$ For the preparation of the antipode (S, S, S)-10, see: Abraham, E.; Brock, E. A.; Candela-Lena, J. I.; Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell, A. J.; Sánchez-Fernández, E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 1665.
 ${ }^{3}$ Abraham, E.; Davies, Brock, E. A.; Candela-Lena, J. I., Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell, A. J.; Sanchez-Fernandez, E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 1665.

[^2]: ${ }^{4}$ Xu, X.-M.; Zhou, W.-S. Tetrahedron Lett. 1996, 37, 1461.
 ${ }^{5}$ Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. J. Med. Chem. 1994, 37, 3701.
 ${ }^{6}$ Broxterman, H. J. G.; Neefjes, J. J.; Van der Marel, G. A.; Ploegh, H. L.; Van Boom, J. H. J. Carbohydr. Chem. 1988, 7, 593.
 ${ }^{7}$ Concia, A. L.; Lozano, C.; Castillo, J. A.; Parella, T.; Joglar, J.; Clapés, P. Chem. Eur. J. 2009, 15, 3808.
 ${ }^{8}$ Kim, I. S.; Lee, H. Y.; Jung, Y. H. Heterocycles 2007, 71, 1787.
 ${ }^{9}$ Kato, A.; Kato, N.; Kano, E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.; Takahata, H.; Asano, N. J. Med. Chem. 2005, 48, 2036.
 ${ }^{10}$ Singh, A.; Kim, B.; Lee, W.; Ha, H.-J. Org. Biomol. Chem. 2011, 9, 1372.

[^3]: ${ }^{11}$ Sridhar, R.; Srinivas, B.; Rao, K. Tetrahedron 2009, 65, 70701.
 ${ }^{12}$ Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. J. Med. Chem. 1994, 37, 3701.
 ${ }^{13}$ Hong, B.-C.; Chen, Z.-Y.; Nagarajan, A.; Kottani, R.; Chavan, V.; Chen, W.-H.; Jiang, Y.-F.; Zhang, S.-C.; Liaoa, J.-H.; Sarsharb, S. Carbohydr. Res. 2005, 340, 2457.
 ${ }^{14}$ Ikota, N.; Hirano, J.-I.; Gamage, R.; Nakagawa, H.; Hama-Inaba, H. Heterocycles 1997, 46, 637.
 ${ }^{15}$ Kato, A.; Kato, N.; Kano, E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.; Takahata, H.; Asano, N. J. Med. Chem. 2005, 48, 2036.
 ${ }^{16}$ Sridhar, R.; Srinivas, B.; Rao, K. Tetrahedron 2009, 65, 70701.

[^4]: ${ }^{17}$ Kim, I. S.; Lee, H. Y.; Jung, Y. H. Heterocycles 2007, 71, 1787.

[^5]: ${ }^{18}$ Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, C. K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487.
 ${ }^{19}$ Crystallographic data (excluding structure factors) for compounds $\mathbf{1 3}, \mathbf{1 9} \cdot \mathrm{CHCl}_{3}$ and 25 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 926152-926154, respectively. Copies of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
 ${ }^{20}$ (a) Flack, H. D. Acta. Crystallogr., Sect. A 1983, 39, 876. (b) Flack, H. D.; Bernardelli, G. Acta. Crystallogr., Sect. A 1999, 55, 908. (c) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143.

