One-Pot Synthesis of Diarylamines from Two

 Aromatic Amines via Oxidative
Dearomatization-Imino Exchange-Reductive

Aromatization

Li Zhang, ${ }^{\dagger}$ Weibin Wang,** and Renhua Fan **
${ }^{\dagger}$ Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China, ${ }^{\text { }}$ Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.

Supporting Information

1. General information (S2)
2. General experimental procedure and characterization data. (S2-S5)
3. References of the known compounds (S5)
4. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of products (S6-S25)

1. General Information

All reactions were performed in Schlenk tubes under nitrogen atmosphere. Flash column chromatography was performed using silica gel ($60-\AA$ pore size, $32-63 \mu \mathrm{~m}$, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~ 20 Torr (house vacuum) at $25-35{ }^{\circ} \mathrm{C}$. Commercial reagents and solvents were used as received. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale.

2. General Procedure and Spectral Data of Products

$\mathrm{PhI}(\mathrm{OAc})_{2}(0.22 \mathrm{mmol})$ was added into the solution of compound $\mathbf{1}(0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After 5 min , aromatic amine $2(0.22 \mathrm{mmol})$ and $\mathrm{Bi}(\mathrm{OTf})_{3}(0.02 \mathrm{mmol})$ were added. The resulting reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ until the consumption of N-sulfonyl cyclohexadienimine determined by TLC. The reaction mixture was treated with Zn dust (0.22 mmol) and $\mathrm{CF}_{3} \mathrm{COOH}(0.22 \mathrm{mmol}$). Upon completion determined by TLC, The reaction mixture was passed through a short silica gel column and then concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl acetate $=10: 1$) to afford the pure product 6 .

4-butyl-N-(4-methoxyphenyl)aniline $\mathbf{6} \mathbf{b a}^{2}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3$ H).

4-isopropyl-N-(4-methoxyphenyl)aniline 6da ${ }^{4}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz,
 $\left.\mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.87(\mathrm{~m}$, $1 \mathrm{H}), 1.20-1.23(\mathrm{~m}, 6 \mathrm{H})$.

bis(4-methoxyphenyl)amine $\mathbf{6 e a}{ }^{5}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.90-6.97 (m, 4 H), 6.78-6.84 (m, 4 H), 5.28 ($\mathrm{s}, 1 \mathrm{H}$), 3.77 ($\mathrm{s}, 6 \mathrm{H}$).

N-(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine 6fa ${ }^{6}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.50-7.56 (m, 2 H), 7.34-7.47 (m, 4 H), 7.09-7.10 (m, 1 H$)$, 7.05-7.12 (m, 2 H), 6.91-6.97 (m, 2 H), 6.84-6.89 (m, 2 H), 5.55 (s, 1 H), 3.78 (s, 3 H).

N-(4-methoxyphenyl)-3,4-dimethylaniline $\mathbf{6 g a}^{7}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 6.92-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~s}$, 1 H), 3.77 (s, 3 H), 2.19 (s, 3 H), 2.18 (s, 3 H).

N-(4-methoxyphenyl)-2,4-dimethylaniline 6ha: brown oil; ${ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.80-7.25(\mathrm{~m}, 7 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.30$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,140.4,137.4,131.6,137.4$, 130.2, 127.3, 120.8, 117.1, 114.7, 55.7, 20.6, 11.8; HRMS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 228.1383$, found 228.1397.

4-methyl-N-phenylaniline 6ab ${ }^{8}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.25$ (m, 2 H), 7.07 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.95-7.02 (m, 4 H), 6.84-6.90 (m, 1 H), 5.56 (s, 1 H), 2.29 (s, 3 H).

di-p-tolylamine 6ac ${ }^{8}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4$ H), $6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H})$.

4-isopropyl-N-(p-tolyl)aniline 6ad': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 4 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H})$, 2.79-2.88 (m, 1 H), 2.28 (s, 3 H), 1.20-1.24 (m, 6 H).

2-methyl-N-(p-tolyl)aniline $\mathbf{6 a e}{ }^{1}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04-7.20$ (m, 5 H), 6.82-6.92 (m, 3 H), $5.27(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$.

2,6-dimethyl-N-(p-tolyl)aniline 6af ${ }^{10}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.03-7.12 (m, 3 H), 6.96 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.43 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.08 ($\mathrm{s}, 1 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H})$.

4-(p-tolylamino)phenol 6ah ${ }^{11}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.02$ (s, 2 H), 2.27 (s, 3 H).

2-(p-tolylamino)phenol 6ai ${ }^{8}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14$ (d, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.

2-iodo-N-(p-tolyl)aniline 6aj ${ }^{12}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.56(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H})$, 2.32 (s, 3 H).

4-fluoro-N-(p-tolyl)aniline 6ak ${ }^{1}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-7.00(\mathrm{~m}, 6 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.

\mathbf{N}-(p-tolyl)naphthalen-1-amine 6al ${ }^{10}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.95-7.99 (m, 1 H), 7.80-7.84 (m, 1 H), 7.40-7.50 (m, 3 H), 7.30-7.36 (m, 1 H), 7.24-7.27 (m, 1 H), 7.04-7.09 (m, 2 H), 6.89-6.94 (m, 2 H), $5.84(\mathrm{~s}, 1 \mathrm{H})$, 2.29 (s, 3 H).

3-methyl-9H-carbazole $\mathbf{7}^{13}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.93 ($\mathrm{s}, 1 \mathrm{H}$), 7.87 (s, 1 H), 7.36-7.42 (m, 2 H), 7.26-7.34 (m, 1 H), 7.16-7.26 (m, 2 H), 2.53 (s, 3 H).

Reference:

1. Hajra, A.; Wei, Y.; Yoshikai, N. Org. Lett. 2012, 14, 5488-5491.
2. Janik, J. A.; Janik, J. M.; Otnes, K.; Rościszewski, K. Physica. 1974, 77, 514-522.
3. Sen, A. B.; Gupta, A. K. Sen, J. Indian Chem. Soc. 1957, 34, 413-414.
4. Hong, J. S.; Kim, G. S.; Kim, T. H. KR Patent 1120917, 2012; Chem. Abstr. 2012, 156, 284633
5. Hoi, K. H.; Froese, R. D. J.; Hopinson, A. C.; Organ, M. G. Chem. Eur. J. 2012, 18, 145-151.
6. Shudo, K.; Okamoto, T. Tetrahedron. Lett. 1973, 21, 1839-1842.
7. Combes, S.; Finet, J. Tetrahedron. 1998, 54, 4313-4318.
8. Raghuvanshi, D. S.; Gupta, A. K.; Singh, K. N. Org. Lett. 2012, 14, 4326-4329.
9. Iwakuma, T.; Arakane, T.; Kusumoto, T. JP Patent 4885381, 2012; Chem. Abstr. 2012, 156, 350121
10. Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 13848-13849.
11. Maiti, D.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 17423-17429.
12. Barros, M. T.; Dey, S. S.; Maycock, C. D.; Rodrigues, P. Chem. Commun. 2012, 48, 10901-10903.
13. Watanabe ,T.; Oishi, S.; Fujii, N.; J. Org. Chem. 2009, 74, 4720-4726.

