Supporting Information for:

An Approach for Expanding Triterpenoid Complexity via Divergent Norrish-Yang Photocyclization

Vasily A. Ignatenko and Gregory P. Tochtrop*

Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States

*E-mail: tochtrop@case.edu

Table of Contents:

General experimental details	
Complete reference 59	
Figure S1. Conformational analysis of tetraketone 14	S3
Figure S2. Conformational analysis of triketone 17	S3
Figure S3. ¹³ C VT NMR of tetraketone 14	S4
Table S1. Atomic coordinates for the optimized geometry of tetraketone 1	S5
Table S2. Atomic coordinates for the optimized geometry of triketone 5	S5
Table S3. Atomic coordinates for the optimized geometry of conformer TB-1 of 14	S6
Table S4. Atomic coordinates for the optimized geometry of conformer CCC of 17	S6
Table S5. ¹ H and ¹³ C Data, HMQC and HMBC Correlations of 3	S7
Table S6. ¹ H and ¹³ C Data, HMQC and HMBC Correlations of 4	
Table S7. ¹ H and ¹³ C Data, HMQC and HMBC Correlations of 7	S9
Figure S4. Key HMBC correlations of 11	S10
Figure S5. Key HMBC correlations of 12	S10
Table S8. ¹ H and ¹³ C Data, HMQC Correlations of 11	S11
Table S9. ¹ H and ¹³ C Data, HMQC Correlations of 12	S11
Figure S6. Key COSY, HMBC, and NOESY correlations of 15	S12
Table S10. ¹ H and ¹³ C Data, HMQC Correlations of 15	S12
Figure S7. Key COSY, HMBC, and NOESY correlations of 18	S13
Table S11. ¹ H and ¹³ C Data, HMQC Correlations of 18	S13
Figure S8. Key COSY, HMBC, and NOESY correlations of 20	S14
Table S12. ¹ H and ¹³ C Data, HMQC Correlations of 20	S14
Figures S9-S36. NMR spectra of 3,4,7,9-15, 17, 18, 20	S15-S42

General experimental details

All reactions were run in an atmosphere of dry argon unless otherwise stated. THF was distilled from benzophenone ketyl solution with sodium prior to use. C_6D_6 was deoxygenated by purging with argon gas under stirring for 15 min. Quick syringe transfers were done with disposable syringes and needles.

Photochemical reactions were performed in a multilamp chamber photoreactor equipped with a cooling fan.

Column chromatography was performed with silica gel (particle size 32-63 µm). Analytical and semipreparative HPLC separations were performed using acetonitrile and water (for HPLC, 99.9%). Analytical thin-layer chromatography (TLC) was carried out using glass-coated silica gel 0.25 mm plates with fluorescent indicator. All reactions that were monitored by TLC were visualized with a 254 nm UVlamp or using phosphomolybdic acid (PMA) and 1,4-dinitrophenylhydrazine (DNP) stain solutions prepared by well-known protocols.

Chemical shifts of all ¹H and ¹³C NMR spectra reported in δ units, part per million (ppm) with reference to the residual solvent peak (CDCl₃, 7.26 ppm for ¹H NMR and 77.16 ppm, center of triplet, for ¹³C NMR). DEPT, COSY, NOESY, HMQC, HMBC spectra were recorded using standard 2-D NMR pulse sequences.

For the HRMS measurements, Linear ion Trap Quadrupole (LTQ) mass spectrometer was used with Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass analyzer (100 000 resolving power at m/z 400).

Complete reference 59

Reference 59. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Hevd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Conformational analyses of tetraketone 1 and triketone 5 were reported in the Supporting Information for reference 18

Figure S1. Conformational analysis of tetraketone 14.

CCC = 'chair-chair'

BCB = 'boat (with bow at C-5 and stern between C-8 and C-11)-chair- boat (with bow between C-7 and C-9 and stern at C-13)' TB = 'twist-boat'

Lowest energy conformations and electronic energies were determined using Gaussian (R) 09 software package using B3LYP/6-311G(d,p) level of theory

Conformer TB-1: $E_{tot} = -1771.94425083$ A.U. Conformer CCC: $E_{tot} = -1771.94356416$ A.U. Conformer BCB: $E_{tot} = -1771.93998494$ A.U. Conformer TB-2: $E_{tot} = -1771.93504760$ A.U.

Figure S2. Conformational analysis of triketone 17.

CCC = 'chair-chair'

BCB = 'boat (with bow at C-5 and stern between C-8 and C-11)-chair- boat (with bow between C-7 and C-9 and stern at C-13)'

Conformer CCC: $E_{tot} = -1697.91972184$ A.U. Conformer BCB: $E_{tot} = -1697.9156057$ A.U.

Table S1. Atomic coordinates for the optimized geometry of tetraketone 1.

	Z-Ma	trix orienta	tion:		
Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Type	Х	Y	Z
1	6	0	-0.061069	0.422968	-0.249239
2	6	0	-1.00/891	-0.418035	0.6691/0
4	6	0	2 746460	0 664214	1 202261
5	6	0	2.305045	-0.586593	0.347810
6	6	Ō	1.231151	-0.229517	-0.710062
7	1	0	1.853483	-1.284937	1.052335
8	1	0	1.628036	0.433126	-1.477736
9	1	0	0.915997	-1.156251	-1.195367
10	6	0	0.895909	-0.008781	3.071728
11	6	0	-2.009079	0.195420	1.6//846
13	1	0	-0 516210	1 477879	3 682617
14	1	0	-0.292149	0.105485	4.768910
15	6	0	3.466108	-1.430820	-0.322625
16	6	0	3.084122	1.911825	0.362462
17	1	0	3.935257	1.731661	-0.291691
18	1	0	2.242578	2.234570	-0.251886
19	1	0	3.332670	2.743080	1.022594
20	6	0	3.961556	1 242002	2.124459
22	1	0	3 635194	-0 340495	2 931609
23	6	0	5.094935	-0.381516	1.373701
24	1	0	5.886054	-0.638419	2.081768
25	1	0	5.536903	0.263395	0.609779
26	6	0	4.561912	-1.661465	0.746545
27	1	0	4.159626	-2.294913	1.541358
28	6	0	2.903268	-2.818181	-0.709353
29	1	0	2.1/5883	-2./54/60	-1.521126
31	1	0	2 417846	-3.302614	-1.032742
32	6	0	4.070274	-0.796353	-1.593652
33	1	0	4.517358	0.181983	-1.419535
34	1	0	4.852071	-1.447771	-1.985910
35	1	0	3.316206	-0.682170	-2.374453
36	8	0	5.648288	-2.396813	0.115906
37	6	0	6.394197	-3.207404	0.904361
38	8	0	6.218533	-3.345622	2.088022
39	1	0	7.400014 8 105337	-3.907706	0.092728
40	1	0	6 985995	-4 585082	-0 624232
42	1	0	8.038243	-3.180258	-0.476601
43	6	0	-1.707850	-0.307454	3.174367
44	6	0	-1.505322	-1.830993	3.258166
45	1	0	-2.418644	-2.380499	3.040163
46	1	0	-0.744463	-2.192780	2.572657
4 /	1	0	-1.16566/	-2.096053	4.2565/3
40	1	0	-2.893331	1 262615	4.120337
50	6	0	-3 392516	-0 367459	1 247270
51	1	0	-3.563305	-0.115536	0.195264
52	1	0	-3.371175	-1.456369	1.300408
53	6	0	-4.518980	0.215449	2.088485
54	6	0	-4.375990	0.009145	3.616117
55	6	0	-2.786571	-0.265035	5.625945
56	1	0	-3.16//83	0.5/43/8	6.213400
5/	1 G	0	-1./45308	-0.3/1/29	2 000712
59	6	0	-5 247786	1 104061	4 279127
60	1	Ō	-6.290356	0.999933	3.961379
61	1	0	-5.233361	1.071841	5.369017
62	1	0	-4.908694	2.098799	3.976205
63	1	0	-4.399409	-2.170630	3.466740
64	1	0	-5.977457	-1.436486	3.628604
65	6	0	-4.93863/	-1.663/86	5.4931/9 6 151690
67	1	0	-3.333233	-2 661086	5 687257
68	1	0	-5.616934	-0.964050	5.990139
69	6	0	-3.733737	-1.354062	7.683752
70	1	0	-4.258719	-2.213591	8.111414
71	1	0	-2.766654	-1.263890	8.180513
72	1	0	-4.325727	-0.459507	7.892868
73	6	0	-2.677485	-2.778817	6.027510
/4	8	0	-1.565732	-2.863238	6.493591 5.400000
10	б К	0	-3.201010 -2 513103	-3.000319 -5 024245	J.4U∠333 5 31⊿∩64
77	1	0	-2.238808	-5.374242	6.309735
78	1	õ	-3.162271	-5.741528	4.816970
79	- 1	õ	-1.606036	-4.857881	4.731851
80	6	0	-2.028313	1.740048	1.586991
81	1	0	-2.638211	2.174557	2.377203
82	1	0	-1.038502	2.183117	1.663003
83	1	0	-2.445270	2.056729	0.631650
84	1	U	-4.601990 -5.471240	1.283919 _0.222515	1 7600/4
86	1 R	0	-J.4/1246 1 329220	2.221355	1.709044 2.390480
87	8	õ	-1.007675	-1.602220	0.401583
88	8	õ	-0.468812	1.448304	-0.745648
89	8	0	1.432467	-1.072569	3.293382

Table S2. Atomic coordinates for the optimized geometry oftriketone 5.

Center	Atomic	Atomic	Coor	linates (Arg	strome)
Number	Number	Туре	X	Y Y	Z
1	6	0	-0.120732	0.511694	-0.32312
2	6	0	-0.918633	-0.374160	0.67798
4	6	0	2.774526	0.677918	1.30294
5	6	0	2.278051	-0.457151	0.32065
6	6	0	1.276458	0.060500	-0.73407
7	1	0	1.740256	-1.177142	0.94318
9	1	0	1.073554	-0.749554	-1.44071
10	6	0	0.966116	0.217447	3.20444
11	1	0	1.666854	0.311762	4.04386
12	1	0	1.049328	-0.826557	2.90126
14	6	0	-0.443644	0.571635	3.72223
15	1	0	-0.600692	1.641114	3.57576
16	1	0	-0.419117	0.417615	4.80045
17	6	0	3.406112	-1.333229	-0.36750
19	1	0	3.344220 4 254717	1 701689	0.59956
20	1	Ő	2.626396	2.376005	-0.08358
21	1	0	3.583126	2.685885	1.34539
22	6	0	3.837770	0.097029	2.27330
23	1	0	4.230885	0.905480	2.89779
25	6	ő	4.980233	-0.616374	1.54938
26	1	0	5.679533	-1.021459	2.28448
27	1	0	5.543228	0.066602	0.90816
28	6	0	4.410287	-1.764961	0.72973
30	6	0	2.762099	-2.625815	-0.92308
31	1	0	2.134893	-2.432593	-1.79515
32	1	0	3.544453	-3.318423	-1.23905
33	1	0	2.144777	-3.123488	-0.17032
34	6	0	4.132094	-0.631465	-1.53444
36	1	õ	4.826375	-1.330349	-2.00259
37	1	0	3.423192	-0.307848	-2.29879
38	8	0	5.491022	-2.496975	0.08731
39	6	0	6.113658	-3.454699	0.81543
40	6	0	7.207105	-4.109814	0.00832
42	1	Ő	7.724740	-4.839723	0.62694
43	1	0	6.778826	-4.602644	-0.86763
44	1	0	7.909406	-3.355147	-0.35174
45	6	0	-1.666911	-0.234960	3.1/455
47	1	Ő	-2.241300	-2.362579	3.17416
48	1	0	-0.611960	-2.093458	2.63019
49	1	0	-0.985806	-1.928467	4.33458
50	6	0	-2.914766	0.190066	4.07812
52	6	0	-3.300787	-0.523193	1.21751
53	1	0	-3.465203	-0.336643	0.15094
54	1	0	-3.191461	-1.603226	1.32607
55	6	0	-4.491244	0.006391	2.00459
57	6	0	-2 814844	-0.192403	5 59899
58	1	Ő	-3.268714	0.638435	6.14587
59	1	0	-1.777067	-0.214020	5.93063
60	6	0	-4.849748	-1.521761	3.97130
62	6 1	0	-5.333/10 -6.359952	0.946262 0.747382	4.13340
63	1	0	-5.335756	0.973263	5.22380
64	1	0	-5.063792	1.946113	3.78202
65	1	0	-4.241816	-2.293487	3.49344
66 67	1	0	-5.867993	-1.663007	3.59088
07 68	o A	0	-3.501339	-1.480588	6.15904
69	1	õ	-5.202382	-2.748017	5.71549
70	1	0	-5.590237	-1.058897	5.93595
71	6	0	-3.720226	-1.272041	7.68139
/2	1	0	-4.189532	-2.151469	8.13289
74	1 1	0	-4.378615	-0.415882	7.84757
75	6	õ	-2.540501	-2.676954	6.09543
76	8	0	-1.424620	-2.663119	6.56074
77	8	0	-3.073892	-3.777361	5.52878
78 79	6 1	0	-Z.ZZ9165 -1 915821	-4.944106 -5.205185	5.50895
80	1	0	-2.837162	-5.735021	5.07562
81	1	0	-1.344591	-4.761717	4.89733
82	6	0	-2.133536	1.708207	1.49506
83	1	0	-2.780142	2.119465	2.26797
84 85	1	0	-1.1813U8 -2 574397	2.229805 1 947095	1.55410
86	1	0	-4.651585	1.053011	1.73320
87	1	õ	-5.398270	-0.520930	1.68772
88	8	0	1.089459	2.258260	1.97832
	-				

Table S3. Atomic coordinates for the optimized geometry ofconformer TB-1 of tetraketone 14.

		Z-Mat	rix orientatio	on:	
Center Number	Atomic Number	Atomic Type	Coor X	dinates (Ang Y	stroms) Z
1	 6	0	0.812566	-0.722522	-0.423906
2	6	0	-0.717347	-0.536445	-0.368889
3	6	0	1.420077	0.360409	2.872863
4	6	0	2.708069	0.865851	2.174261
5	6	0	2.882323	0.222028	0./54300
7	1	0	2 882618	-0 854682	0 927684
8	6	0	0.871881	-1.082772	2.663589
9	6	0	-1.630285	-1.406945	0.506954
10	6	0	-1.729997	-0.830359	2.004827
11	6	0	-0.596650	-1.341128	2.950977
12	1	0	-0.769497	-0.903122	3.933730
13	1	0	-0.676350	-2.423334	3.052734
14	6	0	4.271697	0.468720	0.057953
15	6	0	2.644065	2.40//21	2.192602
17	1	0	1 969701	2 802652	1 429362
18	1	0	2 277369	2 744227	3 161756
19	6	Ő	3.880315	0.377250	3.081501
20	1	0	3.809162	0.869283	4.055511
21	1	0	3.776180	-0.697710	3.252714
22	6	0	5.249431	0.650493	2.450098
23	1	0	6.027785	0.225320	3.087941
24	1	0	5.447011	1.723230	2.376536
25	6	0	5.351631	0.008074	1.069699
26	1	0	5.282333	-1.076747	1.186239
27	6	0	4.365695	-0.456234	-1.1/6846
28 20	1	0	3.68/941 5.370120	-U.139775 -0 427111	-1.9/3200 -1.581603
29	± 1	0	4.115028	-1.489232	-0.926928
31	6	0	4.521873	1.914017	-0.419480
32	1	Ő	4.704179	2.615486	0.392639
33	1	0	5.398305	1.937848	-1.068754
34	1	0	3.673314	2.289550	-0.997492
35	8	0	6.654599	0.299831	0.492510
36	6	0	7.687894	-0.501895	0.845024
37	8	0	7.594065	-1.423679	1.615065
38	6	0	8.952049	-0.082413	0.136008
39	1	0	9.787631	-0.6/0859	0.508876
40	1	0	8.840589	-0.241//4	-0.939366
41	1	0	9.13/349	2 006051	0.292060
43	1	0	-1 892073	-3 501781	1 035343
44	1	0	-1.186466	-3.248515	-0.558701
45	1	0	-0.188297	-3.052660	0.871771
46	6	0	-1.818926	0.708666	1.983948
47	1	0	-2.673038	1.045155	1.393548
48	1	0	-1.922979	1.110239	2.991114
49	1	0	-0.934194	1.177082	1.552177
50	6	0	-3.083738	-1.288302	-0.001589
51	6	0	-3.103691	-1.44/058	2.492004
52	1	0	-3.994020	-1.314/92	1.210323
54	1	0	-3 266884	-2 008569	-0.802113
55	1	Ő	-4.774501	-0.750169	1.254159
56	1	0	-4.508762	-2.475371	1.160386
57	1	0	-2.883223	-2.473258	2.808360
58	6	0	-3.861074	-0.779571	3.678169
59	1	0	-4.176744	0.218744	3.346734
60	6	0	-3.047343	-0.613196	4.973041
61	1	U	-2.641808	-1.5/2290	2.311669 / 860062
63	1	0	-2.21943/ _3 677/05	-0 225654	4.000002 5.776627
64	т т	0	-5 144205	-1.593726	3.9710024
6.5	1	0	-5.675886	-1.816660	3.046404
66	1	õ	-4.861979	-2.564708	4.396416
67	6	0	-6.137129	-0.901713	4.909430
68	1	0	-5.768260	-0.807468	5.932480
69	1	0	-6.337074	0.121966	4.567044
70	6	0	-7.476489	-1.609271	4.962546
71	8	0	-7.882588	-2.416316	4.163989
72	8	0	-8.191924	-1.199705	6.032580
13	6	U	-9.506253	-1.//2343	6.162U51 6.256410
74	1	0	-9.442986 _9.007/01	-2.00/403	0.230410 7 063517
76	± 1	0	-10 118658	-1 527080	5 292884
77	8	0	0.852516	1.012671	3.722467
78	8	Ő	-1.130768	0.336433	-1.104365
79	1	0	1.971290	0.871047	-1.143456
80	1	0	1.029579	1.313060	0.242497
81	8	0	1.279422	-1.775857	-0.790212
82	8	0	1.655926	-1.985821	2.464329

Table S4. Atomic coordinates for the optimized geometry ofconformer CCC of triketone 17.

		Z-Matrix	orientation:		
Center Number	Atomic Number	Atomic Type	Coor X	dinates (Ang Y	stroms) Z
1	6	0	0.866529	-0.524835	-0.269061
3	6	0	1.813780	-0.439810	2.723734
4	6	0	3.077633	0.335871	2.237161
5	6	0	3.171103	0.024516	0.690149
7	1	Ő	3.120544	-1.067926	0.638846
8	6	0	0.549960	0.336725	3.086066
9 10	6	0	-1.529456	-1.025340	2.309316
11	6	0	-0.717142	-0.508830	3.335100
12	1	0	-1.106084	-0.238310	4.314039
14	6	0	4.533935	0.372605	-0.015007
15	6	0	3.006615	1.832351	2.601947
16 17	1	0	2.251890	2.325843	2.427005
18	1	0	2.784304	1.953091	3.665514
19	6	0	4.302743	-0.304990	2.938897
20	1	0	4.293238 4.195827	-0.037739	2.888855
22	6	0	5.636656	0.104313	2.310623
23	1	0	6.450162	-0.423333	2.814111
∠4 25	1 6	0	5.660222	-0.268788	2.428523
26	1	0	5.585326	-1.356343	0.751225
27	6	0	4.554976	-0.316701	-1.399355
20	1	0	5.556032	-0.247450	-1.829269
30	1	0	4.279555	-1.371736	-1.325468
31	6	0	4.774987	1.880388 2.423898	-0.231315
33	1	0	5.635271	2.025262	-0.886397
34	1	0	3.911378	2.349166	-0.710124
35	8	0	6.933555 7.971151	-0.738793	0.24/654
37	8	0	7.904033	-1.799686	0.937601
38	6	0	9.203872	-0.183916	-0.299824
40	1	0	9.018212	-0.054097	-1.368598
41	1	0	9.444068	0.798445	0.112128
42	6	0	-0.980815	-2.463027	1.026971
44	1	ő	-0.853227	-2.906707	0.039762
45	1	0	-0.018094	-2.512698	1.532464
46	6	0	-2.2/3150	1.129609	1.563099
48	1	0	-2.485060	1.548113	3.159501
49	1	0	-1.500029	1.745005	1.714817
50	6	0	-3.148331	-1.192314	2.719339
52	6	0	-3.895047	-1.447825	1.372346
53	1	0	-3.174181	-0.130465	-0.221474
55	1	0	-4.797432	-0.833587	1.309219
56	1	0	-4.225640	-2.485558	1.303702
57	1	0	-2./82566	-2.150947	3.10361
59	1	0	-4.577797	0.275341	3.406395
60	6	0	-3.479738	-0.305098	5.158012
62	1	0	-2.932822	-1.104206 0.537376	5.099529
63	1	0	-4.241663	-0.030477	5.891271
64	6	0	-5.263267	-1.668092	4.010578
66	1	0	-4.853235	-2.564432	4.492224
67	6	0	-6.448606	-1.152250	4.832149
68 69	1	0	-6.207044	-0.993638	5.884771 4 450163
70	6	0	-7.647614	-2.076955	4.763285
71	8	0	-7.839047	-2.925943	3.928742
72	8	0	-8.515041 -9.719138	-1.814837	5.77038
74	1	õ	-9.481328	-3.664272	5.861334
75	1	0	-10.287103	-2.262340	6.633056
/6 77	1	0	-10.284806 0.805378	-2.444/53 0.900970	4.850844
78	1	Ō	0.390230	1.117109	2.338819
79	8	0	1.847991	-1.649162	2.799048
81	o 1	0	2.218381	0.827915	-1.107011
82	1	0	1.503831	1.446004	0.352131
83	8	0	1.112170	-1.588216	-0.790290

Table S5. ¹H and ¹³C NMR Data, HMQC and HMBC Correlations of 3.

position	δ _C	$\delta_{\rm H}$ (mult, J in Hz)	HMBC (from ¹ H to ¹³ C)
1	29.1	1.84 (m)	C-3, C-5, C-9, C-10, C-25
		1.96 (m)	C-3, C-5, C-9, C-10, C-25
2	23.2	2.03 (m)	C-1, C-3, C-4, C-10
		1.53 (m)	C-3, C-10
3	72.4	5.70 (dd, 12, 12)	C-1, C-2, C-4, C-5, C-23, C-24, C-32
4	43.8		
5	56.9		
6	41.2	2.75 (d, 12)	C-4, C-5, C-7, C-8, C-10, C-11
		3.40 (d, 12)	C-4, C-5, C-7, C-10, C-11
7	210.0		
8	211.5		
9	218.9		
10	62.3		
11	92.2		
12	42.4	1.73 (d, 18)	C-5, C-9, C-11, C-13, C-14, C-18, C-27
		2.25 (d, 18)	C-9, C-11, C-13, C-14, C-18, C-27
13	40.6		
14	55.4		
15	24.5	2.17 (ddd, 18, 18, 6)	C-8, C-13, C-14, C-16, C-17, C-26
		1.23 (m)	C-14, C-17, C-26
16	35.4	1.65 (m)	C-14, C-15, C-22, C-28
		1.41 (m)	C-14, C-15, C-18
17	32.7		
18	47.0	1.52 (m)	C-12, C-13, C-14, C-17, C-19, C-20, C-27, C-28
19	31.2	1.82 (m)	C-13, C-17, C-18, C-20, C-29, C-30
		2.35 (d, 18)	C-13, C-17, C-18, C-20, C-21, C-29, C-30
20	40.7		
21	29.8	2.26 (m)	C-17, C-19, C-29
		1.40 (m)	C-17, C-20, C-30
22	33.4	0.95 (m)	C-16, C-17, C-18, C-20, C-21, C-28
		1.88 (m)	C-16, C-17, C-18, C-20, C-21, C-28
23	21.8	1.16 (s)	C-3, C-4, C-5, C-24
24	21.6	1.02 (s)	C-3, C-4, C-5, C-23
25	22.4	1.32 (s)	C-1, C-5, C-9, C-10
26	17.2	1.35 (s)	C-8, C-13, C-14, C-15
27	19.0	1.06 (s)	C-12, C-13, C-14, C-18
28	31.2	1.04 (s)	C-16, C-17, C-18
29	178.7		
30	32.8	1.23 (s)	C-19, C-20, C-21, C-29
31	52.4	3.60 (s)	C-29
32	170.4		
33	21.3	2.02 (s)	C-32

position	δ _C	$\delta_{\rm H}$ (mult, J in Hz)	HMBC (from ¹ H to ¹³ C)
1	29.87	1.75 (m)	C-3, C-10
		1.53 (m)	C-2, C-5, C-10, C-25
2	23.1	1.72 (m)	C-4
		1.72 (m)	C-4
3	76.5	4.81 (dd, 10.8, 4.8)	C-1, C-2, C-4, C-23, C-24
4	38.5		
5	90.6		
6	39.8	2.69 (d, 14.4)	C-5, C-8, C-11
		1.88 (m)	C-7, C-8, C-10, C-11
7	90.3		
8	212.6		
9	212.4		
10	48.7		
11	77.3		
12	31.1	2.20 (m)	C-7, C-9, C-13, C-14, C-18, C-27
		1.97 (m)	C-7, C-9, C-13, C-14, C-18, C-27
13	40.4		
14	52.5		
15	24.2	1.75 (m)	C-8, C-14, C-16, C-26
		1.48 (m)	C-13, C-14, C-16, C-17
16	35.4	1.42 (m)	C-15, C-17, C-18, C-22, C-28
		1.70 (m)	C-14, C-15, C-17, C-22, C-28
17	31.3		
18	44.3	1.72 (m)	C-13, C-22, C-27
19	30.7	1.73 (m)	C-13, C-18, C-29, C-30
		2.36 (d, 15)	C-13, C-17, C-18, C-20, C-21, C-29
20	40.4		
21	29.91	2.23 (m)	C-29
		1.38 (m)	C-17, C-20, C-22, C-30
22	33.9	0.95 (m)	C-17, C-18, C-21
		1.99 (m)	C-16, C-17, C-20, C-21
23	17.7	1.00 (s)	C-3, C-4, C-5, C-24
24	20.8	0.92 (s)	C-3, C-4, C-5, C-23
25	19.4	1.29 (s)	C-1, C-5, C-9, C-10
26	18.5	1.31 (s)	C-8, C-13, C-14, C-15
27	22.3	0.77 (s)	C-12, C-13, C-14, C-18
28	31.5	1.07 (s)	C-16, C-17, C-18, C-22
29	178.6		
30	32.5	1.19 (s)	C-19, C-20, C-21, C-29
31	51.6	3.61 (s)	C-29
32	170.6		
33	21.4	2.05 (s)	C-32

Table S7. ¹H and ¹³C NMR Data, HMQC and HMBC Correlations of 7.

position	δ _C	$\delta_{\rm H}$ (mult, J in Hz)	HMBC (from ¹ H to ¹³ C)
1	32.2	1.39 (m)	C-2, C-5, C-25
		1.39 (m)	C-2, C-5, C-25
2	25.3	1.74 (m)	C-1, C-3, C-4, C-10
		1.74 (m)	C-1, C-3, C-4, C-10
3	80.5	4.51 (dd, 11.4, 4.2)	C-2, C-4, C-23, C-24
4	37.3		
5	48.3	1.39 (m)	C-1, C-3, C-4, C-7, C-9, C-10, C-23, C-24, C-25
6	29.2	1.74 (m)	C-5, C-7, C-8, C-9
		1.54 (m)	C-5, C-7, C-8
7	87.3		
8	212.9		
9	78.9		
10	47.4		
11	29.0	1.51 (m)	C-9, C-12, C-13
		1.15 (m)	C-7
12	34.0	1.78 (m)	
		1.66 (m)	C-9, C-11, C-13, C-14, C-27
13	39.7		
14	53.9		
15	25.6	2.06 (m)	C-14, C-16
		1.16 (m)	C-8, C-13, C-14, C-16, C-17, C-26
16	36.8	1.30 (m)	C-14, C-15, C-17, C-22, C-28
		1.57 (m)	C-14, C-15, C-17, C-18, C-22, C-28
17	31.8		
18	46.7	1.18 (m)	C-13, C-14, C-16, C-17, C-19, C-27
19	30.96	1.61 (m)	C-13, C-17, C-18, C-20, C-21, C-29, C-30
		2.32 (m)	C-13, C-17, C-18, C-20, C-21, C-29
20	40.7		
21	29.3	2.25 (m)	C-20, C-22, C-29
		1.38 (m)	C-20, C-22, C-29, C-30
22	33.5	0.96 (m)	C-17, C-18, C-28
		1.93 (m)	C-17, C-21, C-28
23	17.5	0.93 (s)	C-3, C-4, C-5, C-24
24	29.1	0.97 (s)	C-3, C-4, C-5, C-23
25	16.6	1.00 (s)	C-1, C-5, C-9, C-10
26	72.6	4.29 (d, 9.6)	C-13, C-14, C-15
27	17.0	4.04 (d, 9.6)	C-7, C-8, C-13, C-14, C-15
27	17.2	0.85(s)	$C_{-12}, C_{-13}, C_{-14}, C_{-18}$
28	30.9 170.2	0.95 (8)	C-10, C-17, C-18, C-22
29 20	1/9.5	1.10 (a)	C 10 C 20 C 21 C 20
30 31	52.0	1.19 (8) 2.64 (s)	(-19, (-20, (-21, (-29))))
31	52.0 171-1	5.04 (8)	0-27
32 22	1/1.1 21.4	2.05(a)	C 22
33	∠1. 4	2.05 (8)	0-32

Figure S4. Key HMBC correlations of 11.

Figure S5. Key HMBC correlations of 12.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} & 1.80 \ (m) \\ 13 & 45.1 \\ 14 & 47.9 \\ 15 & 31.4 & 2.34 \ (m) \\ & & 2.20 \ (m) \\ 16 & 28.8 & 2.05 \ (m) \end{array}$
13 45.1 14 47.9 15 31.4 2.34 (m) 2.20 (m) 16 28.8 2.05 (m)
14 47.9 15 31.4 2.34 (m) 2.20 (m) 16 28.8 2.05 (m)
15 31.4 2.34 (m) 2.20 (m) 16 28.8 2.05 (m)
2.20 (m) 16 28.8 2.05 (m)
16 28.8 2.05 (m)
1.40 (m)
17 48.9 1.46 (m)
18 159 0.65 (s)
19 186 118(s)
20 361 144 (m)
21 25 1 1 1 (m)
21 23.1 0.91 (m) 22 32.1 2.07 (m)
1.81 (m)
22 23 8 2 23 (m)
25 25.8 2.55 (III) 2 21 (m)
24 174.8
25 275 0.88 (s)
26 165 0.95 (s)
20 10.5 0.95 (3) 27 185 0.91 (s)
28 51 6 3 66 (c)
29 171.0
30 214 206 (c)

N⁰	δ _C	δ _H (mult, <i>J</i> in Hz)
1	34.1	2.99 (ddd, 13.8, 3.6, 3.6)
		1.10 (m)
2	24.3	1.67 (m)
		1.67 (m)
3	80.7	4.49 (dd, 10.2, 6)
4	38.0	
5	52.0	0.98 (m)
6	17.3	1.44 (m)
		1.71 (m)
7	29.9	2.22 (m)
		2.32 (m)
8	164.2	
9	139.5	
10	37.6	
11	199.1	
12	51.9	2.64 (d, 16.2)
		2.44 (d, 16.2)
13	51.6	
14	47.4	
15	31.0	1.74 (m)
		1.33 (m)
16	27.0	1.99 (m)
		1.39 (m)
17	50.1	1.68 (m)
18	16.8	0.80 (s)
19	19.1	1.13 (s)
20	35.8	1.39 (m)
21	18.1	0.85 (d, 6.6)
22	31.0	1.80 (m)
		1.28 (m)
23	31.2	2.35 (m)
		2.22 (m)
24	174.6	
25	16.9	0.88 (s)
26	28.4	0.88 (s)
27	25.9	1.10 (s)
28	51.7	3.65 (s)
29	171.0	

m = multiplet, overlapped

m = multiplet, overlapped

30

21.4

2.03 (s)

Geometry of **15** was optimized using Gaussian (R) 09 with B3LYP/6-311G(d,p).

Table S11.¹H and ¹³C NMR Data,
HMQC Correlations of 18.

21	N⁰	δ _C	$\delta_{\rm H}$ (mult, J in Hz)
	1	30.7	1.71(m)
			1.62 (m)
	2	23.6	1.80 (m)
			1.62 (m)
	3	80.0	4.48 (dd, 11.4, 4.6)
	4	38.5	
	5	45.5	
	6	28.9	2.13 (d, 13.3)
	7	70.2	1.84 (m)
	/	79.2	
$HO \parallel 1 \downarrow_{27}$ — Key COSY correlations	0	211.0	
25 26 O $$ Key HMBC correlations	9	211.8	
	10	4/.9	210(4412426)
	11	28.4	3.10 (ad, 12.4, 2.0)
	12	20.4	2.21 (III)
	12	50.2	1.75 (m)
	13	59.5 17.3	
	14	47.5 20.3	1.73 (m)
	15	29.5	1.73 (m) 1.29 (m)
	16	26.0	1.29 (m)
	10	20.9	1.35 (m)
	17	49 5	1.50 (m)
	18	18.6	0.68 (s)
19	19	19.5	1.12 (s)
	20	35.3	1.12(0) 1 43 (m)
26 18 20	21	18.7	0.95 (d. 6.4)
	22	31.2	1.81 (m)
9 12		0112	1.34 (m)
	23	31.1	2.37 (m)
5 6 8			2.24 (m)
	24	174.6	()
	25	28.1	0.88 (s)
	26	17.3	0.99 (s)
27	27	22.8	1.28 (s)
	28	51.7	3.65 (s)
	29	171.0	
Kov NOESY correlations	30	21.3	2.04(s)
Geometry of 18 was optimized using Gaussian (R) 09			

Table S12.¹H and ¹³C NMR Data,
HMQC Correlations of 20.

	N⁰	δ _C	δ_{H} (mult, <i>J</i> in Hz)
	1	29.7	1.88 (m)
21			1.25 (m)
	2	24.4	1.74 (m)
			1.61 (m)
	3	80.89	4.65 (dd, 11.9, 4.7)
O HO \sim 22	4	37.0	
	5	49.2	1.92 (m)
	6	30.4	2.21 (m)
$10 \qquad 10 \qquad 10 \qquad 28$			1.42 (m)
$O \longrightarrow O \longrightarrow$	7	89.5	
4 5 15	8	209.9	
	9	80.88	
Key COSY correlations	10	49.1	
25 Key HMBC correlations	11	26.2	1.41 (m)
26			1.36 (m)
	12	29.8	1.79 (m)
			1.68 (m)
	13	49.9	
	14	61.4	
	15	29.6	1.38 (m)
			2.20 (m)
	16	27.4	1.88 (m)
			1.58 (m)
	17	53.5	1.33 (m)
18	18	15.3	0.85 (s)
	19	15.4	0.86 (s)
	20	34.8	1.49 (m)
	21	19.0	0.92 (d, 6.4)
9 12	22	31.2	1.82 (m)
			1.31 (m)
5 6 1 27	23	31.3	2.35 (m)
			2.24 (m)
Key NOESY correlations	24	174.5	
	25	29.4	0.88 (s)
	26	16.8	0.96 (s)
	27	74.1	4.26 (d, 9.3)
			3.80 (d, 9.3)
Geometry of 20 was optimized using Gaussian (R) 09	28	51.7	3.66 (s)
with B3LYP/6-311G(d,p).	29	171.1	
	30	21.4	2.05 (s)

Figure S12. ¹H and ¹³C spectra of 4

Figure S17. COSY and NOESY spectra of 7.

Figure S18. ¹H and ¹³C spectra of 9

Figure S19. ¹H and ¹³C spectra of 10

Figure S20. 1 H and 13 C spectra of 11.

Figure S22. 1 H and 13 C spectra of 12.

Figure S27. ¹H and ¹³C spectra of 15

Figure S30. ¹H and ¹³C spectra of 17

Figure S32. HMQC and HMBC spectra of 18.

П

Figure S34. ¹H and ¹³C spectra of 20

