Electronic supporting information: On the Condensed Phase Ring-Closure of Vinylheptafulvalene and Ring-Opening of Gaseous Dihydroazulene

Oliver Schalk^{1,2,3} Søren L. Broman,⁴ Michael Å. Petersen,⁴ Dmitry V. Khakhulin,⁵ Rasmus Y.

Brogaard, ^{4,6} Mogens Brøndsted Nielsen, ⁴ Andrey E. Boguslavskiy,² Albert Stolow,² and Theis I. Sølling* ⁴

¹ Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10961 Stockholm, Sweden

² National Research Council, Sussex Drive 100, K1A 0R6, Ottawa, Canada.

³ Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany

⁴ Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark. Fax: +45 3532 0112

⁵ European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043 Grenoble, France.

⁶ Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United

States of America

*corresponding author, E-mail: theis@kiku.dk

1. Synthesis of the molecules

(i) DHA 7 (1.82 mg) was dissolved in cyclohexane (10 mL). A sample (0.200 mL) was diluted with cyclohexane (3.00 mL). A UV-Vis spectrum was acquired. The solution was irradiated with light (353 nm) for 90 s until no further change in the UV-Vis is observed. The cuvette was heated to 70 °C and the reaction was monitored by UV-Vis until the back-reaction was complete (16 h). DHA 7 was dissolved in deuterated cyclohexane (0.5 mL) using ultrasound and the solution was irradiated with light (353 nm) for 2 h. ¹H NMR showed a full conversion to Z-VHF 8. The solution was then heated at 70 °C until the back-reaction was complete (16 h). NMR showed a complete conversion to DHA 7 (no DHA 9).

(ii) DHA **7** (2 mg) was dissolved in cyclohexane (10 mL) and the solution was irradiated with light (353 nm) for 2 h. The solution was then concentrated in vacuum and redissolved in deuterated MeCN (1 mL) at 0 °C. ¹H NMR showed a full conversion to Z-VHF **8**. The solution was now divided into two NMR-tubes. Tube A was left overnight at room temperature and tube B was irradiated with light (353 nm) for 1 h and then heated at 70 °C for 1 h. ¹H NMR showed that tube A now was a mixture of DHA **7** and DHA **8** in the ratio 11 : 13 together with Z-VHF and tube B was a mixture of DHA **7** and DHA **8** in the ratio 1 : 2 (which is the same as if one irradiated DHA **7** in MeCN and then left it overnight ^{1,2}).

2. Absorption spectra

Figure S1: Absorption spectra of 2-phenyl-1,8a-dihydroazulene-1,1-dicarbonitrile (Ph-DHA) and its ring opened form (Ph-VHF) in acetonitrile (ACN) and cyclohexane (CHX).

3. Decay associated spectrum of the TRPES measurement of Ph-DHA

Figure S2: Decay associated spectra of Ph-DHA after excitation at 350 nm and probe at 400 nm. Time τ 3 is infinit on the time scale of the experiment.

4. Cartesian geometries

С	6.0	-3.05158	0.83035	0.54698
С	6.0	-3.09742	-0.52121	0.36542
С	6.0	-2.10576	-1.32964	-0.29854
С	6.0	-0.78365	-1.04180	-0.39631
С	6.0	-0.11092	0.11237	0.33549
С	6.0	-0.70981	1.42642	-0.10714
С	6.0	-2.01278	1.72342	0.07826
С	6.0	0.22830	-1.81055	-1.09521
С	6.0	1.46432	-1.33328	-0.88686
С	6.0	1.44176	-0.09084	0.01400
С	6.0	2.06820	1.04647	-0.69202
Ν	7.0	2.56374	1.91797	-1.27670
С	6.0	2.20408	-0.33907	1.25595
Ν	7.0	2.78524	-0.56884	2.23380
Η	1.0	-3.93358	1.30400	0.97423
Η	1.0	-4.01391	-1.03255	0.65391
Η	1.0	-2.45717	-2.25313	-0.75690
Η	1.0	-0.25206	-0.00313	1.41799
Η	1.0	-0.05794	2.16667	-0.56227
Η	1.0	-2.33319	2.73593	-0.16401
Η	1.0	-0.00099	-2.68091	-1.70225
Η	1.0	2.39747	-1.71669	-1.28063

Table 1: DHA 5	(see Figure 1	of the manuscript)	. Calculated at	G3MP2/6-31G(d)-level.

С	6.0	0.27147	-0.62073	0.04797
С	6.0	0.19956	-0.62758	1.42669
С	6.0	1.10714	-0.06220	2.35388
С	6.0	2.21248	0.73732	2.12593
С	6.0	2.55681	1.39731	0.87273
С	6.0	2.14490	0.99278	-0.41840
С	6.0	1.19199	0.06158	-0.78355
С	6.0	3.23243	0.82862	3.14682
С	6.0	4.52351	0.93325	2.74146
С	6.0	4.88009	1.22910	1.33523
С	6.0	5.68566	0.25174	0.67480
Ν	7.0	6.28170	-0.59273	0.13258
С	6.0	5.08219	2.58006	0.92989
Ν	7.0	5.17494	3.69563	0.59738
Η	1.0	-0.48494	-1.20423	-0.47246
Η	1.0	-0.60802	-1.21034	1.86346
Η	1.0	0.94844	-0.35374	3.39156
Η	1.0	2.86997	2.43015	0.95570
Η	1.0	2.62709	1.52936	-1.23416
Η	1.0	1.05813	-0.08787	-1.85235
Η	1.0	2.99185	0.56500	4.17367
Н	1.0	5.32047	0.65188	3.42979

Table 2: TS: DHA **5** and VHF **6** (see Figure 1 of the manuscript). Calculated at G3MP2/6-31G(d)-level.

С	6.0	3.73316	-0.32706	0.19816
С	6.0	3.26037	1.03464	0.36096
С	6.0	2.03191	1.54175	0.22273
С	6.0	0.76801	0.87953	-0.11529
С	6.0	0.75735	-0.42718	-0.77393
С	6.0	1.71712	-1.35280	-0.85893
С	6.0	3.06550	-1.35814	-0.32384
С	6.0	-0.36291	1.59962	0.07772
С	6.0	-1.74827	1.23576	-0.14344
С	6.0	-2.40696	0.09300	0.12545
С	6.0	-3.80836	-0.01240	-0.19651
Ν	7.0	-4.91166	-0.08475	-0.45874
С	6.0	-1.83030	-1.03823	0.80182
Ν	7.0	-1.39516	-1.93406	1.34853
Η	1.0	4.74536	-0.50057	0.51855
Η	1.0	4.01972	1.73514	0.66345
Η	1.0	1.93232	2.59369	0.42518
Η	1.0	-0.16550	-0.66981	-1.26512
Η	1.0	1.44947	-2.24764	-1.39320
Η	1.0	3.57991	-2.30030	-0.39300
Η	1.0	-0.24770	2.62373	0.38827
Η	1.0	-2.36479	2.03185	-0.52722

Table 3: s-cis VHF 6 (see Figure 1 of the manuscript). Calculated at G3MP2/6-31G(d)-level.

С	6.0	-3.98385	-0.98208	-0.03830
С	6.0	-2.79790	-1.63696	-0.12036
С	6.0	-1.45076	-1.13845	-0.09663
С	6.0	-1.01780	0.17936	0.01889
С	6.0	-1.82499	1.32431	0.14099
С	6.0	-3.24975	1.41340	0.17439
С	6.0	-4.20038	0.44317	0.09970
С	6.0	0.43508	0.47376	0.02044
С	6.0	1.45417	-0.42290	-0.09811
С	6.0	2.83729	-0.08556	-0.09127
С	6.0	3.81040	-1.09812	-0.22195
Ν	7.0	4.59379	-1.95238	-0.33133
С	6.0	3.27370	1.25096	0.04425
Ν	7.0	3.59515	2.36305	0.15785
Η	1.0	-4.88163	-1.59236	-0.08019
Η	1.0	-2.86448	-2.71846	-0.22078
Η	1.0	-0.69234	-1.90566	-0.17964
Η	1.0	-1.30163	2.26999	0.22016

Η	1.0	-3.62461	2.43032	0.27661
Η	1.0	-5.23668	0.76322	0.14799
Η	1.0	0.69382	1.52295	0.12664
Η	1.0	1.25020	-1.48232	-0.20908

Table 4: s-*trans* VHF **6** (see Figure 1 of the manuscript). Calculated at G3MP2/6-31G(d)-level.

С	6.0	-3.94884	0.17043	0.23584
С	6.0	-3.30736	-1.09706	-0.02303
С	6.0	-2.01459	-1.37889	-0.32067
С	6.0	-0.85196	-0.50568	-0.47758
С	6.0	-0.94049	0.94422	-0.30486
С	6.0	-1.99863	1.73916	-0.00692
С	6.0	-3.38074	1.40274	0.24265
С	6.0	0.34036	-1.09098	-0.79704
С	6.0	1.61905	-0.39605	-1.02106
С	6.0	2.54908	-0.15598	-0.06379
С	6.0	3.79308	0.49165	-0.38214
Ν	7.0	4.79508	1.01807	-0.64763
С	6.0	2.35039	-0.53362	1.30937
Ν	7.0	2.21647	-0.83106	2.42504
Η	1.0	-5.01372	0.11461	0.45104
Η	1.0	-3.97087	-1.95796	0.03187
Η	1.0	-1.78660	-2.43330	-0.46942
Η	1.0	0.00650	1.46291	-0.43880
Η	1.0	-1.77629	2.80260	0.05874
Η	1.0	-4.02985	2.24728	0.46308
Η	1.0	0.37367	-2.17090	-0.93976
Η	1.0	1.87824	-0.07946	-2.03425

Table 5: TS s-*cis* VHF **6** and s-*trans* VHF **6** (see Figure 1 of the manuscript). Calculated at G3MP2/6-31G(d)-level.

С	6.0	-3.01923	-0.57613	-0.73010
С	6.0	-2.35521	0.54476	-1.23047
С	6.0	-1.29993	1.26000	-0.66614
С	6.0	-0.61797	1.05868	0.55225
С	6.0	-1.02947	0.17438	1.57145
С	6.0	-2.01806	-0.80857	1.55889
С	6.0	-2.86849	-1.18118	0.51698
С	6.0	0.63604	1.79849	0.75961
С	6.0	1.81988	1.24382	0.34745
С	6.0	2.05856	-0.00412	-0.28684
С	6.0	3.38313	-0.37467	-0.62669
Ν	7.0	4.49800	-0.66856	-0.90399

С	6.0	1.02020	-0.90649	-0.59915
Ν	7.0	0.11237	-1.63767	-0.84419
Η	1.0	-3.75761	-1.02608	-1.39044
Η	1.0	-2.66306	0.87045	-2.22233
Η	1.0	-0.88310	2.05783	-1.27823
Η	1.0	-0.42915	0.23568	2.47742
Η	1.0	-2.09633	-1.40439	2.46637
Η	1.0	-3.50413	-2.04356	0.70669
Η	1.0	0.60485	2.77386	1.23658
Η	1.0	2.71600	1.83842	0.52762

Table 6: TS s-*cis* VHF **6** and s-*cis* VHF **6** (see Figure 1 of the manuscript). Calculated at G3MP2/6-31G(d)-level.

С	6.0	3.78397	-0.24657	0.16511
С	6.0	3.28721	1.00010	0.43756
С	6.0	1.96844	1.51612	0.29248
С	6.0	0.78332	0.85927	-0.15099
С	6.0	0.71128	-0.47084	-0.64271
С	6.0	1.74590	-1.45174	-0.73157
С	6.0	3.06594	-1.38414	-0.38080
С	6.0	-0.39935	1.67194	-0.11644
С	6.0	-1.77613	1.31271	-0.17183
С	6.0	-2.36755	0.10189	0.04527
Η	1.0	4.83984	-0.40980	0.36845
Η	1.0	4.00468	1.71674	0.83617
Η	1.0	1.83956	2.54955	0.60378
Η	1.0	-0.24016	-0.76772	-1.06665
Η	1.0	1.41859	-2.40335	-1.14943
Η	1.0	3.66025	-2.28155	-0.53863
Η	1.0	-0.21667	2.74016	-0.01262
Η	1.0	-2.44760	2.15338	-0.35129
Η	1.0	-1.80769	-0.78117	0.33121
Η	1.0	-3.44703	0.00108	-0.01383

Table 7: s-cis CoIn VHF **6** without the CN-groups (see Figure 4 of the manuscript) at CASSCF(10,10)/6-31G(d) level.

С	6.0	-3.89489	0.08681	0.22834
С	6.0	-3.37828	-1.07693	-0.27182
С	6.0	-2.03310	-1.42009	-0.59681
С	6.0	-0.84794	-0.64023	-0.49084
С	6.0	-0.77962	0.70097	-0.01359
С	6.0	-1.83179	1.54023	0.44948

С	6.0	-3.17630	1.30244	0.56391
С	6.0	0.34870	-1.30247	-0.91059
С	6.0	1.67405	-0.80362	-0.92752
С	6.0	2.74361	-1.53576	-1.35396
Η	1.0	3.74873	-1.12681	-1.35581
Η	1.0	2.62643	-2.55708	-1.70810
Η	1.0	-4.96897	0.11400	0.39790
Η	1.0	-4.09807	-1.87404	-0.45463
Η	1.0	-1.89439	-2.42672	-0.98299
Η	1.0	0.20326	1.15788	0.00511
Η	1.0	-1.50365	2.53138	0.76137
Η	1.0	-3.78507	2.11622	0.95145
Η	1.0	0.22830	-2.32554	-1.26444
Η	1.0	1.86068	0.21189	-0.58609

Table 8: s-*trans* CoIn VHF **6** without the CN-groups (see Figure 4 of the manuscript) at CASSCF(10,10)/6-31G(d) level.

С	6.0	3.76699	-0.46817	0.21545
С	6.0	3.32617	0.87623	0.44786
С	6.0	2.08720	1.42956	0.30334
С	6.0	0.82345	0.84320	-0.10276
С	6.0	0.76640	-0.46120	-0.73470
С	6.0	1.70970	-1.44135	-0.83931
С	6.0	3.05515	-1.48720	-0.34584
С	6.0	-0.29740	1.66309	0.00359
С	6.0	-1.69221	1.40375	-0.20265
С	6.0	-2.34834	0.20010	0.05476
С	6.0	-3.74379	0.01526	-0.19930
Ν	7.0	-4.87459	-0.18444	-0.39806
С	6.0	-1.72508	-0.89386	0.72501
Ν	7.0	-1.22476	-1.78349	1.28920
Η	1.0	4.79559	-0.68062	0.49962
Η	1.0	4.09546	1.55006	0.82062
Η	1.0	2.01594	2.48187	0.57460
Η	1.0	-0.17790	-0.68083	-1.22218
Η	1.0	1.38864	-2.33557	-1.36944
Η	1.0	3.56627	-2.43918	-0.47168
Η	1.0	-0.08183	2.71035	0.20394
С	6.0	-2.49502	2.58300	-0.65880
С	6.0	-3.23425	2.53897	-1.85033
С	6.0	-3.95263	3.65552	-2.27834
С	6.0	-3.94822	4.82857	-1.52185
С	6.0	-2.49306	3.76939	0.09362
С	6.0	-3.21885	4.88050	-0.33256
Η	1.0	-4.51212	5.69564	-1.85542
Η	1.0	-4.51754	3.60552	-3.20518
Η	1.0	-3.24054	1.63278	-2.44839

Η	1.0	-3.21830	5.78556	0.26937
Н	1.0	-1.94287	3.81231	1.02988

Table 9: s-cis VHF 4. Calculated at B3LYP/6-31G(d)-level.

С	6.0	-4.28551	-0.54351	0.07465
С	6.0	-3.12999	-1.33897	0.38101
С	6.0	-1.80281	-1.02476	0.35623
С	6.0	-1.13018	0.21624	0.00621
С	6.0	-1.87320	1.45436	-0.16325
С	6.0	-3.21199	1.69801	-0.25721
С	6.0	-4.32207	0.79015	-0.20250
С	6.0	0.25417	0.32954	-0.08493
С	6.0	1.28343	-0.66810	-0.06827
С	6.0	2.59987	-0.28294	0.18902
С	6.0	3.71359	-1.16874	0.06999
Ν	7.0	4.64884	-1.85922	-0.01504
С	6.0	2.92183	1.05789	0.56409
Ν	7.0	3.16973	2.15572	0.86786
Η	1.0	-5.23652	-1.07149	0.10206
Η	1.0	-3.35396	-2.36107	0.68181
Η	1.0	-1.13979	-1.82604	0.66052
Η	1.0	-1.23839	2.33427	-0.25476
Η	1.0	-3.48339	2.74023	-0.41501
Η	1.0	-5.29919	1.23368	-0.38202
Η	1.0	0.62715	1.34860	-0.15493
С	6.0	1.01681	-2.09376	-0.41379
С	6.0	1.39983	-3.13452	0.44684
С	6.0	0.39189	-2.41206	-1.63183
С	6.0	1.15171	-4.46343	0.10174
С	6.0	0.15902	-3.74095	-1.97992
С	6.0	0.53396	-4.77007	-1.11194
Η	1.0	0.10343	-1.61084	-2.30631
Η	1.0	-0.31217	-3.97425	-2.93104
Η	1.0	0.34943	-5.80618	-1.38325
Η	1.0	1.44920	-5.25876	0.77964
Η	1.0	1.88429	-2.89985	1.38978

 Table 10: s-trans VHF 4. Calculated at B3LYP/6-31G(d)-level.

References

(1) Petersen, M. Å.; Broman, S. L.; Kadziola, A.; Kilså, K.; Nielsen, M. B., Dihydroazulene Photoswitches: The First Synthetic Protocol for Functionalizing the Seven-Membered Ring. *Eur. J. Org. Chem.* **2009**, *17*, 2733.

Broman, S. L.; Petersen, M. Å.; Tortzen, C. G.; Kadziola, A.; Kilså, K.; Nielsen, M.
B., Arylethynyl Derivatives of the Dihydroazulene/Vinylheptafulvene Photo/Thermoswitch: Tuning the Switching Event. J. Am. Chem. Soc. 2010, 132, 9165-9174.