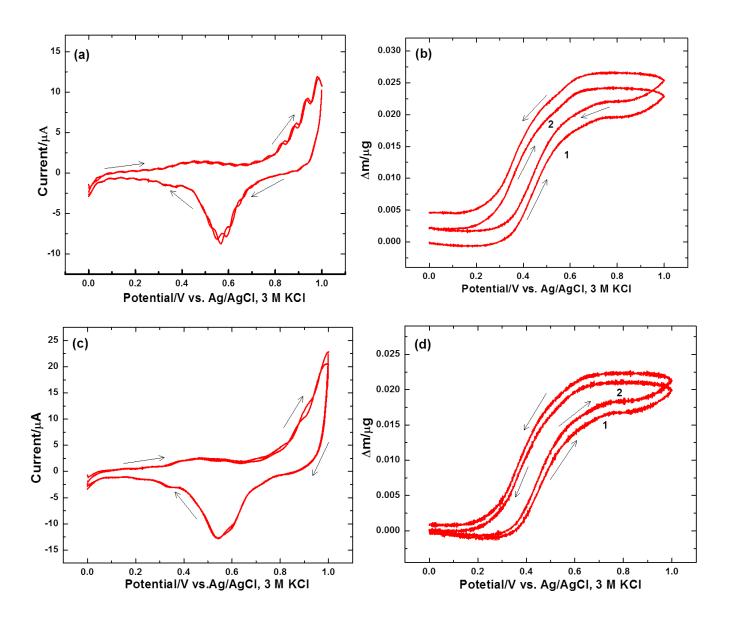
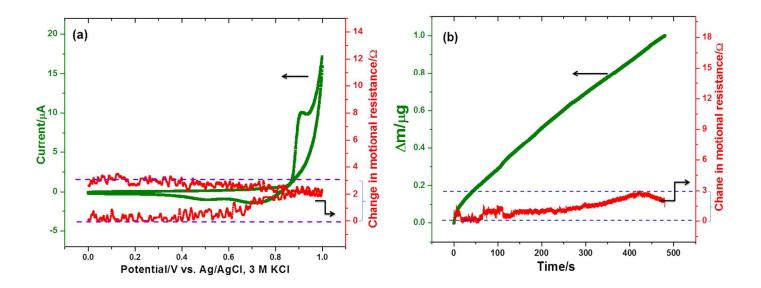
Supporting Information

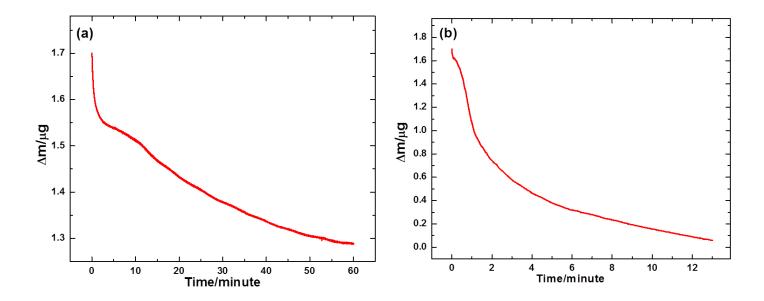

EQCM Investigation of Electrochemical Deposition and Stability of Co-Pi Oxygen Evolution Catalyst of Solar Energy Storage

Ahamed Irshad and Nookala Munichandraiah*

Department of Inorganic and Physical Chemistry, Indian Institute of Science,

Bangalore-560012, India

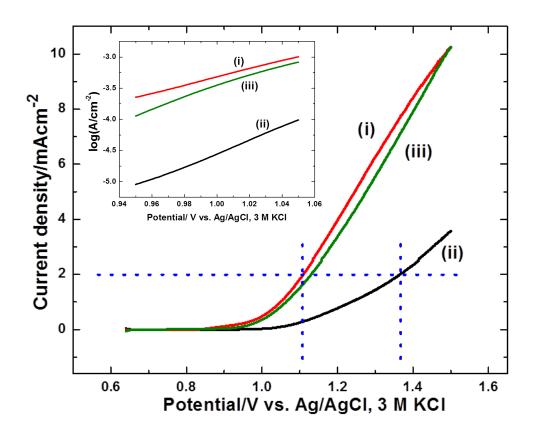

*E-mail: muni@ipc.iisc.ernet.in


Figure S1:(a and c) Cyclic voltammograms and (b and d) mass variation (Δm) vs. potential of Au coated quartz crystal in 0.1 M Phosphate buffer (pH 7) at a sweep rate of (a and b) 25 mVs⁻¹ and (c and d) 50 mVs⁻¹. Area of the Au electrode is 0.205 cm².

Measurement of motional resistance:

The figures presented below suggest that the motional resistance of the quartz crystal measured as a function of potential, time and mass of the deposit is nearly invariant.

Figure S2:(a)Current (green) and motional resistance (red) variations with potential during cyclic voltammetry experiments at 5 mVs⁻¹ using Au coated quartz crystal(area 0.205 cm²)in 0.1 M phosphate buffer (pH 7) containing 0.5 mM Co²⁺. (b) Variations in mass (green) and change of motional resistance (red) with time of Co-Pi catalyst depositionat 1.00 V.


Figure S3:Mass variation of Co-Pi coated (1.7 μ g) Au coated quartz crystal electrode during electrolysis in 0.1 M K₂SO₄ at (a) 0.60 and (b) 1.60 V.

Tafel Experiments:

The superior performance of the in-situ formed Co-Pi catalyst on Au surface was evidenced from slow scan rate (0.05 mV s⁻¹) linear sweep voltammograms and Tafel plots measured under stirring condition (Fig. S3).Current density of about 2mA cm⁻² was observed at 1.10 V in neutral phosphate buffer containing Co²⁺(Fig. S3 curve i) whereas it requires more than 1.36 V to attain the same current density in the absence of cobalt salts (Fig. S3 curve ii). It is also found that the deposited Co-Pi catalyst retains comparable OER activity even in non-cobaltous solution (Fig. S3 curve iii), suggesting catalytic activity of Co-Pi in the absence of Co²⁺ in buffer solution. Linear regime of the Tafel plot (inset in Fig.S3) provides a slope of 94 and 150 mV per decade, respectively in non-cobaltous and cobaltous solutions. Tafel slope for Co-Pi/Au electrode in 0.1 M phosphate buffer containing no Co²⁺ was 109 mV per decade, which is close to the literature value (100 mV per log unit) for Co-Pi film/Co system. S1

References:

S1: Young, E. R.; Nocera, D. G.; Bulovic, V. Direct Formation of a Water Oxidation Catalyst from Thin-film Cobalt. *Energy Environ. Sci.***2010**, *3*, 1726-1728.

Figure S4:Linear sweep voltammograms of Au electrode (1cm²) at 0.05 mV s⁻¹ in 0.1 M neutral phosphate buffer (i) with 0.5 mM Co²⁺ (ii) without Co²⁺ and (iii) linear sweep voltammograms using Co-Pi deposited (20 C cm⁻²) Au electrode in 0.1 M phosphate buffer without Co²⁺. Inset shows the linear regime of the corresponding Tafel plots.