Supporting Information

Degradation *versus* Expansion of the AgX Frameworks: Formation of Oligomeric and Polymeric Silver Complexes from Reactions of Bulk AgX with N-Bis(diphenylphosphanylmethyl)-2-aminopyridine

Jü-Hua Yang, †,‡ Xin-Yi Wu,† Run-Tian He,† Zhi-Gang Ren,*,† Hong-Xi-Li,† Hui-Fang Wang,† and Jian-Ping Lang*,†,‡

- † College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
- ‡ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- ¹⁵ § Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602, Singapore

Contents

Figures S1. (a) PXRD patterns for 1 . Simulated (red) and single-phase polycrystalline sample (black)
of 1. (b) PXRD patterns for 2, 3 and 4. Simulated (red) of 3, single-phase polycrystalline sample (black)
5 of 3, single-phase polycrystalline sample (blue) of 2 and single-phase polycrystalline sample (pink) of
4. (c) PXRD patterns for 5. Simulated (red) and single-phase polycrystalline sample (black) of 5. (d)
PXRD patterns for 6·CH ₂ Cl ₂ . Simulated (red) and single-phase polycrystalline sample (black) of
6·CH ₂ Cl ₂ . (e) PXRD patterns for 7·MeCN. Simulated (red) and single-phase polycrystalline sample
(black) of 7·MeCN. (f) PXRD patterns for 8. Simulated (red) and single-phase polycrystalline sample
10 (black) of 8. (g) Observed PXRD patterns for a unknown complex obtained from refluxing a MeCN
mixture containing bdppmapy and AgCN (molar ratio = 1:4)S4
Table S1. The elemental analysis data for compounds 2-5 derived from reactions of 1 with NH_4X ($X =$
Cl, Br, I, SCN) in MeCN. The numbers in parentheses are theoretical values for the C, H, N contents
ıs of 2-5S8
Figure S2. The IR spectra of 2 (a), 3 (b), 4 (c) and 5 (d) derived from reactions of 1 with NH_4X (X =
Cl, Br, I, SCN) in MeCN
₂₀ Figure S3. The ¹ H NMR spectra of 2 (a), 3 (b), 4 (c) and 5 (d) derived from reactions of 1 with NH ₄ X
(X = Cl, Br, I, SCN) in MeCNS11
Figure S4. The PXRD patterns of 2 (a), 3 (b), 4 (c) and 5 (d) derived from reactions of 1 with NH ₄ X
Figure S4. The PXRD patterns of 2 (a), 3 (b), 4 (c) and 5 (d) derived from reactions of 1 with NH ₄ X (X = Cl, Br, I, SCN) in MeCN. Simulated (red) and single-phase polycrystalline sample

Figure S5. The observed PXRD patterns for the products derived from solid state reactions of 1 with
NH ₄ Cl (a), NH ₄ Br (b), NH ₄ I (c) or NH ₄ SCN (d)
Figures S6. (a) The positive-ion ESI-MS of 2. (b) The positive-ion ESI-MS of 3. (c) The positive-ion
ESI-MS of 4. (d) The positive-ion ESI-MS of 5. (e) The positive-ion ESI-MS of 6. (f) The positive-ion
ESI-MS of 7 . (g) The positive-ion ESI-MS of 8 S17
Figure S7. View of a section of the 1D chain extending along the b axis in 2. All hydrogen atoms are
omitted for clarityS21
Figure S8. View of a section of the 1D chain extending along the b axis in 3. All hydrogen atoms are
omitted for clarityS21
Figures S9. The TGA curves of 1-8. S22

(**a**)

(b)

(c)

(d)

(e)

(f)

Figures S1. (a) PXRD patterns for 1. Simulated (red) and single-phase polycrystalline sample (black) of 1. (b) PXRD patterns for 2, 3 and 4. Simulated (red) of 3, single-phase polycrystalline sample (green) of 3, single-phase polycrystalline sample (black) of 4. (c) PXRD patterns for 5. Simulated (red) and single-phase polycrystalline sample (black) of 5. (d) PXRD patterns for 6·CH₂Cl₂. Simulated (red) and single-phase polycrystalline sample (black) of 6·CH₂Cl₂. (e) PXRD patterns for 7·MeCN. Simulated (red) and single-phase polycrystalline sample (black) of 7·MeCN. (f) PXRD patterns for 8. Simulated (red) and single-phase polycrystalline sample (black) of 8. (g) Observed PXRD patterns for a unknown complex obtained from refluxing a MeCN mixture containing bdppmapy and AgCN (molar ratio = 1:4).

Table S1. The elemental analysis data for compounds **2-5** derived from reactions of **1** with NH_4X (X = Cl, Br, I, SCN) in MeCN. The numbers in parentheses are theoretical values for the C, H, N contents of **2-5**.

C	Н	N
58.33 (58.74)	4.72 (4.45)	4.73 (4.42)
55.19 (54.89)	3.83 (4.16)	4.53 (4.13)
50.99 (51.37)	3.72 (3.75)	4.06 (3.99)
58.92 (58.55)	4.01 (4.30)	6.89 (6.40)
	58.33 (58.74) 55.19 (54.89) 50.99 (51.37)	58.33 (58.74) 4.72 (4.45) 55.19 (54.89) 3.83 (4.16) 50.99 (51.37) 3.72 (3.75)

10

S9

Figure S2. The IR spectra of compounds 2 (a), 3 (b), 4 (c) and 5 (d) derived from reactions of 1 with NH_4X (X = Cl, Br, I, SCN) in MeCN.

⁵ **Figure S3.** The ¹H NMR spectra of **2** (a), **3** (b), **4** (c) and **5** (d) derived from reactions of **1** with NH₄X (X = Cl, Br, I, SCN) in MeCN.

(a)

(b)

(**d**)

2Theta

20

25

30

15

5

10

Figure S4. The PXRD patterns of **2** (a), **3** (b), **4** (c) and **5** (d) derived from reactions of **1** with NH₄X (X = Cl, Br, I, SCN) in MeCN. Simulated (red) and single-phase polycrystalline sample (black).

Solid state reactions of 1 with NH_4X (X = Cl, Br, I, SCN) at room temperature

A mixture of powder **1** (143 mg, 0.1 mmol) and NH₄Cl (11 mg, 0.2 mmol) or NH₄Br (20 mg, 0.2 mmol) or NH₄I (29 mg, 0.2 mmol) or NH₄SCN powder (15 mg, 0.2 mmol) was placed in an agate mortar and ground at room temperature for 25 min. The resulting product was then characterized by powder X-ray diffraction (XPRD) (see below).

10

Figure S5. The observed PXRD patterns for the products derived from solid state reactions of **1** with NH₄Cl (a), NH₄Br (b), NH₄I (c) or NH₄SCN (d).

(a)

(c)

(d)

(e)

Sample Name Inj Vol Data Filename		YJH-1 0 yjh-1-01.d		1	Position InjPosition ACQ Method		Vial 1	Instrument Name SampleType Comment					ne	Instrument 1 Sample			IR	er Nam M Calib quired '		Success 2012-9-18 15:5		
x10 5	+ES1	Scan	(0.092	2-0.510	min,	27	scans)	Fra				-1-01	. d	Subtra	et ((2)]
1.15									10	043.	2674											
1.1										-												
1.05																						
1 -																						
0.95																						
0.9										-												
0.85										-												
0.8										-												
0.75		- 4	137. 192	24						-												
0.7										-												
0.65										-												
0.6				602	. 0905					-												
0.55					-					-												
0.5										-												
0.45					-					-												
0.4					-					-												
0.35					-					-												
0.3	+				-					-												
0.25		352, 14	100		-					-												
0.2	Н.				-					-												
0.15					-					-												
0.1					1.					-												
0.05	1.10				H .					-												
0	بالثاباتا	مايناهايات	بملاالتلجا	م بالغالمات	بلناطيلا	سلب					بللبط	<u></u>										ļ
	:	300	400	500 6	sóo ·	700	800	Coun	ts vs	000 s. M	1100 ass-t	to-Ch	00 arge	1300 (m/z)	1400	1500) 160	00 1	700 1	800 1	900	

(f)

(g)

Figures S6. (a) The positive-ion ESI-MS of **2**. (b) The positive-ion ESI-MS of **3**. (c) The positive-ion ESI-MS of **4**. (d) The positive-ion ESI-MS of **5**. (e) The positive-ion ESI-MS of **6**. (f) The positive-ion ESI-MS of **7**. (g) The positive-ion ESI-MS of **8**.

Figure S7. View of a section of the 1D chain extending along the b axis in 2. All H atoms are omitted for clarity. Symmetry transformations used to generate equivalent atoms: A: 1/2 - x, 1/2 + y, z.

Figure S8. View of of a section of the 1D chain extending along the b axis in 3. All H atoms are omitted for clarity. Symmetry transformations used to generate equivalent atoms: A: 1/2 - x, 1/2 + y, z.

Figures S9. The TGA curves for compounds 1-8.