Supporting Information

Degradation versus Expansion of the AgX Frameworks: Formation of Oligomeric

 and Polymeric Silver Complexes from Reactions of Bulk AgX with N -Bis(diphenylphosphanylmethyl)-2-aminopyridineJü-Hua Yang, ${ }^{\dagger, \mp}$ Xin-Yi Wu, ${ }^{\dagger}$ Run-Tian He, ${ }^{\dagger}$ Zhi-Gang Ren, ${ }^{,{ }^{+}, \S}$ Hong-Xi-Li, ${ }^{\dagger}$ Hui-Fang Wang, ${ }^{\dagger}$ and Jian-Ping Lang*, ${ }^{\text {, } \neq ~}$

${ }^{10}$
\dagger College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
\ddagger State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
${ }_{55}$ § Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602, Singapore

Contents

Figures S1. (a) PXRD patterns for 1. Simulated (red) and single-phase polycrystalline sample (black) of 1. (b) PXRD patterns for 2, 3 and 4. Simulated (red) of 3, single-phase polycrystalline sample (black) ${ }_{5}$ of 3, single-phase polycrystalline sample (blue) of 2 and single-phase polycrystalline sample (pink) of 4. (c) PXRD patterns for 5. Simulated (red) and single-phase polycrystalline sample (black) of 5. (d) PXRD patterns for $\mathbf{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Simulated (red) and single-phase polycrystalline sample (black) of 6. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (e) PXRD patterns for $7 \cdot \mathrm{MeCN}$. Simulated (red) and single-phase polycrystalline sample (black) of 7•MeCN. (f) PXRD patterns for 8. Simulated (red) and single-phase polycrystalline sample ${ }^{10}$ (black) of 8. (g) Observed PXRD patterns for a unknown complex obtained from refluxing a MeCN mixture containing bdppmapy and AgCN (molar ratio = 1:4).S4

Table S1. The elemental analysis data for compounds 2-5 derived from reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{X}(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) in MeCN. The numbers in parentheses are theoretical values for the $\mathrm{C}, \mathrm{H}, \mathrm{N}$ contents ${ }_{15}$ of 2-5.

Figure S2. The IR spectra of $\mathbf{2}$ (a), $\mathbf{3}$ (b), $\mathbf{4}$ (c) and $\mathbf{5}$ (d) derived from reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{X}$ ($\mathrm{X}=$ Cl, Br, I, SCN) in MeCN.
${ }_{20}$ Figure S3. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ (a), $\mathbf{3}$ (b), $\mathbf{4}$ (c) and $\mathbf{5}$ (d) derived from reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{X}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) in MeCN.

Figure S4. The PXRD patterns of 2 (a), $\mathbf{3}$ (b), $\mathbf{4}$ (c) and $\mathbf{5}$ (d) derived from reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{X}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) in MeCN. Simulated (red) and single-phase polycrystalline sample ${ }_{25}$ (black). S13

Figure S5. The observed PXRD patterns for the products derived from solid state reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{Cl}$ (a), $\mathrm{NH}_{4} \mathrm{Br}$ (b), $\mathrm{NH}_{4} \mathrm{I}$ (c) or $\mathrm{NH}_{4} \mathrm{SCN}$ (d).

Figures S6. (a) The positive-ion ESI-MS of 2. (b) The positive-ion ESI-MS of 3. (c) The positive-ion ${ }_{5}$ ESI-MS of 4. (d) The positive-ion ESI-MS of 5. (e) The positive-ion ESI-MS of 6. (f) The positive-ion ESI-MS of 7. (g) The positive-ion ESI-MS of $\mathbf{8}$ S17

Figure S7. View of a section of the 1D chain extending along the b axis in 2. All hydrogen atoms are omitted for clarity. S21 ${ }_{10}$

Figure S8. View of a section of the 1D chain extending along the b axis in 3. All hydrogen atoms are omitted for clarity.

Figures S9. The TGA curves of 1-8.S22

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figures S1. (a) PXRD patterns for 1. Simulated (red) and single-phase polycrystalline sample (black) ${ }_{5}$ of 1. (b) PXRD patterns for 2, 3 and 4. Simulated (red) of 3, single-phase polycrystalline sample (green) of 3, single-phase polycrystalline sample (blue) of 2 and single-phase polycrystalline sample (black) of 4. (c) PXRD patterns for 5. Simulated (red) and single-phase polycrystalline sample (black) of 5. (d) PXRD patterns for $\mathbf{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Simulated (red) and single-phase polycrystalline sample (black) of 6. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (e) PXRD patterns for $7 \cdot \mathrm{MeCN}$. Simulated (red) and single-phase polycrystalline sample ${ }^{10}$ (black) of 7•MeCN. (f) PXRD patterns for 8. Simulated (red) and single-phase polycrystalline sample (black) of 8. (g) Observed PXRD patterns for a unknown complex obtained from refluxing a MeCN mixture containing bdppmapy and AgCN (molar ratio $=1: 4$).

Table S1. The elemental analysis data for compounds 2-5 derived from reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{X}$ ($\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) in MeCN. The numbers in parentheses are theoretical values for the $\mathrm{C}, \mathrm{H}, \mathrm{N}$ contents of 2-5.

	C	H	N
Compound $\mathbf{2}$	$58.33(58.74)$	$4.72(4.45)$	$4.73(4.42)$
Compound 3	$55.19(54.89)$	$3.83(4.16)$	$4.53(4.13)$
Compound 4	$50.99(51.37)$	$3.72(3.75)$	$4.06(3.99)$
Compound 5	$58.92(58.55)$	$4.01(4.30)$	$6.89(6.40)$
${ }^{10}$			

(a)

(b)

Figure S2. The IR spectra of compounds 2 (a), 3 (b), 4 (c) and 5 (d) derived from reactions of 1 with $\mathrm{NH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN})$ in MeCN .

(a)

(b)

Figure S3. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ (a), $\mathbf{3}$ (b), $\mathbf{4}$ (c) and $\mathbf{5}$ (d) derived from reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{X}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) in MeCN.

(c)

(d)

Figure S4. The PXRD patterns of 2 (a), $\mathbf{3}$ (b), $\mathbf{4}$ (c) and $\mathbf{5}$ (d) derived from reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{X}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) in MeCN. Simulated (red) and single-phase polycrystalline sample (black).

Solid state reactions of 1 with $\mathrm{NH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN})$ at room temperature

A mixture of powder $1(143 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(11 \mathrm{mg}, 0.2 \mathrm{mmol})$ or $\mathrm{NH}_{4} \mathrm{Br}(20 \mathrm{mg}, 0.2$ mmol) or $\mathrm{NH}_{4} \mathrm{I}(29 \mathrm{mg}, 0.2 \mathrm{mmol})$ or $\mathrm{NH}_{4} \mathrm{SCN}$ powder ($15 \mathrm{mg}, 0.2 \mathrm{mmol}$) was placed in an agate ${ }_{5}$ mortar and ground at room temperature for 25 min . The resulting product was then characterized by powder X-ray diffraction (XPRD) (see below).

(a)

10

(b)

(c)

(d)

Figure S5. The observed PXRD patterns for the products derived from solid state reactions of $\mathbf{1}$ with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{a}), \mathrm{NH}_{4} \mathrm{Br}(\mathrm{b}), \mathrm{NH}_{4} \mathrm{I}$ (c) or $\mathrm{NH}_{4} \mathrm{SCN}(\mathrm{d})$.

Sample Name	yjh-3	Position	Vial 1	Instrument Name	Instrument 1	User Name	Sater
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	AgCl.d	ACQ Method		Comment		Acquired Time	

(a)

Sample Name	yih-2	Position	Vial 1	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	AgBr.d	ACQ Method		Comment		Acquired Time	

(b)

Sample Name	yjh-4	Position	Vial 1	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	AgI.d	ACQ Method		Comment		Acquired Time	2011-6-13 10:2

(c)

(d)

(e)

Sample Name	YJH-1	Position	Vial 1	Instrument Name	Instrument 1	User Name	IRM Calibration Status
Inj Vol	0	InjPosition		SampleType	Sample	Success	
Data Filename	yjh-1-01.d	ACQ Method		Comment		Acquired Time	

(f)

Figures S6. (a) The positive-ion ESI-MS of 2. (b) The positive-ion ESI-MS of 3. (c) The positive-ion ESI-MS of 4. (d) The positive-ion ESI-MS of 5. (e) The positive-ion ESI-MS of 6. (f) The positive-ion ESI-MS of 7. (g) The positive-ion ESI-MS of $\mathbf{8}$.

Figure S7. View of a section of the 1D chain extending along the b axis in 2. All H atoms are omitted ${ }_{5}$ for clarity. Symmetry transformations used to generate equivalent atoms: $\mathrm{A}: 1 / 2-x, 1 / 2+y, z$.

${ }_{0}$ Figure S8. View of of a section of the 1D chain extending along the b axis in 3 . All H atoms are omitted for clarity. Symmetry transformations used to generate equivalent atoms: A : $1 / 2-x, 1 / 2+y, z$.

Figures S9. The TGA curves for compounds 1-8.

