Supporting Information

Heterogeneous Ni Catalysts for N-Alkylation of Amines with Alcohols

Kenichi Shimizu ^{a,b,*}, Naomichi Imaiida ^c, Kenichi Kon ^a, S. M. A. Hakim Siddiki^b, Atsushi Satsuma ^{b,c}

^a Catalysis Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan

^b Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan

^eDepartment of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

*Corresponding author: e-mail: kshimizu@cat.hokudai.ac.jp, Fax: +81-11-706-916

Figure S1 XRD patterns of Ni/Al₂O₃ catalysts with different Ni loadings pre-reduced at 500°C.

Figure S2. Particle size distribution of from TEM analysis. Particle size analysis was conducted on 103-108 particles.

catalyst	cat.	Т	t	yield	TOF	TON	remarks	ref.
	/mol%	/°C	/h	(%)	$/h^{-1}$		(additives)	
Ni/θ-Al ₂ O ₃	1	144	3	99	33	99	this	
						(800) ^a	-	study
							25 mol%	
Ni-Cu/ γ -Al ₂ O ₃ ^b	38	160	12	86	0.2	2.2	NaOH	37
							12.5 mol%	
							CaCl ₂	
Au/TiO ₂	1	120	48	96	2	96	$5 atm N_2$	23
$Cu-Ag/\gamma-Al_2O_3$	1	144	24	86	3.6	86	-	22
Ru/Al_2O_3	5	132	24	89	0.7	18	-	17
Pd/Fe ₂ O ₃	0.43	150	24	86	8.6	207	-	16
$Pt-Sn/\gamma-Al_2O_3$	0.25	145	24	93	15	356	-	24
Cp* Ir complex	2	110	17	97	2.9	49	2 mol%	10
							NaHCO ₃	
FeBr ₃ /amino acid	3	200	36	85	0.8	33	-	26

Table S1. Catalysts for N-alkylation of aniline with 1-octanol.

^a cat. = 0.1 mol%, t = 120 h

^b 1-dodecanol

¹H-NMR and GC/MS Analysis

¹H-NMR spectra were recorded in CDCl₃ with TMS as an internal standard at ambient temperature on a Varian INOVA-500 operating at 500 MHz. Abbreviations used in the NMR follow-up experiments: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet.

N-Benzylaniline¹

¹H NMR(CDCl₃): δ 7.40 - 7.17 (7H, m, aromatic) , δ 6.74 - 6.71 (1H, m, aromatic) , δ 6.66 - 6.64 (2H, m, aromatic) , δ 4.34 (2H, s, CH₂) , δ 4.08 (1H, br, NH). MS: m/z(relative intensity) 183 (M⁺, 41), 91 (100). N-benzylmorpholine¹

¹H NMR(CDCl₃): δ 7.26 - 7.19 (5H, m, aromatic) , δ 3.64 (4H, t, J=4.5Hz, CH₂) , δ 3.43 (2H, s, CH₂) , δ 2.38 (4H, t, J=8.5Hz, CH₂).

N-Decylaniline²

¹H NMR(CDCl₃): δ 7.15 - 7.19 (2H, m, aromatic) , δ 6.67 - 6.71 (1H, m, aromatic) , δ 6.60 - 6.62 (2H, m, aromatic) , δ 3.71(1H, br, , NH), δ 3.12 - 3.09 (2H, t, J=7.5Hz, CH₂) , δ 1.59 - 1.65 (2H, m, CH₂) , δ 1.27 - 1.41 (14H, m, CH₂) , δ 0.89(3H, t, J=7.0Hz , CH₃). MS: m/z(relative intensity) 233 (M⁺,7), 106 (100).

Benzyl-p-tolyl-amine³

¹H NMR(CDCl₃): δ 7.39 - 7.26 (5H, m, aromatic) , δ 7.01 - 6.98 (2H, m, aromatic) , δ 6.59 - 6.56 (2H, m, aromatic) , δ 4.31 (2H, s, CH₂) , δ 3.92 (1H, br, NH), δ 2.25 (3H, s, CH₃).

Benzyl-o-tolyl-amine³

¹H NMR(CDCl₃): δ 7.41 - 7.29 (5H, m, aromatic) , δ 7.12 - 7.08 (2H, m, aromatic) , δ 6.70 - 6.67 (1H, m, aromatic) , δ 6.62 (1H, d, J=8.0Hz, aromatic) , δ 4.38 (2H, s, CH₂) , δ 3.88 (1H, br, NH), δ 2.17 (3H, s, CH₃).

MS: m/z(relative intensity) 197 (M⁺,18), 91 (100)

N-Benzyl-4-fluoroaniline³

¹H NMR(CDCl₃): δ 7.38 - 7.26 (5H, m, aromatic) , δ 7.91 - 6.88 (2H, m, aromatic) , δ 6.59 - 6.56 (2H, m, aromatic), δ 4.30 (2H, s, CH₂) , δ 3.93 (1H, br, NH).

N-cyclohexyl-N-phenylamine⁴

¹H NMR(CDCl₃): δ 7.17 - 7.13 (2H, m, aromatic) , δ 6.67 - 6.63 (1H, m, aromatic) , δ 6.60 - 6.56 (2H, m, aromatic) , δ 3.53 (1H, br, NH) , δ 3.27 - 3.22 (1H, m, CH) , δ 2.05 - 2.03 (1H, m) , δ 1.77 - 1.62 (4H, m) , δ 1.41 - 1.31 (2H, m), δ 1.27 - 1.09 (3H, m). MS: m/z(relative intensity) 175 (M⁺,36), 132 (100).

N-(4-tert-butylphenyl)benzylamine

¹H NMR(CDCl₃): δ 7.43 - 7.32 (4H, m, aromatic) , δ 7.26 - 7.17 (3H, m, aromatic) , δ 6.62 - 6.58 (2H, m, aromatic) , δ 4.30 (2H, s, CH₂) , δ 3.93 (1H, br, NH), δ 1.27 (9H, s, CH₃). MS: m/z(relative intensity) 239 (M⁺,31), 91 (100)

N-(1-metyl-2-propanone)aniline⁵

¹H NMR(CDCl₃): δ 7.19 - 7.15 (2H, m, aromatic) , δ 6.74 - 6.69 (1H, m, aromatic) , δ 6.57 - 6.54 (2H, m, aromatic) , δ 4.38 (1H, br, NH) , δ 4.09 - 4.04 (1H, m, CH), δ 2.20 (3H, s, CH₃), δ 1.41 (3H, d, J=6.8Hz, CH₃).

MS: m/z(relative intensity) 163 (M⁺, 6), 120 (100).

Benzyl-m-tolyl-amine³

¹H NMR(CDCl₃): δ 7.38 - 7.32 (4H, m, aromatic) , δ 7.29 - 7.24 (1H, m, aromatic) , δ 7.06

(1H, t, J=7.8Hz, aromatic) , δ 6.54 (1H, d, J=7.4Hz, aromatic) , δ 6.47 - 6.43 (2H, m, aromatic), δ 4.31 (2H, s, CH₂), δ 3.96 (1H, br, NH), δ 2.27 (3H, s, CH₃). MS: m/z(relative intensity) 197 (M⁺, 30), 91 (100).

N-hexyl-N-ethylaniline⁶

¹H NMR(CDCl₃): δ 7.22 - 7.15 (2H, m, aromatic), δ 6.67 - 6.59 (3H, m, aromatic), δ 3.38 - 3.32 (2H, q, J=6.9Hz, CH₂), δ 3.23 (2H, t, J=7.8Hz, CH₂), δ 1.60 - 1.54 (2H, m, CH₂), δ 1.32 - 1.27 (6H, m, CH₂), δ 1.42 (3H, t, J=7.3Hz, CH₃), δ 0.90 (3H, t, J=6.8Hz, CH₃). MS: m/z(relative intensity) 205 (M⁺, 14), 134 (100).

N-octyl-N-methylaniline¹

¹H NMR(CDCl₃): δ 7.25 - 7.20 (2H, m, aromatic) , δ 6.70 - 6.64 (3H, m, aromatic) , δ 3.29 (2H, t, J=7.5Hz, CH₂) , δ 2.92 (3H, s, CH₃) , δ 1.58 - 1.54 (2H, m, CH₂), δ 1.30 - 1.27 (10H, m, CH₂), δ 0.90 - 0.86 (3H, m, CH₃).

MS: m/z(relative intensity) 219 (M⁺, 6), 120 (100).

N-(cyclohexylmethyl)aniline⁴

¹H NMR(CDCl₃): δ 7.18 - 7.13 (2H, m, aromatic), δ 6.66 (1H, t, J=7.3Hz, aromatic), δ 6.58 (2H, d, J=7.8Hz, aromatic), δ 3.69 (1H, br, NH), δ 2.94 (2H, d, J=6.4Hz, CH₂), δ 1.83 - 1.67 (5H, m), δ 1.62 - 1.52 (1H, m), δ 1.30 - 1.14 (3H, m), δ 1.02 - 0.93 (2H, m). MS: m/z(relative intensity) 189 (M⁺, 13), 106 (100). N-(cyclohexylmethyl)aniline³

¹H NMR(CDCl₃): δ 7.29 - 7.24 (2H, m, aromatic) , δ 7.19 - 7.14 (4H, m, aromatic) , δ 6.71 (1H, t, J=7.3Hz, aromatic) , δ 6.63 (2H, d, J=7.8Hz, aromatic) , δ 4.28 (2H, s, CH₂) , δ 3.97 (1H, br, NH), δ 2.34 (3H, s, CH₃).

MS: m/z(relative intensity) 197 (M⁺, 37), 105 (100).

N-(cyclohexylmethyl)aniline⁷

¹H NMR(CDCl₃): δ 7.17 - 7.13 (2H, m, aromatic) , δ 6.67 - 6.63 (1H, m, aromatic) , δ 6.60 - 6.56 (2H, m, aromatic) , δ 3.48 - 3.41 (2H, m) , δ 1.61 - 1.52 (1H, m) , δ 1.44 - 1.30 (5H, m) , δ 1.17 (3H, d, J=6.0Hz, CH₃) , δ 0.90 (3H, t, J=7.3Hz, CH₃). MS: m/z(relative intensity) 177 (M⁺, 10), 120 (100).

N,N-dipropyl-1-decanamine

¹H NMR(CDCl₃): δ 2.58 - 2.36 (6H, m, CH₂) , δ 1.50 - 1.26 (20H, m, CH₂) , δ 0.89 - 0.85 (9H, m, CH₃).

MS: m/z(relative intensity) 241 (M⁺,4), 114 (100).

N-ethylaniline⁸

¹H NMR(CDCl₃): δ 7.19 - 7.15 (2H, m, aromatic), δ 6.71 - 6.67 (1H, m, aromatic), δ 6.62 - 6.59 (2H, m, aromatic), δ 3.53 (1H, br, NH), δ 3.16 (3H, q, J=7.3Hz, CH₂), δ 1.25 (3H, t, J=7.3Hz, CH₃).

MS: m/z(relative intensity) 121 (M⁺, 36), 106 (100).

N-isopropylaniline⁹

¹H NMR(CDCl₃): δ 7.18 - 7.11 (2H, m, aromatic), δ 6.68 - 6.65 (1H, m, aromatic), δ 6.60 - 6.57 (2H, m, aromatic), δ 3.66 - 3.60 (1H, m, CH), δ 3.44 (1H, br, NH), δ 1.21 (6H, d, J=6.4Hz, CH₃).

MS: m/z(relative intensity) 135 (M⁺, 25), 120 (100).

N-(4-tert-butylbenzyl)aniline

¹H NMR(CDCl₃): δ 7.39 - 7.36 (2H, m, aromatic) , δ 7.32 - 7.30 (2H, m, aromatic) , δ 7.20 - 7.16 (2H, m, aromatic) , δ 6.73 - 6.70 (1H, m, aromatic) , δ 6.66 - 6.64 (2H, m, aromatic) , δ 4.29 (2H, s, CH₂) , δ 3.98 (1H, br, NH) , δ 1.32 (9H, s, CH₃). MS: m/z(relative intensity) 239 (M⁺, 17), 147 (100).

N-(4-methoxybenzyl)aniline³

¹H NMR(CDCl₃): δ 7.30 - 7.25 (2H, m, aromatic) , δ 7.20 - 7.17 (2H, m, aromatic) , δ 6.89 - 6.86 (2H, m, aromatic) , δ 6.72 - 6.69 (1H, m, aromatic) , δ 6.65 - 6.62 (2H, m, aromatic) , δ 4.25 (2H, s, CH₂), δ 3.93 (1H, br, NH), δ 3.80 (3H, s, CH₃). MS: m/z(relative intensity) 213 (M⁺, 21), 121 (100).

N-octylbenzylaniline¹⁰

'n H

¹H NMR(CDCl₃): δ 7.38 - 7.21 (5H, m, aromatic) , δ 3.79 (2H, s) , δ 2.64 - 2.58 (2H, m) , δ 1.53 - 1.43 (2H, m) , δ 1.36 - 1.20 (11H, m) , δ 0.88 (2H, t, J=7.3Hz, CH₃). MS: m/z(relative intensity) 219 (M⁺, 2), 91 (100). N-octylaniline⁴

¹H NMR(CDCl₃): δ 7.19 - 7.14 (2H, m, aromatic) , δ 6.70 - 6.66 (1H, m, aromatic) , δ 6.61 - 6.59 (2H, m, aromatic) , δ 3.58 (1H, br, , NH), δ 3.12 - 3.08 (2H, t, J=7.3Hz, CH₂) , δ 1.65 - 1.54 (2H, m, CH₂) , δ 1.41 - 1.23 (10H, m, CH₂) , δ 0.88 (3H, t, J=7.1Hz , CH₃). MS: m/z(relative intensity) 205 (M⁺, 10), 106 (100).

N-octylaniline

¹H NMR(CDCl₃): δ 2.612 - 2.56 (2H, m, CH₂) , δ 2.41 - 2.33 (1H, m, CH) , δ 1.91 - 1.02 (26H, m, CH₂) , δ 0.88 (3H, t, J=7.3Hz, CH₃).

MS: m/z(relative intensity) 239 (M⁺, 2), 112 (100).

References

- (1) Fujita, K.-i.; Enoki, Y.; Yamaguchi, R. Tetrahedron 2008, 64, 1943.
- (2) Zhang, Y.; Qi, X.; Cui, X.; Shi, F.; Deng, Y. Tetrahedron Lett. 2011, 52, 1334.
- (3) Shimizu, K.; Shimura, K.; Nishimura, M.; Satsuma, A. RSC Advances 2011, 1, 1310.
- (4) Cho, B. T.; Kang, S. K. Tetrahedron 2005, 61, 5725.
- (5) Fürstner, A.; Alcarazo, M.; César, V.; Lehmann, C. W. Chem. Commun. 2006, 2176.
- (6) Sahli, Z.; Sundararaju, B.; Achard, M.; Bruneau, C. Org. Lett. 2011, 13, 3964.
- (7) Villa-Marcos, B.; Li, C.; Mulholland, K. R.; Hogan, P. J.; Xiao, J. Molecules 2010, 15, 2453.
- (8) Xiang, S.; Xu, J.; Yuan, H.; Huang, P. Synlett 2010, 12, 1829.
- (9) Chen, S.; Huang, H.; Liu, X.; Shen, J.; Jiang, H.; Liu, H. J. Comb. Chem. 2008, 10, 358.
- (10) Guerin, C.; Bellosta, V.; Guillamot, G.; Cossy, J. Org. Lett. 2011, 13, 3534.