S-1

Correlation Queries for Mass Spectrometry Imaging

Frank Suits ${ }^{1{ }^{*}}$, Thomas E. Fehniger ${ }^{2,3}$, Ákos Végvári, ${ }^{3,4}$, György Marko-Varga ${ }^{3,5}$ and Peter Horvatovich ${ }^{6,8,7}$

${ }^{1}$ IBM T. J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598
${ }^{2}$ Institute of Clinical Medicine, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
${ }^{3}$ Clinical Protein Science \& Imaging, Biomedical Center, Dept. of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, SE-221 84 Lund, Sweden
${ }^{4}$ CREATE Health, Lund University, Lund, Sweden
${ }^{5}$ First Department of Surgery, Tokyo Medical University, Tokyo, Japan
${ }^{6}$ Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, The Netherlands,
${ }^{7}$ Netherlands Bioinformatics Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
${ }^{8}$ Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands

Abstract

Supplemental material:

1. Pseudocode for the Pearson correlation calculation

S-2

1. Pseudocode to calculate the correlation of two slices:
a. Given two "slices," A and B, of the mass-spectrometry imaging data set, each consisting of a rectangular array of "pixels" corresponding to scan points, and the value at each pixel representing the total ion count in some small range of m / z
b. Find mean of all pixel intensities in SliceA and SliceB
c. Subtract the mean from each pixel value of each slice so the mean intensity of each slice is zero
d. Find the sum of the squares of each slice
e. Divide each pixel by the sum of squares in (d) so the "norm" of each slice is one
f. The correlation is then the dot product of the two slices, or the sum of the products of each pixel in A with the corresponding pixel in B
g. The correlation will range from -1 to 1 and is independent of the range of intensity values in each slice. 1 means fully correlated; -1 means anti-correlated.
h. If a mask is involved, perform the above calculation but only using the pixels covered by the mask
