In-Situ Observation of Plasmon Tuning in a Single Gold Nanoparticle During Controlled Melting

Supporting Information

Alexander Kuhlicke^{*1}, Stefan Schietinger¹, Christian Matyssek², Kurt Busch^{2,3}, and Oliver Benson¹

 ¹Humboldt-Universität zu Berlin, Institut für Physik, AG Nanooptik, Newtonstr. 15, D-12489 Berlin, Germany
 ²Humboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik, Newtonstr. 15, D-12489 Berlin, Germany
 ³Max-Born-Institut, Max-Born-Str. 2A, D-12489 Berlin, Germany

Details on the simulation results

The simulation results shown in Fig. 5 were obtained using the Discontinuous Galerkin Time-Domain method [1, 2]. A mesh consisting of third order tetrahedral elements was used. For the spherical particle, we used a diameter of 80 nm, which is a typical value observed in the experiment. For the transformed particles, typical heights measured are around 110 nm. Assuming volume conservation and a prolate spheroidal shape, we arrive at short half-axes of 34 nm. To accurately model the particle geometry, elements sizes down to 5 nm were used, the entire setup consists of roughly 40.000 elements.

The permittivity of the gold particle was approximated by an analytical fit to measured values [3]. We used one Drude term plus three Lorentz terms

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_D^2}{\omega(\omega + i\gamma_D)} + \sum_{i=1}^3 \frac{\Delta_i \Omega_i^2}{\Omega_i^2 - i\Gamma\omega - \omega^2} \tag{1}$$

which gives a reasonably accurate approximation. For the substrate, we assumed a permittivity of 2.32.

^{*}kuhlicke@physik.hu-berlin.de

	ε_{∞}	ω_D (s ⁻¹)	γ_D (s ⁻¹)
Drude	6.40	$1.37 \cdot 10^{16}$	$1.16 \cdot 10^{14}$
	Δ_i	Ω_i	Γ_i
		(s^{-1})	(s^{-1})
Lorentz 1	$1.51 \cdot 10^{15}$	$\frac{(\mathrm{s}^{-1})}{4.42 \cdot 10^{15}}$	$\frac{(\mathrm{s}^{-1})}{1.54 \cdot 10^{15}}$
Lorentz 1 Lorentz 2	$\frac{1.51 \cdot 10^{15}}{1.02 \cdot 10^{15}}$	()	()

Table 1: Parameters for the Drude-Lorentz model used in the simulations

The particle was excited with a plane wave with a Gaussian profile in time, which is incident under an angle of 7° relative to the substrate, just as in the experiment.

References

- Busch, K.; König, M.; Niegemann, J. Laser Photonics Rev. 2011, 5, 773–809.
- [2] Niegemann, J.; König, M.; Stannigel, K.; Busch, K. Photonics and Nanostructures - Fundamentals and Applications 2009, 7, 2–11.
- [3] Johnson, P. B.; Christy, R. W. Phys. Rev. B 1972, 6, 4370-4379.